Skip to main content

Photocatalytic Decolourization of Dyes Using Nanoparticles-Assisted Composite Catalysts

  • Chapter
  • First Online:
Nano-biotechnology for Waste Water Treatment

Part of the book series: Water Science and Technology Library ((WSTL,volume 111))

Abstract

Over the years, demand of dyes is tremendously increased due to the continuous growth of textile, paper and leather market size. Effluents from these industries are challenging sources of residual dye pollutants into the environmental water. Coloured water deteriorate the water quality, decline dissolved oxygen levels, damage photosynthesis, enter the food chain and may lead to severe health hazards. Treatment and recycling of dyes-polluted water can help in conservation of water and preventing water pollution footprint in environment. There exist a remarkable method known as photocatalysts which may be utilized for achieving various goals such as antifogging, antifouling, production of hydrogen, antibacterial activity, degradation of different kinds of pollutants in wastewater, sterilization, self-cleaning, deodorization, conservation and storage of energy and purification of air. This process is gaining more focus towards wastewater treatment for complete mineralization of the pollutants under mild temperature and pressure requirements. A photocatalyst must have good light UV–Vis light absorption capability for better photocatalytic performance. Recently, a process of dye decolourization with the help of nanocomposites has been turning into a prominent technology in the direction of environmental remediation. Due to the ability to stabilize the excited electron in the conducting band via reduction in rate of hole/electron recombination and decreasing the semiconductor’s band energy, the nanocomposites have gained significant high photocatalytic efficiency over the nanoparticles. Enhanced photocatalytic efficiency can be achieved by synthesizing specific nanocomposites through conducting polymers with metal/metal oxides nanoparticles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed S, Rasul MG, Martens WN et al (2010) Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261:3–18

    Article  CAS  Google Scholar 

  • Ajmal A, Majeed I, Malik RN et al (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4:37003–37026

    Article  CAS  ADS  Google Scholar 

  • Al Angari YM, Ewais HA, El-Shishtawy RM (2019) Kinetics and mechanism of the oxidative decolorization of direct violet 31 in the presence of peroxodisulfate-silver (I) as a redox system. Transit Met Chem 44:57–64

    Article  CAS  Google Scholar 

  • Alharthi FA, Ali Alghamdi A, Alanazi HS (2020) Photocatalytic Degradation of the Light Sensitive Organic Dyes: Methylene Blue and Rose Bengal by Using Urea Derived g-C3N4/ZnO Nanocomposites. Catalysts 10:1457

    Article  CAS  Google Scholar 

  • Allen, Reginald L. (2013) Colour chemistry. Springer Science & Business Media

    Google Scholar 

  • Arikal D, Kallingal A (2021) Photocatalytic degradation of azo and anthraquinone dye using TiO2/MgO nanocomposite immobilized chitosan hydrogels. Environ Technol 42:2278–2291

    Article  CAS  PubMed  Google Scholar 

  • Baran W, Makowski A, Wardas W (2003) The influence of FeCl3 on the photocatalytic degradation of dissolved azo dyes in aqueous TiO2 suspensions. Chemosphere 53:87–95

    Article  CAS  PubMed  ADS  Google Scholar 

  • Benkhaya S, M’rabet S, El Harfi A (2020) A review on classifications, recent synthesis and applications of textile dyes. Inorg Chem Commun 115:107891

    Article  CAS  Google Scholar 

  • Bizani E, Fytianos K, Poulios I et al (2006) Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. J Hazard Mater 136:85–94

    Article  CAS  PubMed  Google Scholar 

  • Cai L, Xu T, Shen J et al (2015) Highly efficient photocatalytic treatment of mixed dyes wastewater via visible-light-driven AgI–Ag3PO4/MWCNTs. Mater SciSemicond Process 37:19–28

    Article  CAS  Google Scholar 

  • Carp O, Huisman CL et al (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Ch 32:33–177

    Article  CAS  Google Scholar 

  • Cavassin ED, de Figueiredo LFP, Otoch JP et al (2015) Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnology 13:1–16

    Article  CAS  Google Scholar 

  • Cernuto G, Masciocchi N, Cervellino A et al (2011) Size and shape dependence of the photocatalytic activity of TiO2 nanocrystals: a total scattering Debye function study. J Am ChemSoc133: 3114–3119

    Google Scholar 

  • Chandra R, Mukhopadhyay S, Nath M (2016) TiO2@ZIF-8: A novel approach of modifying micro-environment for enhanced photo-catalytic dye degradation and high usability of TiO2 nanoparticles. Mater Lett 164:571–574

    Article  CAS  Google Scholar 

  • Chatterjee D, Dasgupta S (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol 6:186–205

    Article  CAS  Google Scholar 

  • Chatterjee MJ, Ahamed ST, Mitra M et al (2019) Visible-light influenced photocatalytic activity of polyaniline-bismuth selenide composites for the degradation of methyl orange, rhodamine B and malachite green dyes. Appl Surf Sci 470:472–483

    Article  CAS  ADS  Google Scholar 

  • Chequer FD, De Oliveira GR, Ferraz EA et al (2013) Textile dyes: dyeing process and environmental impact. Eco-friendly textile dyeing and finishing6:151–176

    Google Scholar 

  • Chiu YH, Chang TF, Chen CY, Sone M, Hsu YJ (2019) Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 9:430

    Article  CAS  Google Scholar 

  • Chong MN, Jin B, Chow CW (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  PubMed  Google Scholar 

  • Demircivi P, Simsek EB (2018) Fabrication of Zr-doped TiO2/chitosan composite catalysts with enhanced visible-light-mediated photoactivity for the degradation of Orange II dye. Water Sci Technol 78:487–495

    Article  CAS  PubMed  Google Scholar 

  • El Harfi S, El Harfi A (2017) Classifications, properties and applications of textile dyes: A review. Applied Journal of Environmental Engineering Science 3:3

    Google Scholar 

  • Elango G, Roopan SM (2016) Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. J PhotochemPhotobiol B Biol 155:34–38

    Article  CAS  Google Scholar 

  • El-Shishtawy RM, Melegy AA (2001) Geochemistry and utilization of montmorillonitic soil for cationic dye removal. AdsorpSciTechnol 19:609–620

    CAS  Google Scholar 

  • El-Shishtawy RM, Soltan AM (2002) Bypass kiln dust as adsorbent for anionic dye and heavy metal ions removal from aqueous solution. Toxicol Environ Chem 82:1–10

    Article  Google Scholar 

  • El-Zahhar AA, Awwad NS (2016) Removal of malachite green dye from aqueous solutions using organically modified hydroxyapatite. J Environ Chem Eng 4:633–638

    Article  CAS  Google Scholar 

  • Esteves BM, Rodrigues CS, Boaventura RA et al (2016) Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor. J Environ Manage 166:193–203

    Article  CAS  PubMed  Google Scholar 

  • Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J PhotochemPhotobiol c: Photochem 9:1–12

    Article  CAS  Google Scholar 

  • Ge J, Zhang Y, Park SJ et al (2019) Recent advances in carbonaceous photocatalysts with enhanced photocatalytic performances: a mini review. Materials 12:1916

    Article  CAS  PubMed Central  ADS  Google Scholar 

  • Goncalves MS, Oliveira-Campos AM, Pinto EM et al (1999) Photochemical treatment of solutions of azo dyes containing TiO2. Chemosphere 39:781–786

    Article  CAS  ADS  Google Scholar 

  • Hao OJ, Kim H, Chiang PC (2000) Decolorization of wastewater. Crit Rev Environ SciTechnol 30:449–505

    Article  CAS  Google Scholar 

  • Hashem A, El-Shishtawy RM (2001) Preparation and characterization of cationized cellulose for the removal of anionic dyes. AdsorpSciTechnol 19:197–210

    CAS  Google Scholar 

  • Hassan MM, Carr CM (2018) A critical review on recent advancements of the removal of reactive dyes from dye house effluent by ion-exchange adsorbents. Chemosphere 209:201–219

    Article  CAS  PubMed  ADS  Google Scholar 

  • Hu E, Wu X, Shang S et al (2016) Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. J Clean Prod 112:4710–4718

    Article  CAS  Google Scholar 

  • Huang X, Gao B, Yue Q et al (2015) Compound bioflocculant used as a coagulation aid in synthetic dye wastewater treatment: the effect of solution pH. Sep PurifTechnol 154:108–114

