Skip to main content

ABMS Approach for Cementless Total Hip Replacement

  • Chapter
  • First Online:
The Anterior-Based Muscle-Sparing Approach to Total Hip Arthroplasty

Abstract

The anterior-based muscle-sparing (ABMS) cementless total hip arthroplasty follows many of the same workup and principles and relies on the same biologic process for fixation as other approaches to the hip. There are subtle changes to incision, fascial planes, and positioning that can aid placement of certain types of implants, with caution being taken in the elderly and poor bone quality to ensure appropriate fixation of implants. There has been an increase in the use of collared implants to decrease some of the loading and rotational stability to stems which have shown good outcomes. If needed, exposure can be increased to place cables for fracture as well as longer press-fit stems. While there are no contraindications for cementless fixation with ABMS, some stems have shown worse outcomes in certain types of bone morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen KK, et al. Cemented compared with uncemented femoral fixation in the arthroplasty treatment of displaced femoral neck fractures: a critical analysis review. JBJS Rev. 2018;6(4):e6.

    Article  PubMed  Google Scholar 

  2. Zhang CHYCZ. Wenming, cemented or cementless fixation for primary hip arthroplasty—evidence from the international joint replacement registries. Ann Joint. 2017;2:57.

    Article  Google Scholar 

  3. Takenaga RK, et al. Cementless total hip arthroplasty in patients fifty years of age or younger: a minimum ten-year follow-up. J Bone Joint Surg Am. 2012;94(23):2153–9.

    Article  PubMed  Google Scholar 

  4. Lenze F, et al. A 30-year single-center experience of cementless total hip arthroplasty with spongy metal structured implants: a follow-up of a previous report. In Vivo. 2019;33(3):833–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dorr LD, et al. Structural and cellular assessment of bone quality of proximal femur. Bone. 1993;14(3):231–42.

    Article  CAS  PubMed  Google Scholar 

  6. Kheir MM, Drayer NJ, Chen AF. An update on cementless femoral fixation in Total hip arthroplasty. J Bone Joint Surg Am. 2020;102(18):1646–61.

    Article  PubMed  Google Scholar 

  7. Dalury DF, Kelley TC, Adams MJ. Modern proximally tapered uncemented stems can be safely used in Dorr type C femoral bone. J Arthroplast. 2012;27(6):1014–8.

    Article  Google Scholar 

  8. Rhyu KH, et al. Does osteoporosis increase early subsidence of cementless double-tapered femoral stem in hip arthroplasty? J Arthroplast. 2012;27(7):1305–9.

    Article  Google Scholar 

  9. Polat A, et al. Cementless rectangular stems yield satisfactory results in osteoporotic bones. Ulus Travma Acil Cerrahi Derg. 2021;27(2):243–8.

    PubMed  Google Scholar 

  10. Zhen P, et al. Primary total hip arthroplasty using a short bone-conserving stem in young adult osteoporotic patients with Dorr type C femoral bone. J Orthop Surg Res. 2021;16(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Les Skinner P. Snubbing theory and calculations. In: Hydraulic rig technology and operations. Amsterdam: Gulf Professional Publishing; 2019.

    Google Scholar 

  12. McKee LW. Introduction to fatigue of plastics and elastomer. In: Fatigue and tribological properties of plastics and elastomers. Amsterdam: William Andrew; 2016.

    Google Scholar 

  13. Bai QB. Yong, pipeline stress checks. In: Subsea pipeline design, analysis, and installation. Amsterdam/Boston: Elsevier; 2014.

    Google Scholar 

  14. Christie J, et al. Echocardiography of transatrial embolism during cemented and uncemented hemiarthroplasty of the hip. J Bone Joint Surg Br. 1994;76(3):409–12.

    Article  CAS  PubMed  Google Scholar 

  15. Clark DI, et al. Cardiac output during hemiarthroplasty of the hip. A prospective, controlled trial of cemented and uncemented prostheses. J Bone Joint Surg Br. 2001;83(3):414–8.

    Article  CAS  PubMed  Google Scholar 

  16. Holt EM, et al. 1000 femoral neck fractures: the effect of pre-injury mobility and surgical experience on outcome. Injury. 1994;25(2):91–5.

    Article  CAS  PubMed  Google Scholar 

  17. Ozturkmen Y, et al. Cementless hemiarthroplasty for femoral neck fractures in elderly patients. Indian J Orthop. 2008;42(1):56–60.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mao S, et al. Cemented versus uncemented total hip replacement for femoral neck fractures in elderly patients: a retrospective, multicentre study with a mean 5-year follow-up. J Orthop Surg Res. 2020;15(1):447.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kristensen TB, et al. Cemented or uncemented hemiarthroplasty for femoral neck fracture? Data from the Norwegian Hip Fracture Register. Clin Orthop Relat Res. 2020;478(1):90–100.

    Article  PubMed  Google Scholar 

  20. Okike K, et al. Association between uncemented vs cemented hemiarthroplasty and revision surgery among patients with hip fracture. JAMA. 2020;323(11):1077–84.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lass R, et al. A cementless hip system with a new surface for osseous integration. Int Orthop. 2014;38(4):703–9.

    Article  PubMed  Google Scholar 

  22. Epinette JA. Clinical outcomes, survivorship and adverse events with mobile-bearings versus fixed-bearings in hip arthroplasty-a prospective comparative cohort study of 143 ADM versus 130 trident cups at 2 to 6-year follow-up. J Arthroplast. 2015;30(2):241–8.

