Skip to main content

Feedstock for Second-Generation Bioethanol Production

  • Chapter
  • First Online:
Liquid Biofuels: Bioethanol

Abstract

The current broad need to bring new energy sources, especially in the transportation sector due to economic and population growth, causes different sources to be sought to produce fuels. In this sense, second-generation bioethanol from different biomasses has been gaining prominence since it allows the use of nonfood feedstocks, such as lignocellulosic biomass from agricultural and forestry residues, as well as secondary wastes. In addition to these lignocellulosic residues, this chapter will also address pectin- and starch-rich raw materials generated daily on a large scale worldwide. Second-generation bioethanol (2G) has gained space in several countries, known for not competing with cultivars intended for human and animal food, increasing production to replace fossil fuels, and waste recovery. However, there are still some difficulties to be overcome regarding low productivity compared to others. This underperformance may be linked to different factors, such as the quality of waste, selection of the fermenting microorganisms, and presence of inhibitor components during the last production stage. Thus, mastering the knowledge on residual biomasses is imperative to a highly efficient first stage of 2G ethanol production, providing reduction through process optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abanoz K, Stark BC, Akbas MY (2012) Enhancement of ethanol production from potato-processing wastewater by engineering Escherichia coli using Vitreoscilla haemoglobin. Lett Appl Microbiol 55:436–443

    Article  CAS  PubMed  Google Scholar 

  • Alzaabi MSMA, Mezher T (2021) Analysing existing UAE national water, energy and food nexus related strategies. Renew Sust Energ Rev 144:111031

    Article  Google Scholar 

  • Akhimien NG, Latif E, Hou SS (2021) Application of circular economy principles in buildings: a systematic review. J Build Eng 38:102041

    Article  Google Scholar 

  • Apiwatanapiwat W, Murata Y, Kosugi A et al (2011) Direct ethanol production from cassava pulp using a surface-engineered yeast strain codisplaying two amylases, two cellulases, and β-glucosidase. Appl Microbiol Biotechnol 90:377–384

    Article  CAS  PubMed  Google Scholar 

  • Anderson JE, Wallington TJ (2020) Novel method to estimate the octane ratings of ethanol-gasoline mixtures using base fuel properties. Energy Fuel 34:4632–4642

    Article  CAS  Google Scholar 

  • Saeed AM, Hongzhi M, Yue S et al (2018) Concise review on ethanol production from food waste: development and sustainability. Environ Sci Poll Resear 25:28851–28863

    Article  Google Scholar 

  • Arapoglou D, Varzakas T, Vlyssides A et al (2010) Ethanol production from potato peel waste (PPW). Waste Manag 30:1898–1902

    Article  CAS  PubMed  Google Scholar 

  • Assabjeu AC, Noubissié E, Desobgo SCZ et al (2020) Optimization of the enzymatic hydrolysis of cellulose of triplochiton scleroxylon sawdust in view of the production of bioethanol. Sci African 8:e00438

    Google Scholar 

  • Ayodele BV, Alsaffar MA, Mustapa SI (2020) An overview of integration opportunities for sustainable bioethanol production from first- and second-generation sugar-based feedstocks. J Clean Prod 245:118857

    Article  Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway : a review. Energy Conv Manag 52:858–875

    Article  CAS  Google Scholar 

  • Banu JR, Preethi KS, Tyagi VK et al (2021) Lignocellulosic biomass based biorefinery: a successful platform towards circular bioeconomy. Fuel 302:121086

    Article  Google Scholar 

  • Beaugrand J, Cronier D, Bebeire P et al (2004) Arabinoxylan and Hydroxycinnamate content of wheat bran in relation to endoxylanase susceptibility. J Cereal Sci 40:223–230

    Article  CAS  Google Scholar 

  • Bera T, Inglett KS, Inglett PW et al (2021) Comparing first- and second-generation bioethanol byproducts from sugarcane: impact on soil carbon and nitrogen dynamics. Geoderma 384:114818

    Article  CAS  Google Scholar 

  • Boluda-Aguilar M, García-Vidal L, González-Castañeda FP et al (2010) Mandarin peel wastes pretreatment with steam explosion for bioethanol production. Bioresour Technol 101:3506–3513