    CAS  Google Scholar 

  • Hunger, K. (2007) Industrial dyes: chemistry, properties, applications

    Google Scholar 

  • Hussein BS, Waheeb AS, Umran AN et al (2014) Investigation of Degradation of Toluidine Blue and Rose Bengal Dyes from Aqueous Solution Using TiO2Uv. J Kufa Phys 9:25

    Google Scholar 

  • Ilinoiu EC, Pode R, Manea F et al (2013) Photocatalytic activity of a nitrogen-doped TiO2 modified zeolite in the degradation of Reactive Yellow 125 azo dye. J Taiwan InstChemEng 44:270–278

    Article  CAS  Google Scholar 

  • Imran M, Crowley DE, Khalid A et al (2015) Microbial biotechnology for decolorization of textile wastewaters. Rev Environ Sci Biotechnol 14:73–92

    Article  CAS  Google Scholar 

  • Iqbal J, Shah NS, Sayed M (2021) Nano-zerovalent manganese/biochar composite for the adsorptive and oxidative removal of Congo-red dye from aqueous solutions. J Hazard Mater 403:123854

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Zhang L, Ji M et al (2013) Carbon nanotubes/TiO2 nanotubes composite photocatalysts for efficient degradation of methyl orange dye. Particuology 11:737–742

    Article  CAS  Google Scholar 

  • Kamat PV, Murakoshi K, Wada Y et al (2000) Semiconductor nanoparticles. In Handbook of Nanostructured Materials and Nanotechnology 291–344

    Google Scholar 

  • Kasiri MB (2019) Application of chitosan derivatives as promising adsorbents for treatment of textile wastewater. The Impact and Prospects of Green Chemistry for Textile Technology 417–469

    Google Scholar 

  • Kaur S, Singh V (2007) TiO2 mediated photocatalytic degradation studies of Reactive Red 198 by UV irradiation. J Hazard Mater 141:230–236

    Article  CAS  PubMed  Google Scholar 

  • Kaur D, Bagga V, Behera N (2019) SnSe/SnO2 nanocomposites: novel material for photocatalytic degradation of industrial waste dyes. Adv Compos Mater 2:763–776

    Article  CAS  Google Scholar 

  • Kaur S, Sharma S, Kansal SK (2016) Synthesis of ZnS/CQDs nanocomposite and its application as a photocatalyst for the degradation of an anionic dye ARS. SuperlatticesMicrostruct98 :86–95

    Google Scholar 

  • Khan I, Sadiq M, Khan I et al (2019) Manganese dioxide nanoparticles/activated carbon composite as efficient UV and visible-light photocatalyst. ESPR 26:5140–5154

    CAS  PubMed  Google Scholar 

  • Khan SB, Lee SL (2021) Nanomaterials significance; contaminants degradation for environmental applications Nano Express2:022002

    Google Scholar 

  • Koohestani H, Sadrnezhaad SK (2016) Photocatalytic degradation of methyl orange and cyanide by using TiO2/CuO composite. Desalin Water Treat 57:22029–22038

    Article  CAS  Google Scholar 

  • Kumar R, El-Shishtawy RM, Barakat MA (2016a) Synthesis and characterization of Ag-Ag2O/TiO2@polypyrrole heterojunction for enhanced photocatalytic degradation of methylene blue. Catalysts 6:76

    Article  CAS  Google Scholar 

  • Kumar SS, Shantkriti S, Muruganandham T et al (2016b) Bioinformatics aided microbial approach for bioremediation of wastewater containing textile dyes. Ecol Info 31:112–121

    Article  Google Scholar 

  • Kumar R, Ansari MO, Parveen N et al (2016c) Facile route to a conducting ternary polyaniline@ TiO2/GN nanocomposite for environmentally benign applications: photocatalytic degradation of pollutants and biological activity. RSC advances6: 111308–111317

    Google Scholar 

  • Kumar R, Travas-Sejdic J, Padhye LP (2020) Conducting polymers-based photocatalysis for treatment of organic contaminants in water. CEJ Advances 100047

    Google Scholar 

  • Kumaran V, Sudhagar P, Konga AK (2020) Photocatalytic Degradation of Synthetic Organic Reactive Dye Wastewater Using GO-TiO2 Nanocomposite Pol J Environ. Stud 29:1683–1690

    CAS  Google Scholar 

  • Kuriakose S, Choudhary V, Satpati B (2014) Facile synthesis of Ag–ZnO hybrid nanospindles for highly efficient photocatalytic degradation of methyl orange. PCCP 16:17560–17568

    Article  CAS  PubMed  ADS  Google Scholar 

  • Lellis B, Fávaro-Polonio CZ, Pamphile JA et al (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3:275–290

    Article  Google Scholar 

  • Li S, Wei C, Wang J et al (2014) Sonocatalytic activity of Yb, B, Ga-codoped Er3+: Y3Al5O12/TiO2 in degradation of organic dyes. Mater SciSemicond Process 26:438–447

    Article  CAS  Google Scholar 

  • Li S, Lin Q, Liu X (2018) Fast photocatalytic degradation of dyes using low-power laser-fabricated Cu2O–Cu nanocomposites. RSC Adv 8:20277–20286

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Loddo V, Bellardita M, Camera-Roda G et al (2018) Heterogeneous photocatalysis: A promising advanced oxidation process. In Current trends and future developments on (bio-) membranes. Elsevier 1–43

    Google Scholar 

  • Loghambal S, Catherine AA, Subash SV (2018) Analysis of langmuir-hinshelwood kinetics model for photocatalytic degradation of aqueous direct blue 71 through analytical expression 55:7

    Google Scholar 

  • Mahvi AH, Ghanbarian M, Nasseri S et al (2009) Mineralization and discoloration of textile wastewater by TiO2 nanoparticles. Desalination 239:309–316

    Article  CAS  Google Scholar 

  • Melinte V, Stroea L, Chibac-Scutaru AL (2019) Polymer Nanocomposites for Photocatalytic Applications. Catalysts 9:986

    CAS  Google Scholar 

  • Meng ZD, Zhang FJ, Zhu L et al (2012) Synthesis and characterization of M-fullerene/TiO2 photocatalysts designed for degradation azo dye. Mater Sci Eng C 32:2175–2182

    Article  CAS  Google Scholar 

  • Merdan N, Eyupoglu S, Duman MN (2017) Ecological and sustainable natural dyes In Textiles and Clothing Sustainability. Springer, Singapore, pp 1–41

    Book  Google Scholar 

  • Monga D, Basu S (2019) Enhanced photocatalytic degradation of industrial dye by g-C3N4/TiO2 nanocomposite: Role of shape of TiO2. Adv Powder Technol 30:1089–1098

    Article  CAS  Google Scholar 

  • Muruganandham M, Swaminathan M (2004) Solar photocatalytic degradation of a reactive azo dye in TiO2-suspension. Sol Energy Mater Sol Cells 81:439–457

    Article  CAS  Google Scholar 

  • Neppolian B, Choi HC, Sakthivel S et al (2002) Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere 46:1173–1181

    Article  CAS  PubMed  ADS  Google Scholar 

  • Nosaka Y, Nosaka AY (2017) Generation and detection of reactive oxygen species in photocatalysis. Chem Rev 117:11302–11336

    Article  CAS  PubMed  Google Scholar 

  • Olad A, Nosrati R (2012) Preparation, characterization, and photocatalytic activity of polyaniline/ZnO nanocomposite. Res Chem Intermed 38:323–336

    Article  CAS  Google Scholar 

  • Pardeshi SK, Patil AB (2008) A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy. Sol Energy 82:700–705

    Article  CAS  ADS  Google Scholar 

  • Pathania D, Katwal R, Sharma G (2016) Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. Int J Biol Macromol 87:366–374

    Article  CAS  PubMed  Google Scholar 

  • Pica M, Calzuola S, Donnadio A et al (2019) De-ethylation and cleavage of rhodamine B by a zirconium phosphate/silver bromide composite photocatalyst. Catalysts 9:3

    Article  CAS  Google Scholar 

  • Podporska-Carroll J, Myles A, Quilty B et al (2017) Antibacterial properties of F-doped ZnO visible light photocatalyst. J Hazard Mater 324:39–47

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Xu X, Xu Z et al (2020) Contribution of different iron species in the iron-biochar composites to sorption and degradation of two dyes with varying properties. Chem Eng J 389:124471

    CAS  Google Scholar 

  • Rajagopalan V (2016) A new synergetic nanocomposite for dye degradation in dark and light. Sci Rep 6:1–10

    CAS  Google Scholar 

  • Rajeshwar K, Osugi ME, Chanmanee W et al (2008) Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J PhotochemPhotobiol c: Photochem 9:171–192

    Article  CAS  Google Scholar 

  • Ramadhani S, Helmiyati H (2020) Alginate/CMC/ZnO nanocomposite for photocatalytic degradation of Congo red dye. In AIP Conference Proceedings (Vol. 2242, No. 1, p 040026). AIP Publishing LLC.

    Google Scholar 

  • Ramazanzadeh B, Jahanbin A, Yaghoubi M et al (2015) Comparison of antibacterial effects of ZnO and CuO nanoparticles coated brackets against Streptococcus mutans. J Dent 16:200

    Google Scholar 

  • Rani S, Aggarwal M, Kumar M et al (2016) Removal of methylene blue and rhodamine B from water by zirconium oxide/graphene. Water Sci 30:51–60

    Article  Google Scholar 

  • Reza KM, Kurny ASW, Gulshan F (2017) Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl Water Sci 7:1569–1578

    Article  CAS  ADS  Google Scholar 

  • Riga A, Soutsas K, Ntampegliotis K et al (2007) Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion H-exl dyes. Comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes. Desalination 211:72–86

    Article  CAS  Google Scholar 

  • Salah NH, Bouhelassaa M, Bekkouche S et al (2004) Study of photocatalytic degradation of phenol. Desalination 166:347–354

    Article  CAS  Google Scholar 

  • Salavati H, Tavakkoli N, Hosseinpoor M (2012) Preparation and characterization of polyphosphotungstate/ZrO2 nanocomposite and their sonocatalytic and photocatalytic activity under UV light illumination. UltrasonSonochem 19:546–553

    CAS  Google Scholar 

  • Sandhya S (2010) Biodegradation of azo dyes under anaerobic condition: role of azoreductase. Biodegradation of azo dyes. 39–57

    Google Scholar 

  • Saqib NU, Adnan R, Shah I (2019) Zeolite supported TiO2 with enhanced degradation efficiency for organic dye under household compact fluorescent light. Mater Res Express 6:095506

    Article  CAS  ADS  Google Scholar 

  • Saravanan R, Karthikeyan N, Govindan S (2012) Photocatalytic degradation of organic dyes using ZnO/CeO2 nanocomposite material under visible light. Adv Mat Res 584:381–385

    CAS  Google Scholar 

  • Saravanan R, Gupta VK, Narayanan V et al (2013a) Comparative study on photocatalytic activity of ZnO prepared by different methods. J Mol Liq 181:133–141

    Article  CAS  Google Scholar 

  • Saravanan R, Karthikeyan S, Gupta VK et al (2013b) Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng C 33:91–98

    Article  CAS  Google Scholar 

  • Sargin I, Baran T, Arslan G (2020) Environmental remediation by chitosan-carbon nanotube supported palladium nanoparticles: Conversion of toxic nitroarenes into aromatic amines, degradation of dye pollutants and green synthesis of biaryls. Sep Purif Technol 247:116987

    Article  CAS  Google Scholar 

  • Sarkar S, Ponce NT, Banerjee A et al (2020) Green polymeric nanomaterials for the photocatalytic degradation of dyes: a review. Environ ChemLett 1–12

    Google Scholar 

  • Sathian S, Rajasimman M, Rathnasabapathy CS (2014) Performance evaluation of SBR for the treatment of dyeing wastewater by simultaneous biological and adsorption processes. J. Water Process. Eng 4:82–90

    Article  Google Scholar 

  • Shan R, Lu L, Gu J (2020) Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions. Mater SciSemicond Process 114:105088

    Article  CAS  Google Scholar 

  • Shukla PR, Wang S, Ang HM et al (2010) Photocatalytic oxidation of phenolic compounds using zinc oxide and sulphate radicals under artificial solar light. Sep Purif Technol 70:338–344

    Article  CAS  Google Scholar 

  • Sirajudheen P, Meenakshi S (2019) Facile synthesis of chitosan-La3+-graphite composite and its influence in photocatalytic degradation of methylene blue. Int J Biol Macromol 133:253–261

    Article  CAS  PubMed  Google Scholar 

  • Sunkaraa JR, Botsab SM (2020) Visible Light Driven Catalyst ZnS/Fe2O3/Ag Ternary Nanocomposite for the Degradation of Dyes. Russ J PhysChem B 94.

