Skip to main content

Training and Challenges to Perform Robot-Assisted Renal Surgeries

  • Chapter
  • First Online:
Robotic Urologic Surgery

Abstract

To date, robot-assisted renal surgery training programs are lacking or still under definition. Moreover, no validated robotic curricula are available. Surgical training should focus on providing an optimal setting in which skills can be developed following a specific, structured, and validated process. Proficiency-based progression (PBP) training has proven to be effective to provide surgeons with a safe training approach, reducing the amount of time needed to reach adequate expertise, as well as complications rate once trainees have moved to the real operatory setting. The implementation of the proficiency-based progression (PBP) training model can provide an objective and effective tool to help develop skills and create standardized and efficient curricula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hasson HM. Open laparoscopy. Biomed Bull. 1984;5:1–6.

    CAS  PubMed  Google Scholar 

  2. Maybury C. The European Working Time Directive: a decade on. Lancet Lond Engl. 2014;384:1562–3. https://doi.org/10.1016/s0140-6736(14)61972-3.

    Article  Google Scholar 

  3. Bridges M, Diamond DL. The financial impact of teaching surgical residents in the operating room. Am J Surg. 1999;177:28–32. https://doi.org/10.1016/s0002-9610(98)00289-x.

    Article  CAS  PubMed  Google Scholar 

  4. Foell K, Finelli A, Yasufuku K, Bernardini MQ, Waddell TK, Pace KT, et al. Robotic surgery basic skills training: evaluation of a pilot multidisciplinary simulation-based curriculum. Can Urol Assoc J J Assoc Urol Can. 2013;7:430–4. https://doi.org/10.5489/cuaj.222.

    Article  Google Scholar 

  5. Gallagher AG. Metric-based simulation training to proficiency in medical education: what it is and how to do it. Ulster Med J. 2012;81:107–13.

    PubMed  PubMed Central  Google Scholar 

  6. Gallagher AG, Ritter EM, Champion H, Higgins G, Fried MP, Moses G, et al. Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann Surg. 2005;241:364–72. https://doi.org/10.1097/01.sla.0000151982.85062.80.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hyams ES, Kanofsky JA, Stifelman MD. Laparoscopic Doppler technology: applications in laparoscopic pyeloplasty and radical and partial nephrectomy. Urology. 2008;71:952–6. https://doi.org/10.1016/j.urology.2007.11.062.

    Article  PubMed  Google Scholar 

  8. Hekman MCH, Rijpkema M, Langenhuijsen JF, Boerman OC, Oosterwijk E, Mulders PFA. Intraoperative imaging techniques to support complete tumor resection in partial nephrectomy. Eur Urol Focus. 2018;4:960–8. https://doi.org/10.1016/j.euf.2017.04.008.

    Article  PubMed  Google Scholar 

  9. Hughes-Hallett A, Mayer EK, Marcus HJ, Cundy TP, Pratt PJ, Darzi AW, et al. Augmented reality partial nephrectomy: examining the current status and future perspectives. Urology. 2014;83:266–73. https://doi.org/10.1016/j.urology.2013.08.049.

    Article  PubMed  Google Scholar 

  10. Mattevi D, Luciani LG, Mantovani W, Cai T, Chiodini S, Vattovani V, et al. Fluorescence-guided selective arterial clamping during RAPN provides better early functional outcomes based on renal scan compared to standard clamping. J Robot Surg. 2019;13:391–6. https://doi.org/10.1007/s11701-018-0862-x.

    Article  PubMed  Google Scholar 

  11. Buffi NM, Saita A, Lughezzani G, Porter J, Dell’Oglio P, Amparore D, et al. Robot-assisted partial nephrectomy for complex (PADUA score ≥10) tumors: techniques and results from a multicenter experience at four high-volume centers. Eur Urol. 2020;77:95–100. https://doi.org/10.1016/j.eururo.2019.03.006.

    Article  PubMed  Google Scholar 

  12. Buffi NM, Lughezzani G, Fossati N, Lazzeri M, Guazzoni G, Lista G, et al. Robot-assisted, single-site, dismembered pyeloplasty for ureteropelvic junction obstruction with the new da Vinci platform: a stage 2a study. Eur Urol. 2015;67:151–6. https://doi.org/10.1016/j.eururo.2014.03.001.

    Article  PubMed  Google Scholar 

  13. Jacobson DL, Shannon R, Johnson EK, Gong EM, Liu DB, Flink CC, et al. Robot-assisted laparoscopic reoperative repair for failed pyeloplasty in children: an updated series. J Urol. 2019;201:1005–11. https://doi.org/10.1016/j.juro.2018.10.021.

    Article  PubMed  Google Scholar 

  14. Giacomoni A, Di Sandro S, Lauterio A, Concone G, Buscemi V, Rossetti O, et al. Robotic nephrectomy for living donation: surgical technique and literature systematic review. Am J Surg. 2016;211:1135–42. https://doi.org/10.1016/j.amjsurg.2015.08.019.

    Article  PubMed  Google Scholar 

  15. Sood A, Ghosh P, Menon M, Jeong W, Bhandari M, Ahlawat R. Robotic renal transplantation: current status. J Minimal Access Surg. 2015;11:35–9. https://doi.org/10.4103/0972-9941.147683.

    Article  Google Scholar 

  16. Lee JY, Alzahrani T, Ordon M. Intra-corporeal robotic renal auto-transplantation. Can Urol Assoc J J Assoc Urol Can. 2015;9:E748–9. https://doi.org/10.5489/cuaj.3015.

    Article  Google Scholar 

  17. Stegemann AP, Ahmed K, Syed JR, Rehman S, Ghani K, Autorino R, et al. Fundamental skills of robotic surgery: a multi-institutional randomized controlled trial for validation of a simulation-based curriculum. Urology. 2013;81:767–74. https://doi.org/10.1016/j.urology.2012.12.033.

    Article  PubMed  Google Scholar 

  18. Dulan G, Rege RV, Hogg DC, Gilberg-Fisher KM, Arain NA, Tesfay ST, et al. Developing a comprehensive, proficiency-based training program for robotic surgery. Surgery. 2012;152:477–88. https://doi.org/10.1016/j.surg.2012.07.028.

    Article  PubMed  Google Scholar 

  19. Larcher A, De Naeyer G, Turri F, Dell’Oglio P, Capitanio U, Collins JW, et al. The ERUS curriculum for robot-assisted partial nephrectomy: structure definition and pilot clinical validation. Eur Urol. 2019;75:1023–31. https://doi.org/10.1016/j.eururo.2019.02.031.

    Article  PubMed  Google Scholar 

  20. Mazzone E, Puliatti S. A systematic review and meta-analysis on the impact of proficiency-based progression simulation training on performance outcomes. Ann Surg. 2021;274(2):281–9.

    Article  PubMed  Google Scholar 

  21. Vanlander AE, Mazzone E, Collins JW, Mottrie AM, Rogiers XM, van der Poel HG, et al. Orsi Consensus Meeting on European Robotic Training (OCERT): results from the first multispecialty consensus meeting on training in robot-assisted surgery. Eur Urol. 2020;78:713–6. https://doi.org/10.1016/j.eururo.2020.02.003.

    Article  PubMed  Google Scholar 

  22. Angelo RL, Ryu RKN, Pedowitz RA, Beach W, Burns J, Dodds J, et al. A proficiency-based progression training curriculum coupled with a model simulator results in the acquisition of a superior arthroscopic bankart skill set. Arthrosc J Arthrosc Relat Surg. 2015;31:1854–71. https://doi.org/10.1016/j.arthro.2015.07.001.

    Article  Google Scholar 

  23. Puliatti S, Mazzone E, Amato M, De Groote R, Mottrie A, Gallagher AG. Development and validation of the objective assessment of robotic suturing and knot tying skills for chicken anastomotic model. Surg Endosc. 2020; https://doi.org/10.1007/s00464-020-07918-5.

  24. Satava R, Gallagher AG. Proficiency-based progression process training for fundamentals of robotic surgery curriculum development. Ann Laparosc Endosc Surg. 2020;5:14. https://doi.org/10.21037/ales.2020.02.04.

    Article  Google Scholar 

  25. Ericsson KA. Towards a science of the acquisition of expert performance in sports: clarifying the differences between deliberate practice and other types of practice. J Sports Sci. 2020;38:159–76. https://doi.org/10.1080/02640414.2019.1688618.

    Article  PubMed  Google Scholar 

  26. Davis JS, Garcia GD, Wyckoff MM, Alsafran S, Graygo JM, Withum KF, et al. Knowledge and usability of a trauma training system for general surgery residents. Am J Surg. 2013;205:681–4. https://doi.org/10.1016/j.amjsurg.2012.07.037.

    Article  PubMed  Google Scholar 

  27. Hung AJ, Jayaratna IS, Teruya K, Desai MM, Gill IS, Goh AC. Comparative assessment of three standardized robotic surgery training methods. BJU Int. 2013;112:864–71. https://doi.org/10.1111/bju.12045.

    Article  PubMed  Google Scholar 

  28. Hung AJ, Shah SH, Dalag L, Shin D, Gill IS. Development and validation of a novel robotic procedure specific simulation platform: partial nephrectomy. J Urol. 2015;194:520–6. https://doi.org/10.1016/j.juro.2015.02.2949.

    Article  PubMed  Google Scholar 

  29. Simmerman E, Simmerman A, Lassiter R, King R, Ham B, Adam B-L, et al. Feasibility and benefit of incorporating a multimedia cadaver laboratory training program into a didactics curriculum for junior and senior surgical residents. J Surg Educ. 2018;75:1188–94. https://doi.org/10.1016/j.jsurg.2018.03.012.

    Article  PubMed  Google Scholar 

  30. Rod J, Marret J-B, Kohaut J, Aigrain Y, Jais JP, de Vries P, et al. Low-cost training simulator for open dismembered pyeloplasty: development and face validation. J Surg Educ. 2018;75:188–94. https://doi.org/10.1016/j.jsurg.2017.06.010.

    Article  PubMed  Google Scholar 

  31. Raza SJ, Soomroo KQ, Ather MH. “Latex glove” laparoscopic pyeloplasty model: a novel method for simulated training. Urol J. 2011;8:283–6.

    PubMed  Google Scholar 

  32. Timberlake MD, Garbens A, Schlomer BJ, Kavoussi NL, Kern AJM, Peters CA, et al. Design and validation of a low-cost, high-fidelity model for robotic pyeloplasty simulation training. J Pediatr Urol. 2020;16:332–9. https://doi.org/10.1016/j.jpurol.2020.02.003.

    Article  PubMed  Google Scholar 

  33. Lima JCS, Rocha HAL, Mesquita FJC, Araújo DABS, da Silveira RA, Borges GC. Simulated training model of ureteropyelic anastomosis in laparoscopic pyeloplasty. Acta Cir Bras. 2020;35:e351108. https://doi.org/10.1590/ACB351108.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ahmed K, Jawad M, Abboudi M, Gavazzi A, Darzi A, Athanasiou T, et al. Effectiveness of procedural simulation in urology: a systematic review. J Urol. 2011;186:26–34. https://doi.org/10.1016/j.juro.2011.02.2684.

    Article  PubMed  Google Scholar 

  35. Ames CD, Vanlangendonck R, Morrissey K, Venkatesh R, Landman J. Evaluation of surgical models for renal collecting system closure during laparoscopic partial nephrectomy. Urology. 2005;66:451–4. https://doi.org/10.1016/j.urology.2005.03.033.

    Article  PubMed  Google Scholar 

  36. Silberstein JL, Maddox MM, Dorsey P, Feibus A, Thomas R, Lee BR. Physical models of renal malignancies using standard cross-sectional imaging and 3-dimensional printers: a pilot study. Urology. 2014;84:268–72. https://doi.org/10.1016/j.urology.2014.03.042.