    Article  CAS  PubMed  Google Scholar 

  • Boluda-Aguilar M, López-Gómez A (2013) Production of bioethanol by fermentation of lemon (Citrus Limon L.) peel wastes pretreated with steam explosion. Ind Crop Produc 41:188–197

    Article  CAS  Google Scholar 

  • Bonatto C, Scapini T, Zanivan J et al (2021) Utilization of seawater and wastewater from shrimp production in the fermentation of papaya residues to ethanol. Bioresour Technol 321:124501

    Article  CAS  PubMed  Google Scholar 

  • Brusca S, Cosentino SL, Famoso F et al (2018) Second generation bioethanol production from Arundo donax biomass: an optimization method. Energy Proced 148:728–735

    Article  CAS  Google Scholar 

  • Buenrostro-Figueroa J, Tafolla-Arellano JC, Flores-Gallegos AC et al (2018) Native yeasts for alternative utilization of overripe mango pulp for ethanol production. Rev Arg Microbiol 50:173–177

    Google Scholar 

  • Buléon A, Colonna P, Planchot V et al (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    Article  PubMed  Google Scholar 

  • Cárdenas-Pérez S, Chanona-Pérez JJ, Güemes-Vera N et al (2018) Structural, mechanical and enzymatic study of pectin and cellulose during mango ripening. Carbohydr Polym 196:313–321

    Article  PubMed  Google Scholar 

  • Cheng X, Zheng J, Lin A et al (2020) A review: roles of carbohydrates in human diseases through regulation of imbalanced intestinal microbiota. J Funct Food 74:104197

    Article  CAS  Google Scholar 

  • Choi S, Kim J-H, Wi SG et al (2013) Bioethanol production from mandarin (Citrus unshiu) peel waste using popping pretreatment. Appl Energy 102:204–210

    Article  CAS  Google Scholar 

  • Choi S, Lee YG, Khanal SK et al (2015) A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Appl Energy 140:65–74

    Article  CAS  Google Scholar 

  • Citrus: World Markets and Trade USDA (2021). https://www.fas.usda.gov/data/citrus-world-markets-and-trade

  • Cohn R, Cohn AL (1997) Subproductos del procesado de las frutas. In: Arthey D, Ashurst PR (eds) Procesado de frutas. Acribia, Zaragoza, Spain

    Google Scholar 

  • Cripwell RA, Favaro L, Viljoen-Bloom M et al (2020) Consolidated bioprocessing of raw starch to ethanol by Saccharomyces cerevisiae: achievements and challenges. Biotechnol Adv 42:107579

    Article  CAS  PubMed  Google Scholar 

  • Dagnino EP, Felissia FE, Chamorro E et al (2017) Optimization of the soda-ethanol delignification stage for a rice husk biorefinery. Ind Crop Product 97:156–165

    Article  CAS  Google Scholar 

  • Demichelis F, Laghezza M, Chiappero M et al (2020) Technical, economic and environmental assessement of bioethanol biorefinery from waste biomass. J Clean Product 277:124111

    Article  CAS  Google Scholar 

  • Demiray E, Kut A, Karatay SE et al (2021) Usage of soluble soy protein on enzymatically hydrolysis of apple pomace for cost-efficient bioethanol production. Fuel 289:119785

    Article  CAS  Google Scholar 

  • Dranca F, Vargas M, Oroian M (2020) Physicochemical properties of pectin from Malus domestica ‘Fălticeni’ apple pomace as affected by nonconventional extraction techniques. Food Hydrocol 100:105383

    Article  CAS  Google Scholar 

  • Ebikade E, Athaley A, Fisher B et al (2020) The future is garbage: repurposing of food waste to an integrated biorefinery. ACS Sust Chem Eng 8:8124–8136

    Article  CAS  Google Scholar 

  • Edwards MC, Doran-Peterson J (2012) Pectin-rich biomass as feedstock for fuel ethanol production. Appl Microbiol Biotechnol 95:565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favaro L, Cagnin L, Basaglia M et al (2017) Production of bioethanol from multiple waste streams of rice milling. Bioresour Technol 244:151–159

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization (FAO) (2017) Crops and livestock products. http://www.fao.org/faostat/en/#data/QCL

  • Food and Agriculture Organization (FAO) (2021a) Crops and livestock products. http://www.fao.org/faostat/en/#data/QCL

  • Food and Agriculture Organization (FAO) (2021b) Food losses and food waste in Latin America and the Caribbean. http://www.fao.org/americas/noticias/ver/pt/c/239394/

  • Gabriel LS, Prestes RA, Pinheiro LA et al (2013) Multivariate analysis of the spectroscopic profile of the sugar fraction of apple pomace. Braz Arch Biol Technol 56:439–446

    Article  CAS  Google Scholar 

  • Gálvez-Martos JL, Greses S, Magdalena JA et al (2021) Life cycle assessment of volatile fatty acids production from protein- and carbohydrate-rich organic wastes. Bioresour Technol 321:124528

    Article  PubMed  Google Scholar 

  • Gold M, Cassar CM, Zurbrügg C et al (2020) Biowaste treatment with black soldier fly larvae: increasing performance through the formulation of biowastes based on protein and carbohydrates. Waste Manag 102:319–329

    Article  CAS  PubMed  Google Scholar 

  • Graham RL, Nelson R, Sheehan J et al (2007) Current and potential U.S. Corn Stover Supplies Agron J 99:1–11

    Google Scholar 

  • Hafid HS, Rahman NA, Mokhtar MN et al (2017) Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment. Waste Manag 67:95–105

    Article  CAS  PubMed  Google Scholar 

  • Harsono SS, Salahuddin FM, Purwono GS et al (2015) Second generation bioethanol from Arabica coffee waste processing at smallholder plantation in Ijen plateau region of East Java. Procedia Chem 14:408–413

    Article  CAS  Google Scholar 

  • Hogarth JR (2017) Evolutionary models of sustainable economic change in Brazil: no-till agriculture, reduced deforestation and ethanol biofuels. Environ Innov Soc Trans 24:130–141

    Article  Google Scholar 

  • Izmirlioglu G, Demirci A (2012) Ethanol production from waste potato mash by using saccharomyces cerevisiae. Appl Sci 2:738–753

    Article  CAS  Google Scholar 

  • Jiang J, Ding X, Isaacson KP et al (2021) Ethanol-based disinfectant sprays drive rapid changes in the chemical composition of indoor air in residential buildings. J Hazar Mat Lett 2:100042

    CAS  Google Scholar 

  • Keles D, Choumert-Nkolo J, Motel PC et al (2018) Does the expansion of biofuels encroach on the forest? J Forest Econom 33:75–82

    Article  Google Scholar 

  • Keyhanpour MJ, Jahromi SHM, Ebrahimi H (2021) System dynamics model of sustainable water resources management using the nexus water-food-energy approach. Ain Shams Eng J 12:1267–1281

    Article  Google Scholar 

  • Kundu D, Banerjee S, Karmakar S et al (2021) Valorization of citrus lemon wastes through biorefinery approach: an industrial symbiosis. Bioresour Technol Report 15:100717

    Article  CAS  Google Scholar 

  • Le Corre D, Bras J, Duresne A (2010) Starch nanoparticles: a review. Biomacromol 11:1139–1153

    Article  Google Scholar 

  • Lee RA, Lavoie JM (2013) From first- to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity. Animal Front 3:6–11

    Article  Google Scholar 

  • Liu C-G, Li K, Wen Y et al (2019) Bioethanol: new opportunities for an ancient product. Adv Bioen 4:1–34

    Article  Google Scholar 

  • Lopes ML, Paulillo SCL, Godoy A et al (2016) Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol 47:64–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madu JO, Agboola BO (2018) Bioethanol production from rice husk using different pretreatments and fermentation conditions. 3. Biotech 8:1–6

    Google Scholar 

  • Maisuthisakul P, Gordon MH (2009) Antioxidant and tyrosinase inhibitory activity of mango seed kernel by product. Food Chem 117:332–341

    Article  CAS  Google Scholar 

  • Martinez AG, Feiden A, Bariccatti R et al (2018) Ethanol production from waste of cassava processing. Appl Sci 8:2158

    Article  CAS  Google Scholar 

  • Mithra MG, Padmaja G (2016) Compositional profile and ultrastructure of steam and dilute sulfuric acid pretreated root and vegetable processing residues. Curr Biotechnol 7:288–301

    Article  Google Scholar 

  • Mithra MG, Jeeva ML, Sajeev MS et al (2018) Comparison of ethanol yield from pretreated lignocellulos-starch biomass under fed-batch SHF or SSF modes. Heliyon 4:e00885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opinion Plant Biol 11:266–277

    Article  CAS  Google Scholar 

  • Molinuevo-Salces B, Riano B, Hijosa-Valsero M et al (2020) Valorization of apple pomaces for biofuel production: a biorefinery approach. Biomass Bioenergy 142:105785

    Article  CAS  Google Scholar 

  • Morone P, Koutinas A, Gathergood N et al (2019) Food waste: challenges and opportunities for enhancing the emerging bioeconomy. J Clean Produc 221:10–16

    Article  Google Scholar 

  • Oberoi HS, Vadlani PV, Nanjundaswamy A et al (2011) Enhanced ethanol production from Kinnow mandarin (Citrus reticulata) waste via a statistically optimized simultaneous saccharification and fermentation process. Bioresour Technol 102:1593–1601

    Article  CAS  PubMed  Google Scholar 

  • Organization for Economic Cooperation and Development/Food and Agriculture Organization (OECD/FAO) (2021) Agricultural Outlook 2021–2030. https://www.oecd.org/publications/oecd-fao-agricultural-outlook-19991142.htm

  • Paul M, Panda G, Mohapatra PK et al (2020) Study of structural and molecular interaction for the catalytic activity of cellulases: an insight in cellulose hydrolysis for higher bioethanol yield. J Mol Struc 1204:127547

    Article  CAS  Google Scholar 

  • Parashar A, Jin Y, Mason B et al (2016) Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry. J Dairy Sci 99:1859–1867

    Article  CAS  PubMed  Google Scholar 

  • Perea-Moreno A-J, Perea-Moreno M-Á, Dorado MP et al (2018) Mango stone properties as biofuel and its potential for reducing CO2 emissions. J Clean Produc 190:53–62

    Article  CAS  Google Scholar 

  • Rabelo SC, Filho RM, Costa AC (2013) Lime pretreatment and fermentation of Enzymatically Hydrolyzed Sugarcane Bagasse. Appl Biochem Biotechnol 169:1696–1712

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Raychaudhuri U, Chakraborty R (2016) An overview of encapsulation of active compounds used in food products by drying technology. Food Biosci 13:76–83

    Article  CAS  Google Scholar 

  • Reddy LVA, Reddy OVS (2011) Effect of fermentation conditions on yeast growth and volatile composition of wine produced from mango (Mangifera indica L.) fruit juice. Food Bioproduc Proces 89:487–491

    Article  CAS  Google Scholar 

  • Renewable Fuels Association (RFA) (2020) Focus forward: 2020 pocket guide to ethanol. https://ethanolrfa.org/wp-content/uploads/2020/02/2020-Outlook-Pocket-Guide-for-Web.pdf

    Google Scholar 

  • Rivas B, Torrado A, Torre P et al (2008) Submerged citric acifd fermentation on orange peel autohydrolysate. J Agric Food Chem 56:2380–2387

    Article  CAS  PubMed  Google Scholar 

  • Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technol Biotechnol 56:174–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosales-Calderon O, Arantes V (2019) A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnol Biofuels 12:240

    Article  PubMed  PubMed Central  Google Scholar 

  • Santi G, Crognale S, D'annibale A et al (2014) Orange peel pretreatment in a novel lab-scale direct steam-injection apparatus for ethanol production. Biomass Bioenergy 61:146–156

    Article  CAS  Google Scholar 

  • Santos F, Eichler P, Queiroz JH et al (2020) Production of second-generation ethanol from sugarcane. Sugarcane Bioref Technol Perspec:195–228

    Google Scholar 

  • Scapini T, Favaretto DPC, Camargo AF, et al. (2019) Bioethanol from fruit residues, in: Treichel H, Júnior S, FongaroG., üller, C (Eds.), ethanol as a green alternative fuel: insight and perspectives. pp. 139–176

    Google Scholar 

  • Shahid MK, Batool A, Kashif A et al (2021) Biofuels and biorefineries: development, application and future perspectives emphasizing the environmental and economic aspects. J Environ Manag 297:113268

    Article  CAS  Google Scholar 

  • Sharma B, Larroche C, Dussap C-G (2020) Comprehensive assessment of 2G bioethanol production. Bioresour Technol 313:123630

    Article  CAS  PubMed  Google Scholar 

  • Sharma HR, Chauhan GS, Agrawal K (2007) Physico-chemical characteristics of rice bran processed by dry heating and extrusion cooking. Int J Food Prop 7:603–614

    Article  Google Scholar 

  • Sharma K, Mahato N, Cho MH et al (2017) Converting citrus wastes into value-added products: economic and environmently friendly approaches. Nutrition 34:29–46

    Article  CAS  PubMed  Google Scholar 

  • Shenoy D, Pai A, Vikas RK et al (2011) A study on bioethanol production from cashew apple pulp and coffee pulp waste. Biomass Bioenergy 35:4107–4111

    Article  CAS  Google Scholar 

  • Silva LF, Taciro MK, Raicher G et al (2014) Perspectives on the production of polyhydroxyalkanoates in biorefineries associated with the production of sugar and ethanol. Int J Biol Macromol 71:2–7

    Article  CAS  PubMed  Google Scholar 

  • Silva MD, Santos VAQ, Ernandes FMP et al (2020) Acid hydrolysis of corn cob for the production of second generation ethanol by saccharomyces cerevisiae ATCC 26602. Int J Develop Resear 10:38871–38878

    Google Scholar 

  • Silveira MHL, Morais RHC, Lopes AMC et al (2015) Current pretreatment Technologies for the Development of cellulosic ethanol and biorefineries. ChemSusChem 8:3366–3390

    Article  CAS  PubMed  Google Scholar 

  • Sivamani S, Chandrasekaran AP, Balajii M et al (2018) Evaluation of the potential of cassava-based residues for biofuels production. Rev Environ Sci Biotechnol 17:553–570

    Article  CAS  Google Scholar 

  • Sivaramakrishnan R, Ramprakash B, Ramadoss G et al (2021) High potential of Rhizopus treated rice bran waste for the nutrient-free anaerobic fermentative biohydrogen production. Bioresour Technol 319:124193

    Article  CAS  PubMed  Google Scholar 

  • Stolarski MJ, Krzyŝaniak M, Łuczyński M et al (2015) Lignocellulosic biomass from short rotation woody crops as a feedstock for second-generation bioethanol production. Ind Crop Produc 75:66–75

    Article  CAS  Google Scholar 

  • Su T, Zhao D, Khodadadi M et al (2020) Lignocellulosic biomass for bioethanol: recent advances, technology trends, and barriers to industrial development. Curr Opinion Green Sust Chem 24:56–60

    Article  Google Scholar 

  • Sydney EB, Letti LAJ, Karp SG et al (2019) Current analysis and future perspective of reduction in worldwide greenhouse gases emissions by using first and second generation bioethanol in the transportation sector. Bioresour Technol Report 7:100234

    Article  Google Scholar 

  • Szklo A, Schaeffer R (2006) Alternative energy sources or integrated alternative energy systems? Oil as a modern lance of Peleus for the energy transition. Energy 31:2513–2522

    Article  Google Scholar 

  • Talebnia F, Pourbafrani M, Lundin M et al (2008) Optimization of citrus wastes saccharification by dilute acid hydrolysis. BioResour 3:108–122

    Article  CAS  Google Scholar 

  • Tan KT, Lee KT, Mohamed AR (2008) Role of energy policy in renewable energy accomplishment: the case of second-generation bioethanol. Energy Policy 36:3360–3365

    Article  Google Scholar 

  • Thatoi H, Dash PK, Mohapatra S, Swain MR (2014) Bioethanol production from tuber crops using fermentation technology: a review. Int J Sust Energy 35:443–468