    Article  Google Scholar 

  23. Carli AV, et al. Short to midterm follow-up of the tritanium primary acetabular component: a cause for concern. J Arthroplast. 2017;32(2):463–9.

    Article  Google Scholar 

  24. Yoshioka S, et al. Comparison of a highly porous titanium cup (Tritanium) and a conventional hydroxyapatite-coated porous titanium cup: a retrospective analysis of clinical and radiological outcomes in hip arthroplasty among Japanese patients. J Orthop Sci. 2018;23(6):967–72.

    Article  PubMed  Google Scholar 

  25. Teoh KH, Lee PY, Woodnutt DJ. Our early experience of the Corin Minihip prosthesis. Hip Int. 2016;26(3):265–9.

    Article  PubMed  Google Scholar 

  26. Dettmer M, Pourmoghaddam A, Kreuzer SW. Comparison of patient-reported outcome from neck-preserving, short-stem arthroplasty and resurfacing arthroplasty in younger osteoarthritis patients. Adv Orthop. 2015;2015:817689.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Van Den Eeden YN, De Turck BJ, Van Den Eeden FM. 24 hours stay after hip replacement. Acta Orthop. 2017;88(1):24–8.

    Article  Google Scholar 

  28. Sodhi N, et al. Survivorship and radiographic analysis of highly porous acetabular cups designed for improved osseointegration potential. Surg Technol Int. 2019;34:425–9.

    PubMed  Google Scholar 

  29. Barnett SL, et al. Is the anterior approach safe? Early complication rate associated with 5090 consecutive primary Total hip arthroplasty procedures performed using the anterior approach. J Arthroplast. 2016;31(10):2291–4.

    Article  Google Scholar 

  30. Dietrich M, et al. Perioperative fractures in cementless total hip arthroplasty using the direct anterior minimally invasive approach: reduced risk with short stems. J Arthroplast. 2018;33(2):548–54.

    Article  Google Scholar 

  31. Hartford JM, Knowles SB. Risk factors for perioperative femoral fractures: cementless femoral implants and the direct anterior approach using a fracture table. J Arthroplast. 2016;31(9):2013–8.

    Article  Google Scholar 

  32. Lee GC, Marconi D. Complications following direct anterior hip procedures: costs to both patients and surgeons. J Arthroplast. 2015;30(9 Suppl):98–101.

    Article  Google Scholar 

  33. Tamaki T, et al. Cementless tapered-wedge stem length affects the risk of periprosthetic femoral fractures in direct anterior total hip arthroplasty. J Arthroplast. 2018;33(3):805–9.

    Article  Google Scholar 

  34. Khanuja HS, et al. Cementless femoral fixation in total hip arthroplasty. J Bone Joint Surg Am. 2011;93(5):500–9.

    Article  PubMed  Google Scholar 

  35. Gkagkalis G, et al. Cementless short-stem total hip arthroplasty in the elderly patient - is it a safe option?: a prospective multicentre observational study. BMC Geriatr. 2019;19(1):112.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Craik JD, Bircher MD, Rickman M. Hip and knee arthroplasty implants contraindicated in obesity. Ann R Coll Surg Engl. 2016;98(5):295–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mallory TH, et al. Why a taper? J Bone Joint Surg Am. 2002;84-A(Suppl 2):81–9.

    Article  Google Scholar 

  38. Dammerer D, et al. Occult intra-operative periprosthetic fractures of the acetabulum may affect implant survival. Int Orthop. 2019;43(7):1583–90.

    Article  PubMed  Google Scholar 

  39. Berend KR, Lombardi AV Jr. Intraoperative femur fracture is associated with stem and instrument design in primary total hip arthroplasty. Clin Orthop Relat Res. 2010;468(9):2377–81.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Siddiqi A, et al. Diagnosis and management of intraoperative fractures in primary total hip arthroplasty. J Am Acad Orthop Surg. 2021;29:e497–512.

    Article  PubMed  Google Scholar 

  41. Young PS, Patil S, Meek RMD. Intraoperative femoral fractures: prevention is better than cure. Bone Joint Res. 2018;7(1):103–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lamb JN, Baetz J, Messer-Hannemann P, Adekanmbi I, van Duren BH, Redmond A, West RM, Morlock MM, Pandit HG. A calcar collar is protective against early periprosthetic femoral fracture around cementless femoral components in primary total hip arthroplasty: a registry study with biomechanical validation. Bone Joint J. 2019;101-B(7):779–86.

    Article  CAS  PubMed  Google Scholar 

  43. Demey G, Fary C, Lustig S, Neyret P, si Selmi T. Does a collar improve the immediate stability of uncemented femoral hip stems in total hip arthroplasty? A bilateral comparative cadaver study. J Arthroplast. 2011 Dec;26(8):1549–55.

    Article  Google Scholar 

  44. Perelgut ME, Polus JS, Lanting BA, Teeter MG. The effect of femoral stem collar on implant migration and clinical outcomes following direct anterior approach total hip arthroplasty. Bone Joint J. 2020;102-B(12):1654–61.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhett Hallows .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duensing, I., Greenky, M., Hallows, R. (2022). ABMS Approach for Cementless Total Hip Replacement. In: Geller, J.A., McGrory, B.J. (eds) The Anterior-Based Muscle-Sparing Approach to Total Hip Arthroplasty. Springer, Cham. https://doi.org/10.1007/978-3-031-02059-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02059-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02058-2

  • Online ISBN: 978-3-031-02059-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics