Skip to main content

The Danube Delta Environment Changes Generated by Human Activities

  • Chapter
  • First Online:
The Danube River Delta

Abstract

Especially since the middle of the 19-th century, the Danube Delta environment has undergone continuous changes generated by important anthropogenic works on the main delta distributaries and also inside the delta territory, as meander bends cut-offs, embankments, etc. The chapter focuses on the St. George distributary and tries to document the environmental changes induced by meander belts cut-off programmes in the 1981–1992 interval. Three meanders of the distributary are called Mahmudia (located between km 84,0 and 64,0), the Upper Dunavăţ (between km 58,1 and 54,7) and the Lower Dunavăţ (between km 53,8 and 49,5) have been studied. Several aspects of the cut-off works impact have been revealed and quantified: strong erosion processes on the cut-off canals, significant clogging processes on the natural courses, increasing of the water and sediments fluxes on the cut-off canals, limitation of penetration of waters and sediments from the distributary to intra-deltaic depressions, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Staras M (2000) Restoration programme in the Danube Delta: achievements, benefits and constraints. In: Nijland HJ, CALS, MJR (eds), Proceeding of the IInd ECRR International Conference on River Restoration in Europe 2000. Institute for Inland Water Management and Waste Water Treatment/RIZA Lelystad, Wageningen (Netherlands) pp 95–101 (pub)

    Google Scholar 

  2. Vădineanu A (2001) Lower Danube Wetlands System (LDWS). Obs Medioambient 4:373–402

    Google Scholar 

  3. Vădineanu A, Adamescu M, Vădineanu R, Cristofor S, Negrei C (2003) Past and future management of Lower Danube wetlands system: a bioeconomic appraisal. J Interdiscip Econ 14(4):415–447

    Article  Google Scholar 

  4. Bondar C, Teodor SM (2008) The evaluation of the balance and the management of sediments in the shipping portion of the Danube course. Text prepared in course of the project. Assessment of the balance and management of sediments of the Danube waterway (Schwarz et al., 2008)

    Google Scholar 

  5. Kiss T, Fiala K, Sipos G (2008) Alterations of channel parameters in response to river regulation works since 1840 on the Lower Tisza River (Hungary). Geomorphology 98(1–2):96–110

    Article  ADS  Google Scholar 

  6. Peng J, Chen S, Dong P (2010) Temporal variation of sediment load in the Yellow River basin, China, and its impacts on the lower reaches and the river delta. CATENA 83(2–3):135–147

    Article  Google Scholar 

  7. Habersack H, Jäger E, Hauer C (2013) The status of the Danube River sediment regime and morphology as a basis for future basin management. Int J River Basin Manag 11(2):153–166

    Article  Google Scholar 

  8. Romanescu G, Stoleriu CC (2014) Anthropogenic interventions and hydrological-risk phenomena in the fluvial-maritime delta of the Danube (Romania). Ocean Coast Manag 102:123–130

    Article  Google Scholar 

  9. Brandt SA (2000) Classification of geomorphological effects downstream of dams. CATENA 40:375–401

    Article  Google Scholar 

  10. Knighton D (1998) Fluvial forms and processes. Edward Arnold, London, p 383

    Google Scholar 

  11. Kingsford RT (2000) Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecol 25(2):109–127

    Article  Google Scholar 

  12. Uribelarrea D, Pérez-Gonzalez A, Benito G (2003) Channel changes in the Jarama and Targus rivers (central Spain) over the past 500 years. Quat Sci Rev 2209–2221

    Google Scholar 

  13. Nilsson C, Reidy CN, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science 308(5720):405–408

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Magilligan FJ, Nislow KH (2005) Changes in hydrologic regime by dams. Geomorphology 71(1–2):61–78

    Article  ADS  Google Scholar 

  15. Graf WL (2006) Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 79(34):336–360

    Article  ADS  Google Scholar 

  16. Poff NL, Olden JD, Merritt DM, Pepin DM (2007) Homogenization of regional river dynamics by dams and global biodiversity implications. Proc Natl Acad Sci USA 104(14):5732–5737

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang J, Wang Y, Istanbulluogu E, Bai T, Huang Q, Yang D (2015) Impact of climate change and human activities on runoff in the Weihe River Basin, China. Quat Int 380–381:169–179

    Article  Google Scholar 

  18. Ashraf FB, Haghighi AT, Mattila H, Klove B (2016) Assessing impacts of climate change and river regulation on flow regimes in cold climate: a study of a pristine and a regulated river in the sub-arctic setting of Northern Europe. J Hydrol 542:410–422

    Article  Google Scholar 

  19. Yu G, Disse M, Huang H, Yu Y, Li Z (2016) River network evolution and fluvial process responses to human activity in a hyper-arid environment—Case of the Tarim River in North West China. CATENA 147:96–109

    Article  Google Scholar 

  20. Calle M, Alho P, Benito G (2017) Channel dynamics and geomorphic resilience in an ephemeral Mediterranean river affected by gravel mining. Geomorphology 285:333–346

    Article  ADS  Google Scholar 

  21. Amissah GJ, Kiss T, Fiala K (2017) Centurial changes in the depth conditions of a regulated river: case study of the Lower Tisza River, Hungary. J Environ Geogr 10:41–51

    Article  Google Scholar 

  22. Xu J (2002) River sedimentation and channel adjustment of the lower Yellow River as influenced by low discharges and seasonal channel dry-ups. Geomorphology 43:151–164

    Article  ADS  Google Scholar 

  23. Petts GE, Gurnell AM (2005) Dams and geomorphology: research progress and future directions. Geomorphology 71(1–2):27–47

    Article  ADS  Google Scholar 

  24. Williams GP, Wolman GP (1984) Downstream effects of dams on alluvial rivers. USGS Circular 781:48

    Google Scholar 

  25. Biedenharn DS, Thorn CR, Watson CC (2000) Recent morphological evolution of the Lower Mississippi River. Geomorphology 34:227–249

    Article  ADS  Google Scholar 

  26. Kesel RH (2003) Human modifications to the sediment regime of the Lower Mississippi River flood plain. Geomorphology 56(3–4):325–334

    Article  ADS  Google Scholar 

  27. Marren PM, Grove JR, Webb JA, Stewardson MJ (2014) The potential for dams to impact lowland meandering river floodplain geomorphology. Sci World J 2014(309673):24. http://dx.doi.org/10.1155/2014/309673

  28. Smith ND, Morosova GS, Perez-Arlucea M, Gibling MR (2016) Dam-induced and natural channel changes in the Saskatchewan River below the E.S. Campbell Dam, Canada. Geomorphology 269:186–202

    Article  ADS  Google Scholar 

  29. Habersack H, Hein T, Stanica A, Liska I, Mair R, Jager E, Hauer C, Bradley C (2016) Challenges of river basin management: current status of, and prospects for, the River Danube from a river engineering perspective. Sci Total Environ 543:828–845

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Walling DE, Fang D (2003) Recent trends in the suspended sediment loads of the world’s rivers. Glob Planet Chang 39:111–126

    Article  ADS  Google Scholar 

  31. Vörösmarty CJ, Sharma K, Fekete B, Copeland AH, Holden J, Marble J, Lough JA (1997) The storage and aging of continental runoff in large reservoir systems of the world. Ambio 26:210–219

    Google Scholar 

  32. Vörösmarty CJ, Meybeck M, Fekete B, Sharma K, Green P, Syvitski JPM (2003) Anthropogenic sediment retention: major global impact from registered river impoundments. Glob Planet Chang 39:169–190

    Article  ADS  Google Scholar 

  33. Petts GE (1984) Impounded rivers: perspectives for ecological management. Wiley, Chichester, p 326

    Google Scholar 

  34. Zenkovich VP (1976) Preserving the nature of seashores. Geoforum 7(5–6):395–397

    Article  Google Scholar 

  35. Meade RH, Parker RS (1985) Sediment in rivers of the United States. National Water Survey 1984. U.S. Geological Survey Water-Supply Paper, vol 2275, pp 49–60

    Google Scholar 

  36. Alford D (1992) Streamflow and sediment transport from mountain watersheds of the Chao Phraya basin, northern Thailand: A reconnaissance study. Mt Res Dev 12(3):257–268

    Article  Google Scholar 

  37. Camporeale C, Perona P, Porporato A, Ridolfi L (2005) On the long-term behavior of meandering rivers. Water Resour Res 41:W12403. https://doi.org/10.1029/2005WR004109

    Article  ADS  Google Scholar 

  38. Sear DA (1995) Morphological and sedimentological changes in a gravel-bed river following 12 years of flow regulation for hydropower. Regul Rivers: Res Manage 10:247–264

    Article  Google Scholar 

  39. Xu J (1996) Underlying gravel layers in a large sand bed river and their influence on downstream-dam channel adjustment. Geomorphology 17:351–359

    Article  Google Scholar 

  40. Shields FD, Simon A, Steffen IJ (2000) Reservoir effects on downstream river channel migration. Environ Conserv 27(1):54–66

    Article  Google Scholar 

  41. Gaeuman D, Schmidt J, Wilcock PR (2005) Complex channel responses to changes in stream flow and sediment supply on the lower Duchesne River, Utah. Geomorphology 64:185–206

    Article  ADS  Google Scholar 

  42. Phillips JD, Slaterry MC, Musselman ZA (2005) Channel adjustments of the the lower Trinity River, Texas, downstream of Livingston dam. Earth Surf Proc Land 30:1419–1439

    Article  ADS  Google Scholar 

  43. Grams PE, Schmidt JC (2005) Equilibrium or indeterminate? Where sediment budgets fail: sediment mass balance and adjustment of channel form, Green River downstream from Flaming Gorge dam, Utah

    Google Scholar 

  44. Schumm SA (1981) Evolution and response of the fluvial system, sedimentologic implication. Society of Economic Paleontogist and Mineralogist 31(Spec publ):19–29

    Google Scholar 

  45. Winkley BR (1982) Response of the Lower Mississippi to River Training and Realignment. Gravel-bed Rivers, 659–681

    Google Scholar 

  46. Stancik A, Jovanovic S, Sikora A, Urge L, Miklos D (1988) Hydrology of the River: Danube. Priroda, pp 271

    Google Scholar 

  47. Bondar C (1973) Problemele cercetarilor hidrologice pe sectorul romanesc al Dunarii in etapa actuala si viitoare (1971–1980). Studii de hidrologie, Vol XXXVII, Bucuresti, pp 108–135

    Google Scholar 

  48. Bondar C (1992) Trend and cyclicity of anual Danube discharge at Danube Delta input. XVI Konferenz der Donaulander uber hydrologische verhersagen und hydrologische-wasserwirtschaftliche Grundlagen, 18–22 mai, Kelheim, Bundesrepublik Deutchland, pp 321–326

    Google Scholar 

  49. Bondar C, State I, Cernea D, Harabagiu E (1991) Water flow and sediment transport of the Danube at its outlet into the Black Sea. Meteorology and Hydrology, vol 21.1, pp 21–25, Bucureşti

    Google Scholar 

  50. Bondar C, Buta C, Harabagiu E (1994) Variation and trend of the water, sediment and salt runoff for the Danube river,at the inlet in our country,during the period 1840–1992

    Google Scholar 

  51. Bondar C, Panin N (2000) The Danube Delta Hydrologic Database and Modeling. Geo-Eco-Marina 5–6:5–53

    Google Scholar 

  52. Panin N (1976) Some aspects of fluvial and marine processes in Danube Delta. Institutul de Geologie si Geofizica, Anuarul institutului de Geologie si Geofizica, vol L

    Google Scholar 

  53. Panin N (1999) Danube Delta: Geology, Sedimentology, Evolution. Association des Sédimentologistes Français, Maison de la Géologie, Paris, pp 66

    Google Scholar 

  54. Panin N (2003) The Danube Delta. Geomorphology and Holocene evolution: a Synthesis. Géomorphologie: relief, processus, environnement 4:247–262

    Google Scholar 

  55. Stănică A, Dan S, Ungureanu G (2007) Coastal changes at the Sulina mouth of the Danube River as a result of human activities. Mar Pollut Bull 55:555–563

    Article  PubMed  CAS  Google Scholar 

  56. Panin N, Jipa D (2002) Danube River sediment input and its interaction with the North—Western Black Sea. Estuar, Costal Shelf Sci 54:551–562

    Article  ADS  Google Scholar 

  57. Tiron L (2010) Delta du Danube – bras de St. George. Mobilité morphologique et dynamique hydro sédimentaire depuis 150 ans. Geo-Eco-Marina, Special Publication 4, pp 280

    Google Scholar 

  58. Romanescu G (2013) Alluvial transport processes and the impact of Anthropogenic intervention on the Romanian littoral of the Danube Delta. Ocean Coast Manag 73:31–43

    Article  Google Scholar 

  59. Panin N, Overmars W (2012) The Danube Delta evolution during the Holocene: Reconstruction attempt using geomorphological and geological data, and some of the existing carthographic documents. Geo-Eco-Marina 18:75–110

    Google Scholar 

  60. Giosan L, Constantinescu Ș, Filip F, Deng B (2013) Maintenance of large deltas through channelization: nature vs. humans in the Danube delta. Anthropocene 1:35–45. https://doi.org/10.1016/j.ancene.2013.09.001

    Article  Google Scholar 

  61. Ardeleanu C (2014) International Trade and Diplomacy at the Lower Danube: The Sulina Question and the Economic Premises of the Crimean War (1829–1853). Editura Istros a Muzeului Brailei, ISBN: 978–606-654–088–9, pp 307

    Google Scholar 

  62. Ardeleanu C (2020) The European Commission of the Danube, 1856–1948. Balkan Studies Library. Brill ISSN: 1877-6272, pp 379. https://doi.org/10.1163/9789004425965

  63. St C, Tănăsescu M (2018) Simplifying a deltaic labyrinth: anthropogenic imprint on river deltas. Rev Geomorfol 20:66–78. https://doi.org/10.21094/rg.2018.023

    Article  Google Scholar 

  64. Duţu F, Panin N, Ion G, Tiron Duţu L (2018) Multibeam Bathymetric Investigations of the Morphology and Associated Bedforms, Sulina Channel, Danube Delta. Geosci 8:7

    Article  CAS  Google Scholar 

  65. Gastescu P, Driga B (1983) Les caractéristiques du régime hydrique du Danube a son embouchure dans la Mer Noire. Rev Roum: Géographie 25:55–60

    Google Scholar 

  66. Almazov AA, Bondar C, Diaconu C, Ghederim V, Mihailov AN, Mita P, Nichiforov ID, Rai IA, Rodionov NA, Stanescu S, Stanescu V, Vaghin NF (1963) Zona de varsare a Dunarii. Monografie hidrologica. 396pp, Ed. Tehnica, Bucuresti

    Google Scholar 

  67. Popa A (1997) Environment changes in the Danube Delta caused by the hydrotechnical works on the St. George branch. Geo-Eco-Marina 2:135–147

    Google Scholar 

  68. Jugaru L, Provansal M, Panin N, Dussouillez P (2006) Apports des Systèmes d’Information Géographiques à la perception des changements morpho-dynamiques (1970–2000) dans le delta du Danube. Le cas du bras de Saint-George, GeoEcoMarina 12:29–42

    Google Scholar 

  69. Jugaru Tiron L, Le Coz J, Provansal M, Panin N, Raccasi G, Dramais G, Dussouillez P (2009) Flow and sediment processes in a cutoff meander of the Danube Delta during episodic flooding. Geomorphology 106(3–4):186–197

    Article  ADS  Google Scholar 

  70. Mikhailov VN, Mikhailova MV (2015) Impact of local water management and hydraulic-engineering projects on River deltas. Water Resour 42(3):275–284

    Article  CAS  Google Scholar 

  71. Tiron Duţu L, Provansal M, Le Coz J, Duţu F (2014) Contrasted sediment processes and morphological adjustments in three successive cutoff meanders of the Danube Delta. Geomorphology 204:154–164

    Article  ADS  Google Scholar 

  72. Duţu F, Tiron Duţu L, Ion G, Popa A (2019) Deciphering the morphology of the channel and relashionship with anthropic changes in the Danube Delta based on multibeam bathymetric investigations. SGEM 19:121–128

    Google Scholar 

  73. Tiron Duţu L, Duţu F (2019) Recent hydro-morphological and sedimentological processes in the Danube Delta, Saint George branch. SGEM 19:456–472

    Google Scholar 

  74. Tiron Duţu L, Duţu F, Secrieru D, Opreanu G (2019) Sediments grain size and geo-chemical interpretation of three successive cutoff meanders of the Danube Delta, Romania. Geochem 79:399–407

    Article  CAS  Google Scholar 

  75. Shepard FP (1954) Nomenclature based on sand-silt-clay ratios. J Sediment Petrol 24:151–158

    Article  Google Scholar 

  76. Udden JA (1914) Mechanical composition of clastic sediments. Geol Soc Am Bull 25(1):655–744

    Google Scholar 

  77. Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30(5):377–392

    Article  ADS  Google Scholar 

  78. Ashley GM (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem. J Sediment Petrol 60:160–172

    Article  Google Scholar 

  79. Van Rijn LC (1993) Principles of sediment transport in rivers, estuaries and coastal seas. Aqua Publications, Amsterdam, pp 715

    Google Scholar 

  80. Van Rijn LC (1984) Sediment transport, Part III: bed forms and alluvial roughness. J Hydraul Eng, ASCE 110(12)

    Google Scholar 

  81. Nikora VI (1987) Methods for quantitative description of channel bed-forms. In: Erosional and channel processes in various climatic conditions. Moscow University, Moscow, Russia, pp 327–328

    Google Scholar 

  82. Bialik RJ, Karpinski M, Rajwa A, Luks B, Rowinski PM (2014) Bedform characteristics in natural and regulated channels: a comparative field study on the Wilga River, Poland. Acta Geophys 62:1413–1434

    Article  ADS  Google Scholar 

  83. Walling DE (1987) Rainfall, runoff and erosion of the land: a global view. In: Gregory KJ (ed) Energetics of physical environment. Wiley, Chichester, UK, pp 89–117

    Google Scholar 

  84. Hickin EJ (1995) River geomorphology. Wiley, New York, NY, USA, pp 255

    Google Scholar 

  85. Bordas MP (1991) An outline of hydrosedimentological zones in the Brazilian Amazon basin. In: Braga BPF, Fernandez-Jauregui C (eds) Water management of the Amazon Basin. Publ Unesco-Rostlac, Montevideo, pp 191–203

    Google Scholar 

  86. Carvalho NO, Filizola N, dos Santos PMC, Lima JW (2000) Guia de Práticas Sedimentométricas. Ed.ANEEL/PNUD/OMM, Brasília, pp 154

    Google Scholar 

  87. Meybeck M, Laroche L, Dürr HH, Syvitski JMP (2003) Global variability of daily total suspended solids and their fluxes in rivers. Global Planet Change 39:65–93

    Article  ADS  Google Scholar 

  88. Lane EW (1947) The effect of cutting off bends in rivers. University of Iowa Studies in Engineering Proceedings of the Third Hydraulics Conference, Bulletin 31, University of Iowa, Iowa City, pp 239–240

    Google Scholar 

  89. Lane EW (1955) The importance of fluvial morphology in river hydraulic engineering. Proc Am Soc Civ Eng 81:1–17

    Google Scholar 

  90. Amissah GJ, Kiss T, Fiala K (2018) Morphological evolution of the Lower Tisza River (Hungary) in the 20th century in response to human Interventions. Water 10(884). https://doi.org/10.3390/w10070884

  91. Lewis GW, Lewin J (1983) Alluvial cutoffs in Wales and the borderlands. In: JD Collinson, J Lewin (eds) Modern and ancient fluvial systems. https://doi.org/10.1002/9781444303773.ch11

  92. Mosley MP (1975) Channel changes on the River Bollin, Cheshire, 1872–1973. East Midland Geogr 6:185–199

    Google Scholar 

  93. Brice JC (1973) Meandering pattern of White River in Indiana: an analysis. In: M Morisawa (ed), Fluvial geomorphology. Wiley, pp 591–609

    Google Scholar 

  94. Hickin EJ, Nanson GC (1975) The character of channel migration on the Beatton River, northeast British Columbia, Canada. Geol Soc Am Bull 86:487–494.

    Google Scholar 

Download references

Acknowledgements

The research was fouded by the Ministry of Research, Innovation and Digitization Core Program, Projects PN16450503 (Contract no. 37N/2016) and PN19200401 (Contract no. 13N/08.02.2019) and Project AMBIACVA (Contract 23PFE/30.12.2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florin Duţu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiron Duţu, L. et al. (2022). The Danube Delta Environment Changes Generated by Human Activities. In: Negm, A.M., Diaconu, D.C. (eds) The Danube River Delta. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-03983-6_1

Download citation

Publish with us

Policies and ethics