    Article  Google Scholar 

  • Tiwari S, Jadhav SK, Tiwari KL (2015) Bioethanol production from rice bran with optimization of parameters by Bacillus cereus strain McR-3. Int J Environ Sci Technol 12:3819–3826

    Article  Google Scholar 

  • Vaez S, Karimi K, Mirmohamadsadeghi S et al (2021) An optimal biorefinery development for pectin and biofuels production from orange wastes without enzyme consumption. Proces Saf Environ Protect 152:513–526

    Article  CAS  Google Scholar 

  • Venkatanagaraju E, Bharathi N, Rachiraju S et al (2020) Extraction and purification of pectin from agro-industrial wastes. Pectins–Extraction, Purification, Characterization and Applications, pp 1–15

    Google Scholar 

  • Wang F, Ouyang D, Zhou Z et al (2021) Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J Energy Chem 57:247–280

    Article  CAS  Google Scholar 

  • Weber CT, Trierweiler LF, Trierweiler JO (2020) Food waste biorefinery advocating circular economy: bioethanol and distilled beverage from sweet potato. J Clean Produc 268:121788

    Article  CAS  Google Scholar 

  • Widmer W, Zhou W, Grohmann K (2010) Pretreatment effects on orange processing waste for making ethanol by simultaneous saccharification and fermentation. Bioresour Technol 101:5242–5249

    Article  CAS  PubMed  Google Scholar 

  • Wiloso EI, Heijungs R, Snoo GR (2012) LCA of second generation bioethanol: a review and some issues to be resolved for good lca practice. Renew Sust Energy Rev 16:5295–5308

    Article  CAS  Google Scholar 

  • Xu Q, Liao Y, Cho E, Ko JH (2020) Effects of biochar addition on the anaerobic digestion of carbohydrate-rich, protein-rich, and lipid-rich substrates. J Air Waste Manag Assoc 70:455–467

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Shinomiya N, Ohba K, Sekikawa M et al (2009) Enzymatic hydrolysis and ethanol fermentation of by-products from potato processing plants. Food Sci Technol Res 15:653–658

    Article  CAS  Google Scholar 

  • Ye G, Zeng D, Zhang S et al (2018) Ethanol production from mixtures of sugarcane bagasse and Dioscorea composita extracted residue with high solid loading. Bioresour Technol 257:23–29

    Article  CAS  PubMed  Google Scholar 

  • Zanivan J, Bonatto C, Scapini T et al. (2021) Evaluation of bioethanol production from a mixed fruit waste by Wickerhamomyces sp. UFFS-CE-3.1.2. Bioenerg Resear in press

    Google Scholar 

  • Zhang M, Xie L, Yin Z et al (2016) Biorefinery approach for cassava-based industrial wastes: current status and opportunities. Bioresour Technol 215:50–62

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Damgaard A, However X, al. (2019) Bioethanol from corn Stover –global warming footprint of alternative biotechnologies. Appl Energy 247:237–253

    Article  CAS  Google Scholar 

  • Ziaei-Rad Z, Fooladi J, Pazouki M et al (2021) Lignocellulosic biomass pretreatment using low-cost ionic liquid for bioethanol production: an economically viable method for wheat straw fractionation. Biomass Bioenergy 151:106140

    Article  CAS  Google Scholar 

  • Zouhair FZ, Benali A, Kabbour MR et al (2020) Typical characterization of argane pulp of various Moroccan areas: a new biomass for the second generation bioethanol production. J Saudi Soc Agric Sci 19:192–198

    Google Scholar 

Download references

Acknowledgements

The authors thank CNPq, FAPERGS, and CAPES.

Compliance with Ethical Standards

This chapter was written according to ethical standards.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paliga, L.R. et al. (2022). Feedstock for Second-Generation Bioethanol Production. In: Soccol, C.R., Amarante Guimarães Pereira, G., Dussap, CG., Porto de Souza Vandenberghe, L. (eds) Liquid Biofuels: Bioethanol. Biofuel and Biorefinery Technologies, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-031-01241-9_8

Download citation

Publish with us

Policies and ethics