    Google Scholar 

  • Taghizadeh MT, Seifi-Aghjekohal P (2015) Sonocatalytic degradation of 2-hydroxyethyl cellulose in the presence of some nanoparticles. UltrasonSonochem 26:265–272

    CAS  Google Scholar 

  • Muhammad Bilal Tahir, Tahir Iqbal, Muhammad Rafique et al (2020) Nanomaterials for photocatalysis. In Micro and Nano Technologies,Nanotechnology and Photocatalysis for Environmental Applications Elsevier 65–76

    Google Scholar 

  • Tang WZ, Chen RZ (1996) Decolorization kinetics and mechanisms of commercial dyes by H2O2/iron powder system. Chemosphere 32:947–958

    Article  CAS  ADS  Google Scholar 

  • Tunesi S, Anderson M (1991) Influence of chemisorption on the photodecomposition of salicylic acid and related compounds using suspended titania ceramic membranes. J PhysChemA 95:3399–3405

    CAS  Google Scholar 

  • Vautier M, Guillard C, Herrmann JM (2001) Photocatalytic degradation of dyes in water: case study of indigo and of indigo carmine. J Catal 201:46–59

    Article  CAS  Google Scholar 

  • Waiskopf N, Ben-Shahar Y, Galchenko M (2016) Photocatalytic reactive oxygen species formation by semiconductor–metal hybrid nanoparticles. Toward light-induced modulation of biological processes. Nano Lett 16:4266–4273

    Article  CAS  PubMed  ADS  Google Scholar 

  • Wang D, Li X, Chen J et al (2012) Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation. Chem Eng Sci 198:547–554

    Article  CAS  Google Scholar 

  • Wang Q, Hui J, Li J et al (2013) Photodegradation of methyl orange with PANI-modified BiOCl photocatalyst under visible light irradiation. Appl Surf Sci 283:577–583

    Article  CAS  ADS  Google Scholar 

  • Wei Y, Ding A, Dong L et al (2015) Characterisation and coagulation performance of an inorganic coagulant-poly-magnesium-silicate-chloride in treatment of simulated dyeing wastewater. Colloids Surf APhysicochem Eng 470:137–141

    Article  CAS  Google Scholar 

  • Wiszniowski J, Robert D, Surmacz-Gorska J et al (2002) Photocatalytic decomposition of humic acids on TiO2: Part I: Discussion of adsorption and mechanism. J Photochem Photobiol A 152:267–273

    Article  CAS  Google Scholar 

  • Xu C, Anusuyadevi PR, Luque AC et al (2019) Nanostructured materials for photocatalysis. ChemSoc Rev 48:3868–3902

    CAS  Google Scholar 

  • Yaghoubi A, Ramazani A, TaghaviFardoodS, (2020) Synthesis of Al2O3/ZrO2 Nanocomposite and the Study of Its effects on Photocatalytic Degradation of Reactive Blue 222 and Reactive Yellow 145 Dyes. Chemistry Select 5:9966–9973

    CAS  Google Scholar 

  • Yan Y, Chang T, Wei P et al (2009) Photocatalytic activity of nanocomposites of ZnO and multi-walled carbon nanotubes for dye degradation. J DispersSciTechnol 30:198–203

    CAS  Google Scholar 

  • Yang J, Chen C, Ji H et al (2005) Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: photoelectrocatalytic study by TiO2-film electrodes. J Phys Chem 109:21900–21907

    Article  CAS  Google Scholar 

  • Zhang G, Wang B, Sun Z et al (2016) A comparative study of different diatomite-supported TiO2 composites and their photocatalytic performance for dye degradation. Desalin Water Treat 57:17512–17522

    Article  CAS  Google Scholar 

  • Zhang Y, Fan R, Zhang Q et al (2019) Synthesis of CaWO4-biochar nanocomposites for organic dye removal. Mater Res Bull 110:169–173

    Article  CAS  Google Scholar 

  • Zhu H, Jiang R, Fu Y et al (2012) Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination 286:41–48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameena Mehtab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehtab, S., Sharma, S., Pandey, M., Zaidi, M.G.H. (2022). Photocatalytic Decolourization of Dyes Using Nanoparticles-Assisted Composite Catalysts. In: Rai, J.P.N., Saraswat, S. (eds) Nano-biotechnology for Waste Water Treatment. Water Science and Technology Library, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-031-00812-2_12

Download citation

Publish with us

Policies and ethics