    Article  PubMed  Google Scholar 

  37. Liss MA, McDougall EM. Robotic surgical simulation. Cancer J Sudbury Mass. 2013;19:124–9. https://doi.org/10.1097/PPO.0b013e3182885d79.

    Article  Google Scholar 

  38. Bestard Vallejo JE, Raventós Busquets CX, Celma Doménech A, Rosal Fontana M, Esteve M, Morote Robles J. [Pig model in experimental renal transplant surgery]. Actas Urol Esp. 2008;32:91–101. https://doi.org/10.1016/s0210-4806(08)73800-2.

  39. Fu B, Zhang X, Lang B, Xu K, Zhang J, Ma X, et al. New model for training in laparoscopic dismembered ureteropyeloplasty. J Endourol. 2007;21:1381–5. https://doi.org/10.1089/end.2006.0317.

    Article  PubMed  Google Scholar 

  40. Díaz-Güemes Martín-Portugués I, Hernández-Hurtado L, Usón-Casaús J, Sánchez-Hurtado MA, Sánchez-Margallo FM. Ureteral obstruction swine model through laparoscopy and single port for training on laparoscopic pyeloplasty. Int J Med Sci. 2013;10:1047–52. https://doi.org/10.7150/ijms.6099.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cavallari G, Tsivian M, Bertelli R, Neri F, Faenza A, Nardo B. A new swine training model of hand-assisted donor nephrectomy. Transplant Proc. 2008;40:2035–7. https://doi.org/10.1016/j.transproceed.2008.05.034.

    Article  CAS  PubMed  Google Scholar 

  42. Tiong HY, Goh BYS, Chiong E, Tan LGL, Vathsala A. Robotic kidney autotransplantation in a porcine model: a procedure-specific training platform for the simulation of robotic intracorporeal vascular anastomosis. J Robot Surg. 2018;12:693–8. https://doi.org/10.1007/s11701-018-0806-5.

    Article  PubMed  Google Scholar 

  43. Holland JP, Waugh L, Horgan A, Paleri V, Deehan DJ. Cadaveric hands-on training for surgical specialties: is this back to the future for surgical skills development? J Surg Educ. 2011;68:110–6. https://doi.org/10.1016/j.jsurg.2010.10.002.

    Article  PubMed  Google Scholar 

  44. Huri E, Ezer M, Chan E. The novel laparoscopic training 3D model in urology with surgical anatomic remarks: fresh-frozen cadaveric tissue. Turk J Urol. 2016;42:224–9. https://doi.org/10.5152/tud.2016.84770.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Minneti M, Baker CJ, Sullivan ME. The development of a novel perfused cadaver model with dynamic vital sign regulation and real-world scenarios to teach surgical skills and error management. J Surg Educ. 2018;75:820–7. https://doi.org/10.1016/j.jsurg.2017.09.020.

    Article  PubMed  Google Scholar 

  46. Stolzenburg J-U, Schwaibold H, Bhanot SM, Rabenalt R, Do M, Truss M, et al. Modular surgical training for endoscopic extraperitoneal radical prostatectomy. BJU Int. 2005;96:1022–7. https://doi.org/10.1111/j.1464-410X.2005.05803.x.

    Article  PubMed  Google Scholar 

  47. Dai JC, Lendvay TS, Sorensen MD. Crowdsourcing in surgical skills acquisition: a developing technology in surgical education. J Grad Med Educ. 2017;9:697–705. https://doi.org/10.4300/JGME-D-17-00322.1.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Puliatti, S., Piazza, P., Farinha, R., Raju, T., Gallagher, A.G. (2022). Training and Challenges to Perform Robot-Assisted Renal Surgeries. In: Wiklund, P., Mottrie, A., Gundeti, M.S., Patel, V. (eds) Robotic Urologic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-00363-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00363-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00362-2

  • Online ISBN: 978-3-031-00363-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics