Skip to main content

Abstract

Trichinellosis is a worldwide zoonosis caused by the parasitic nematodes belonging to the Trichinella genus. This chapter describes the different aspects of epidemiology of infection, the life cycle of the parasite, and the host immune response to the different species of Trichinella in humans, as well as in the rodents which represent the most studied experimental model. The roles of antibodies, T cells, mast cells, eosinophils, and neutrophils in immune responses to this nematode are considered in experimental as well as in human infections. Immunopatholological aspects of infection are also illustrated. Particular emphasis is given on the clinical diagnosis of trichinellosis which is difficult because of the lack of pathognomonic signs or symptoms. Therefore, anamnestic data are of great importance in diagnosing the infection. High eosinophilia and increased creatinine phosphokinase activity in the serum are the most frequently observed laboratory features, but only the finding of parasites in a muscle biopsy and the detection of specific circulating antibodies can confirm the diagnosis. The medical treatment includes anthelmintics (mebendazole or albendazole) and glucosteroids. A section is devoted to control measures, including a possible vaccine for which several molecules are under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Wang CH, Bell RG (1991) A role for IgE in intestinal immunity. Expression of rapid expulsion of Trichinella spiralis in rats transfused with IgE and thoracic duct lymphocytes. J Immunol 146:3563–3570

    CAS  PubMed  Google Scholar 

  • Alizadeh H, Wakelin D (1982) Comparison of rapid expulsion of Trichinella spiralis in mice and rats. Int J Parasitol 12(1):65–73

    Article  CAS  PubMed  Google Scholar 

  • Ancelle T (1998) History of trichinellosis outbreaks linked to horsemeat consumption 1975–1998. Eur Secur 3:86–89

    CAS  Google Scholar 

  • Ancelle T, Dupouy-Camet J, Bougnoux M-E, Fourestie V, Petit H, Mougeot G, Nozais J-P, Lapierre J (1988) Two outbreaks of trichinosis caused by horsemeat in France in 1985. Am J Epidemiol 127(6):1302–1311. https://doi.org/10.1093/oxfordjournals.aje.a114923

    Article  CAS  PubMed  Google Scholar 

  • Alban L, Petersen JV (2016) Ensuring a negligible risk of Trichinella in pig farming from a control perspective. Vet Parasitol 231:137–144. https://doi.org/10.1016/j.vetpar.2016.07.014

    Article  PubMed  Google Scholar 

  • Ancelle T, De Bruyne A, Poisson D, Dupouy-Camet J (2005) Outbreak of trichinellosis due to consumption of bear meat from Canada, France, September 2005. Euro Surveill 10(10):E051013.3

    PubMed  Google Scholar 

  • Angheben A, Mascarello M, Zavarise G et al. (2008) Outbreak of imported trichinellosis in Verona, Italy, January 2008. Euro Surveill 13(22), pii: 18891

    Google Scholar 

  • Aranzamendi C, Tefsen B, Jansen M et al (2011) Glycan microarray profiling of parasite infection sera identifies the LDNF glycan as a potential antigen for serodiagnosis of trichinellosis. Exp Parasitol 129:221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arizmendi N, Yepez-Mulia L, Cedillo-Rivera R et al (2001) Interleukin mRNA changes in mast cells stimulated by TSL-1 antigens. Parasite 8:S114–S116

    Article  CAS  PubMed  Google Scholar 

  • Arizmendi-Puga NG, Enciso JA, Ortega-Pierres G et al (2006) Trichinella spiralis: histamine secretion induced by TSL-1 antigens from unsensitized mast cells. Exp Parasitol 114:67–76

    Article  CAS  PubMed  Google Scholar 

  • Auer H, Kollaritsch H, Jüptner J et al (1994) Albendazole and pregnancy. Appl Parasitol 35:146–147

    CAS  PubMed  Google Scholar 

  • Barruet R, Devez A, Dupouy-Camet J et al (2020) A common source for a trichinellosis outbreak reported in France and Serbia in 2017. Euro Surveill 25:1900527

    Article  CAS  PubMed Central  Google Scholar 

  • Basuroy R, Pennisi R, Robertson T et al (2008) Parasitic myositis in tropical Australia. Med J Aust 188:254–256

    Article  PubMed  Google Scholar 

  • Beiting DP, Bliss SK, Schlafer DH et al (2004) Interleukin-10 limits local and body cavity inflammation during infection with muscle-stage Trichinella spiralis. Infect Immun 72:3129–3137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beiting DP, Gagliardo LF, Hesse M et al (2007) Coordinated control of immunity to muscle stage Trichinella spiralis by IL-10, regulatory T cells, and TGF-beta. J Immunol 178:1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Bell RG (1992) Trichinella spiralis: evidence that mice do not express rapid expulsion. Exp Parasitol 74:417–430

    Article  CAS  PubMed  Google Scholar 

  • Bell RG (1998) The generation and expression of immunity to Trichinella spiralis in laboratory rodents. Adv Parasitol 41:149–217

    Article  CAS  PubMed  Google Scholar 

  • Blum LK, Thrasher SM, Gagliardo LF et al (2009) Expulsion of secondary Trichinella spiralis infection in rats occurs independently of mucosal mast cell release of mast cell protease II. J Immunol 183:5816–5822

    Article  CAS  PubMed  Google Scholar 

  • Boireau P, Vallée I, Roman T et al (2000) Trichinella in horses: a low frequency infection with high human risk. Vet Parasitol 93:309–320

    Article  CAS  PubMed  Google Scholar 

  • Bradley M, Horton J (2001) Assessing the risk of benzimidazole during pregnancy. Trans Roy Soc Trop Med Hyg 95:72–73

    Article  CAS  PubMed  Google Scholar 

  • Bronstein AM, Lukashev AN (2019) Possible case of trichinellosis associated with beaver (Castor fiber) meat. J Helminthol 93:372–374

    Article  CAS  PubMed  Google Scholar 

  • Bruschi F, Carlier Y (2013) Does congenital trichinellosis exist? Acta Trop 125:122

    Article  PubMed  Google Scholar 

  • Bruschi F, Chiumiento L (2011) Trichinella inflammatory myopathy: host or parasite strategy? Parasite Vectors 4:42

    Article  Google Scholar 

  • Bruschi F, Murrell KD (2002) New aspects of human trichinellosis: the impact of new Trichinella species. Postgrad Med J 78:15–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruschi F, Moretti A, Wassom D et al (2001) The use of a synthetic antigen for the serological diagnosis of human trichinellosis. Parasite 8:S141–S143

    Article  CAS  PubMed  Google Scholar 

  • Bruschi F, Korenaga M, Watanabe N (2008) Eosinophils and Trichinella infection: toxic for the parasite and the host? Trends Parasitol 24:462–467

    Article  CAS  PubMed  Google Scholar 

  • Bruschi F, Marucci G, Pozio E et al (2009) Evaluation of inflammatory responses against muscle larvae of different Trichinella species by an image analysis system. Vet Parasitol 159:258–262

    Article  CAS  PubMed  Google Scholar 

  • Bruschi F, Brunetti E, Pozio E (2013) Neurotrichinellosis. In: Garcia HH, Tanowitz HB, Del Brutto OH (Eds) Neuroparasitology and tropical neurology. Handb Clin Neurol. Elsevier, Edimburgh, 114 3rd series:243–9

    Google Scholar 

  • Bruschi F, D’Amato C, Piaggi S, Bianchi C, Castagna B, Paolicchi A, Pinto B (2016) Matrix metalloproteinase (MMP)-9: a realiable marker for inflammation in early human trichinellosis. Vet Parasitol 231:132–136. https://doi.org/10.1016/j.vetpar.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  • Bruschi F, Gómez-Morales MA, Hill DE (2019) International commission on Trichinellosis: recommendations on the use of serological tests for the detection of Trichinella infection in animals and humans. Food Waterborne Parasitol 14:e00032

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabié A, Bouchaud O, Houzé S et al (1996) Albendazole versus thiabendazole as therapy for trichinosis: a retrospective study. Clin Infect Dis 22:1033–1035

    Article  PubMed  Google Scholar 

  • Capo V, Despommier D (1996) Clinical aspects of infection with Trichinella spp. Clin Microbiol Rev 9:47–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caron Y, Bory S, Pluot M et al (2020) Human outbreak of trichinellosis caused by Trichinella papuae Nematodes, Central Kampong Thom Province. Cambodia Emerg Infect Dis 26:1759–1766

    Article  PubMed  Google Scholar 

  • Compton SJ, Celum CL, Lee C et al (1993) Trichinosis with ventilatory failure and persistent myocarditis. Clin Infect Dis 16:500–504

    Article  CAS  PubMed  Google Scholar 

  • Contreras MC, Schenone H, Sandoval L et al (1994) Epidemiology of trichinosis in Chile, prevalence study by immunodiagnostic reactions. Bol Chil Parasitol 49:73–75

    CAS  PubMed  Google Scholar 

  • Crompton DWT (1999) How much helminthiasis is there in the world? J Parasitol 85:397–403

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Wang ZQ (2001) Outbreaks of human trichinellosis caused by consumption of dog meat in China. Parasite 8(2 Suppl):S74–S77

    Google Scholar 

  • Dalcin D, Zarlenga DS, Larter NC et al (2017) Trichinella nativa outbreak with rare thrombotic complications associated with meat from a black bear hunted in Northern Ontario. Clin Infect Dis 64(10):1367–1373

    Article  PubMed  Google Scholar 

  • De Bruyne A, Yera H, Le Guerhier F et al (2005) Simple species identification of Trichinella isolates by amplification and sequencing of the 5S ribosomal DNA intergenic spacer region. Vet Parasitol 132:57–61

    Article  PubMed  CAS  Google Scholar 

  • De Bruyne A, Vallée I, Ancelle T et al (2006) Trichinelloses. EMC – Mal Infect 23:1–19

    Google Scholar 

  • De Graef M, Smadja P, Benis J et al (2000) Neurotrichinosis: a case report with MRI evaluation. J Radiol (Paris) 81:817–819

    Google Scholar 

  • Dea-Ayuela MA, Romarís F, Ubeira FM et al (2001) Possible presence of common tyvelose-containing glycans in Trichinella L1 larvae and embryonated eggs of several nematodes. Parasite J 8(2 Suppl):S120–S122

    Article  CAS  Google Scholar 

  • Della Bella C, Benagiano M, De Gennaro M, Gomez-Morales MA, Ludovisi A, D’Elios S, Luchi S, Pozio E, D’Elios MM, Bruschi F (2017) T-cell clones in human trichinellosis: evidence for a mixed Th1/Th2 response. Parasite Immunol 39(3):e12412. https://doi.org/10.1111/pim.12412

    Article  CAS  Google Scholar 

  • De-la-Rosa JL, Alcantara P, Correa D (1995) Investigation of cross-reactions against Trichinella spiralis antigens by enzyme-linked immunosorbent assay and enzyme-linked immunoelectrotransfer blot assay in patients with various diseases. Clin Diagn Lab Immunol 2:122–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De-la-Rosa JL, Aranda JG, Padilla E et al (1998) Prevalence and risk factors associated with serum antibodies against Trichinella spiralis. Int J Parasitol 28:317–321

    Article  CAS  PubMed  Google Scholar 

  • Devleesschauwer B, Praet N, Speybroeck N et al (2015) The low global burden of trichinellosis: evidence and implications. Int J Parasitol 45:95–99

    Article  PubMed  Google Scholar 

  • Donaldson LE, Schmitt E, Huntley JF et al (1996) A critical role for stem cell factor and c-kit in host protective immunity to an intestinal helminth. Int Immunol 8:559–567

    Article  CAS  PubMed  Google Scholar 

  • Dubinský P, Stefancíková A, Kinceková J et al (2001) Trichinellosis in the Slovak Republic. Parasite 8(2 Suppl):S100–S102

    Article  PubMed  Google Scholar 

  • Dupouy-Camet J (2000) Trichinellosis: a worldwide zoonosis. Vet Parasitol 93:191–200

    Article  CAS  PubMed  Google Scholar 

  • Dupouy-Camet J, Bruschi F (2007) Management and diagnosis of human trichinellosis. In: Dupouy-Camet J, Murrell KD (Eds.) FAO/WHO/OIE guidelines for the surveillance, management, prevention and control of trichinellosis, World Organisation for Animal Health Press Paris (France), pp. 37–69

    Google Scholar 

  • Dupouy-Camet J, Murrell KD (2007) FAO/WHO/OIE Guidelines for the surveillance, management, prevention and control of trichinellosis. World Organisation for Animal Health Press Paris (France), p. 108

    Google Scholar 

  • Dupouy-Camet J, van Knapen F, Ancelle T et al (1988) Study of specific immunoglobulins (total, IgG, IgM, IgA, IgE) in indirect immunofluorescence and ELISA in 40 patients with trichinosis followed over a 9-month period. Pathol Biol 36:803–807

    CAS  PubMed  Google Scholar 

  • Dupouy-Camet J, Soule C, Ancelle T (1994) Recent news on trichinellosis: a new outbreak due to horsemeat in France in 1993. Parasite 1:99–103

    Article  CAS  PubMed  Google Scholar 

  • Dupouy-Camet J, Kociecka W, Bruschi F et al (2002) Opinion on the diagnosis and treatment of human trichinellosis. Expert Opin Pharmacother 3:1117–1130

    Article  PubMed  Google Scholar 

  • Dupouy-Camet J, Lecam S, Talabani H et al (2009) Trichinellosis acquired in Senegal from warthog ham, March 2009. Euro Surveill 14:19220

    Article  PubMed  Google Scholar 

  • Dupouy-Camet J, Yera H, Dahane N et al (2016) A cluster of three cases of trichinellosis linked to bear meat consumption in the Arctic. J Travel Med 13:23

    Google Scholar 

  • Dupouy-Camet J, Bourée P, Yera H (2017) Trichinella and polar bears: a limited risk for humans. J Helminthol 91:440–446

    Article  CAS  PubMed  Google Scholar 

  • Dupouy-Camet J, Kapel CMO, Gołąb E et al (2020) Early days of the International Commission on Trichinellosis (1958–1972). Ann Parasitol 66:259–263

    PubMed  Google Scholar 

  • Durack DT, Sumi SM, Klebanoff SJ (1979) Neurotoxicity of human eosinophils. Proc Natl Acad Sci USA 76:1443–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dworkin MS, Gamble HR, Zarlenga DS et al (1996) Outbreak of trichinellosis associated with eating cougar jerky. J Infect Dis 1743:663–666

    Article  Google Scholar 

  • EFSA/ECDC. The European Union One Health 2019 Zoonoses Report. EFSA J 2021;19:6406

    Google Scholar 

  • Ellrodt A, Halfon P, Le Bras P, Halimi P, Bouree P, Desi M, Caquet R (1987) Multifocal central nervous system lesions in three patients with trichinosis. Arch Neurol 44(4):432–434. https://doi.org/10.1001/archneur.1987.00520160064016

    Article  CAS  PubMed  Google Scholar 

  • Escalante M, Romarís F, Rodríguez M et al (2004) Evaluation of Trichinella spiralis Larva Group 1 antigens for serodiagnosis of human trichinellosis. J Clin Microbiol 42:4060–4066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esposito DH, Freedman DO, Neumayr A et al. (2012) Ongoing outbreak of an acute muscular Sarcocystis-like illness among travellers returning from Tioman Island, Malaysia, 2011–2012. Euro Surveill 17, pii:20310

    Google Scholar 

  • Fabre V, Beiting DP, Bliss SK et al (2009a) Eosinophil deficiency compromises parasite survival in chronic nematode infection. J Immunol 182:1577–1583

    Article  CAS  PubMed  Google Scholar 

  • Fabre MV, Beiting DP, Bliss SK et al (2009b) Immunity to Trichinella spiralis muscle infection. Vet Parasitol 159:245–248

    Article  CAS  PubMed  Google Scholar 

  • Faulkner H, Humphries N, Renauld JC et al (1997) Interleukin-9 is involved in host protective immunity to intestinal nematode infection. Eur J Immunol 27:2536–2540

    Article  CAS  PubMed  Google Scholar 

  • Ferraccioli G, Mercadanti M, Salaffi F et al (1988) Prospective rheumatological study of muscle and joint symptoms during Trichinella nelsoni infection. Quart J Med 69:973–984

    CAS  PubMed  Google Scholar 

  • Feydy A, Touze E, Miaux Y et al (1996) MRI in a case of neurotrichinosis. Neuroradiology 38:S80–S82

    Article  PubMed  Google Scholar 

  • Finkelman FD, Katona IM, Urban JF et al (1986) Suppression of in vivo polyclonal IgE responses by monoclonal antibody to the lymphokine B-cell stimulatory factor 1. Proc Natl Acad Sci USA 83:9675–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forbes LB, Gajadhar AA (1999) A validated Trichinella digestion assay and an associated sampling and quality assurance system for use in testing pork and horse meat. J Food Prot 62:1308–1313

    Article  CAS  PubMed  Google Scholar 

  • Forbes LB, Scandrett WB, Gajadhar AA (2005) A program to accredit laboratories for reliable testing of pork and horse meat for Trichinella. Vet Parasitol 132(1–2):173–177

    Article  PubMed  Google Scholar 

  • Fourestié V, Bougnoux ME, Ancelle T et al (1988) Randomized trial of albendazole versus thiabendazole plus flubendazole during an outbreak of human trichinellosis. Parasitol Res 75:36–41

    Article  PubMed  Google Scholar 

  • Fourestié V, Douceron H, Brugieres P et al (1993) Neurotrichinosis. A cerebrovascular disease associated with myocardial injury and hypereosinophilia. Brain 116:603–616

    PubMed  Google Scholar 

  • Franssen F, Swart A, van der Giessen J, Havelaar A, Takumi K (2017) Parasite to patient: a quantitative risk model for Trichinella spp. in pork and wild boar meat. Int J Food Microbiol 241:262–275

    Article  PubMed  Google Scholar 

  • Fröscher W, Gullotta F, Saathoff M et al (1988) Chronic trichinosis. Clinical, bioptic, serological and electromyographic observations. Eur Neurol 28:221–226

    Article  PubMed  Google Scholar 

  • Fu Y, Wang W, Tong J et al (2009) Th17: a new participant in gut dysfunction in mice infected with Trichinella spiralis. Mediat Inflamm 2009:517052

    Article  CAS  Google Scholar 

  • Gajadhar AA, Noeckler K, Boireau P et al (2019) International Commission on Trichinellosis: recommendations for quality assurance in digestion testing programs for Trichinella. Food Waterborne Parasitol 16:e00059

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamble HR, Bessonov AS, Cuperlovic K et al (2000) International commission on Trichinellosis: recommendations on methods for the control of Trichinella in domestic and wild animals intended for human consumption. Vet Parasitol 93:393–408

    Article  CAS  PubMed  Google Scholar 

  • Gamble HR, Boireau P, Nöckler K et al. (2007) Prevention of Trichinella infection in the domestic pig. In: Dupouy-Camet J, Murrell KD (Eds.), FAO/WHO/OIE guidelines for the surveillance, management, prevention and control of trichinellosis. World Organisation for Animal Health Press Paris (France), pp. 101–107

    Google Scholar 

  • Gamble HR, Alban L, Hill D et al (2019) International commission on Trichinellosis: recommendations on pre-harvest control of Trichinella in food animals. Food Waterborne Parasitol 15:e00039

    Article  PubMed  PubMed Central  Google Scholar 

  • Garside P, Grencis RK, Mowat AM (1992) T lymphocyte dependent enteropathy in murine Trichinella spiralis infection. Parasite Immunol 14:217–225

    Article  CAS  PubMed  Google Scholar 

  • Gebreselassie NG, Moorhead AR, Fabre V et al (2012) Eosinophils preserve parasitic nematode larvae by regulating local immunity. J Immunol 188:417–425

    Article  CAS  PubMed  Google Scholar 

  • Gelal F, Kumral E, Vidinli BD et al (2005) Diffusion-weighted and conventional MR imaging in neurotrichinosis. Acta Radiol 46:196–199

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Morales MA, Mele R, Sanchez M et al (2002) Increased CD8+-T cell expression and a Type 2 cytokine pattern during the musculature phase of Trichinella infection in humans. Infect Immunity 70:233–239

    Article  CAS  Google Scholar 

  • Gomez-Morales MA, Ludovisi A, Amati M et al (2008) Validation of an enzyme-linked immunosorbent assay for diagnosis of human trichinellosis. Clin Vaccine Immunol 15:1723–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Morales MA, Ludovisi A, Amati M et al (2012) A distinctive Western blot pattern to recognize Trichinella infections in humans and pigs. Int J Parasitol 42:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Morales MA, Mazzarello G, Bondi E et al (2021) Second outbreak of Trichinella pseudospiralis in Europe: clinical patterns, epidemiological investigation and identification of the etiological agent based on the western blot patterns of the patients’ serum. Zoonoses Public Health 68:29–37

    Article  CAS  PubMed  Google Scholar 

  • Gottstein B, Pozio E, Nöckler K (2009) Epidemiology, diagnosis, treatment, and control of trichinellosis. Clin Microbiol Rev 22:127–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grencis RK, Riedlinger J, Wakelin D (1985) L3T4-positive T lymphoblasts are responsible for transfer of immunity to Trichinella spiralis in mice. Immunology 56:213–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grencis RK, Riedlinger J, Wakelin D (1987) Lymphokine production by T cells generated during infection with Trichinella spiralis. Int Arch Allergy Appl Immunol 83:92–95

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Li J, Zhu X et al (2008) Trichinella spiralis: characterization of phage-displayed specific epitopes and their protective immunity in BALB/c mice. Exp Parasitol 118:66–74

    Article  CAS  PubMed  Google Scholar 

  • Gustowska L, Ruitenberg EJ, Elgersma A et al (1983) Increase of mucosal mast cells in the jejunum of patients infected with Trichinella spiralis. Int Arch Allergy Appl Immunol 71:304–308

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez Y (1990) Trichinelloidea: Trichuris, Trichinella and Capillaria-diocto-phymatoidea: dioctophyme. In: Gutierrez Y (Ed.) Diagnostic pathology of parasitic infections with clinical correlations. Lea and Febiger, Philadelphia, pp. 336–350

    Google Scholar 

  • Ha TY, Reed ND, Crowle PK (1983) Delayed expulsion of adult Trichinella spiralis by mast cell-deficient W/Wv mice. Infect Immun 41:445–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harms G, Binz P, Feldmeier H et al (1993) Trichinosis: a prospective controlled study of patients ten years after acute infection. Clin Infect Dis 17:637–643

    Article  CAS  PubMed  Google Scholar 

  • Helmby H, Grencis RK (2002) IL-18 regulates intestinal mastocytosis and Th2 cytokine production independently of IFN-gamma during Trichinella spiralis infection. J Immunol 169:2553–2560

    Article  CAS  PubMed  Google Scholar 

  • Helmby H, Grencis RK (2003) Contrasting roles for IL-10 in protective immunity to different life cycle stages of intestinal nematode parasites. Eur J Immunol 33:2382–2390

    Article  CAS  PubMed  Google Scholar 

  • Helmby H, Grencis RK (2003a) IFN-gamma-Independent Effects of IL-12 During Intestinal Nematode Infection. J Immunol 171:3691–3696

    Article  CAS  PubMed  Google Scholar 

  • Horton J (1993) The use of antiprotozoan and anthelmintic drugs during pregnancy and contraindications. J Infect 26:104–105

    Article  CAS  PubMed  Google Scholar 

  • Houzé S, Ancelle T, Matra R et al (2009) Trichinellosis acquired in Nunavut, Canada in September 2009: meat from grizzly bear suspected. J Eur Surveill 14(44) pii: 19383

    Google Scholar 

  • Huang L, Appleton JA (2016) Eosinophils in Helminth infection: defenders and dupes. Trends Parasitol 32(10):798–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huntley JF, Gooden C, Newlands GF et al (1990) Distribution of intestinal mast cell proteinase in blood and tissues of normal and Trichinella-infected mice. Parasite Immunol 12:85–95

    Article  CAS  PubMed  Google Scholar 

  • Ierna MX, Scales HE, Saunders KL et al (2008) Mast cell production of IL-4 and TNF may be required for protective and pathological responses in gastrointestinal helminth infection. Mucosal Immunol 1:147–155

    Article  CAS  PubMed  Google Scholar 

  • Ierna MX, Scales HE, Mueller C et al (2009) Trans-membrane tumor necrosis factor alpha is required for enteropathy and is sufficient to promote parasite expulsion in gastrointestinal helminth infection. Infect Immun 77:3879–3885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inclan-Rico JM, Hernandez CM, Henry EK et al (2020) Trichinella spiralis-induced mastocytosis and erythropoiesis are simultaneously supported by a bipotent mast cell/erythrocyte precursor cell. PLoS Pathog 16(5):e1008579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa N, Goyal PK, Mahida YR et al (1998) Early cytokine responses during intestinal parasitic infections. Immunology 93:257–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jongwutiwes S, Chantachum N, Kraivichian et al (1998) First outbreak of human trichinellosis caused by Trichinella pseudospiralis. Clin Infect Dis 26:111–115

    Article  CAS  PubMed  Google Scholar 

  • Jung H, Hurtado M, Medina MT, Sanchez M, Sotelo J (1990) Dexamethasone increases plasma levels of albendazole. J Neurol 237:279–280

    Article  CAS  PubMed  Google Scholar 

  • Kahsay R, Gómez-Morales MA, Rivera HN, McAuliffe I, Pozio E, Handali S (2021) A bead-based assay for the detection of antibodies against Trichinella spp. infection in humans. Am J Trop Med Hyg 104:1858–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamal M, Wakelin D, Ouellette AJ et al (2001) Mucosal T cells regulate Paneth and intermediate cell numbers in the small intestine of T. spiralis-infected mice. Clin Exp Immunol 126:117–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannan AK, Mohinta S, Huang W, Huang L, Koylass N, Appleton JA, August A (2017) T-Bet independent development of IFNγ secreting natural T helper 1 cell population in the absence of Itk. Sci Rep 7:45935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz M, Despommier DD, Gwadz RW (1989) In: Parasitic Diseases Katz M, Despommier DD, Gwadz RW (eds) Trichinella spiralis. Springer, New York, p 28

    Google Scholar 

  • Kefenie H, Bero G (1992) Trichinosis from wild boar meat in Gojjam, north-west Ethiopia. Trop Geogr Med 44:278–280

    CAS  PubMed  Google Scholar 

  • Kennedy MW, Bruce RG (1981) Reversibility of the effects of the host immune response on the intestinal phase of Trichinella spiralis in the mouse, following transplantation to a new host. Parasitology 82:39–48

    Article  CAS  PubMed  Google Scholar 

  • Kennedy ED, Hall RL, Montgomery SP et al (2009) Centers for Disease Control and Prevention (CDC). Trichinellosis surveillance - United States, 2002–2007. MMWR Surveill Summ 58:1–7

    PubMed  Google Scholar 

  • Khamboonruang C (1991) The present status of trichinellosis in Thailand. Southeast Asian J Trop Med Public Health 22(Suppl):312–315

    PubMed  Google Scholar 

  • Khan WI, Blennerhasset P, Ma C, Matthaei KI, Collins SM (2001) Stat6 dependent goblet cell hyperplasia during intestinal nematode infection. Parasite Immunol 23(1):39–42

    Article  CAS  PubMed  Google Scholar 

  • Khan WI, Richard RM, Akiho H et al (2003) Modulation of intestinal muscle contraction by interleukin-9 (IL-9) or IL-9 neutralization: correlation with worm expulsion in murine nematode infections. Infect Immun 71:2430–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Knapen F, Franchimont JH, Verdonk AR et al (1982) Detection of specific immunoglobulins (IgG IgM, IgA, IgE) and total IgE levels in human trichinosis by means of the enzyme-linked immunosorbent assay (ELISA). Am J Trop Med Hyg 31:973–976

    Article  PubMed  Google Scholar 

  • Knight PA, Wright SH, Lawrence CE et al (2000) Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. J Exp Med 192:1849–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kociecka W (1988) Trichinosis. In: MacLoad C (ed) Parasitic infections in pregnancy and the newborn. Oxford University Press, Oxford, pp 216–226

    Google Scholar 

  • Kociecka W (2000) Trichinellosis: human disease, diagnosis and treatment. Vet Parasitol 93:365–383

    Article  CAS  PubMed  Google Scholar 

  • Kociecka W, Gustowska L, Mrozewicz B (1996) Effect of early prophylactic therapy in patients infected with T. spiralis. In: Ortega-Pierres G, Gamble R, van Knapen F, Wakelin D (Eds.) Trichinellosis. Proceedings of the 9th international conference on trichinellosis. CINVESTAV, Mexico, D.F., (Mexico), pp. 635–641

    Google Scholar 

  • Kociecka W, Bombicki K, Pielok L et al (2001) New aspects of clinical pathology and electrophysiological muscle disturbances in patients with history of trichinellosis. Parasite 8:S173–S175

    Article  CAS  PubMed  Google Scholar 

  • Korenaga M, Wang CH, Bell RG et al (1989) Intestinal immunity to Trichinella spiralis is a property of OX8- OX22- T-helper cells that are generated in the intestine. Immunology 66:588–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurup A, Yew WS, San LM et al (2000) Outbreak of suspected trichinosis among travelers returning from a neighboring island. J Travel Med 7(4):189–193

    Article  CAS  PubMed  Google Scholar 

  • Lange H, Eggers R, Bircher J (1988) Increased systemic availability of albendazole when taken with a fatty meal. Europ J Clin Pharmacol 34:315–317

    Article  CAS  Google Scholar 

  • Lawrence CE, Paterson JC, Higgins LM et al (1998) IL-4-regulated enteropathy in an intestinal nematode infection. Eur J Immunol 28:2672–2684

    Article  CAS  PubMed  Google Scholar 

  • Lawrence CE, Paterson JC, Wei X et al (2000) Nitric oxide mediates intestinal pathology but not immune expulsion during Trichinella spiralis infection in mice. J Immunol 164:4229–4234

    Article  CAS  PubMed  Google Scholar 

  • Lawrence CE, Paterson YY, Wright SH et al (2004) Mouse mast cell protease-1 is required for the enteropathy induced by gastrointestinal helminth infection in the mouse. Gastroenterology 127:155–165

    Article  CAS  PubMed  Google Scholar 

  • Lazarevic AM, Neskovic AN, Goronja M et al (1999) Low incidence of cardiac abnormalities in treated trichinosis: a prospective study of 62 patients from a single-source outbreak. Am J Med 107:18–23

    Article  CAS  PubMed  Google Scholar 

  • Lee TD (1991) Helminthotoxic responses of intestinal eosinophils to Trichinella spiralis newborn larvae. Infect Immun 59:4405–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SR, Yoo SH, Kim HS et al (2013) Trichinosis caused by ingestion of raw soft-shelled turtle meat in Korea. Korean J Parasitol 51:219–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Li CKF, Ko RC (2001) Inflammatory response during the muscle phase of Trichinella spiralis and Trichinella pseudospiralis infections. Parasitol Res 87:708–714

    Article  CAS  PubMed  Google Scholar 

  • Li CFK, Seth R, Gray T et al (1998) Production of proinflammatory cytokines and inflammatory mediators in human intestinal epithelial cells after invasion by Trichinella spiralis. Infect Immun 66:2200–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo YC, Hung CC, Lai CS et al (2009) Human trichinosis after consumption of soft-shelled turtles, Taiwan. Emerg Infect Dis 15:2056–2058

    Article  PubMed  PubMed Central  Google Scholar 

  • MacLean JD, Viallet J, Law C, Staudt M (1989) Trichinosis in the Canadian Arctic: report of five outbreaks and a new clinical syndrome. J Infect Dis 160:513–520

    Article  CAS  PubMed  Google Scholar 

  • Man Warren T, Gagliardo L, Geyer J et al (1997) Invasion of intestinal epithelia in vitro by the parasitic nematode Trichinella spiralis. Infect Immun 65:4806–4812

    Article  CAS  Google Scholar 

  • Marti HP, Murrell KD, Gamble HR (1987) Trichinella spiralis: Immunization of pigs with newborn larval antigens. Exp Parasitol 63:68–73

    Article  CAS  PubMed  Google Scholar 

  • Mawhorter ST, Kazura JW (1993) Trichinosis of the central nervous system. Semin Neurol 13:148–149

    Article  CAS  PubMed  Google Scholar 

  • McAuley JB, Michelson MK, Schantz PM (1991) Trichinella infection in travelers. J Infect Dis 164(5):1013–1016

    Article  CAS  PubMed  Google Scholar 

  • McDermott JR, Humphreys NE, Forman SP et al (2005) Intraepithelial NK cell-derived IL-13 induces intestinal pathology associated with nematode infection. J Immunol 175:3207–3213

    Article  CAS  PubMed  Google Scholar 

  • McDonald CM, Tai P, Krings T (2014) Pearls & Oysters: a rare case of neurotrichinosis with MRI. Neurology 82(4):e30–e32

    Article  PubMed  Google Scholar 

  • McGuire C, Chan WC, Wakelin D (2002) Nasal immunization with homogenate and peptide antigens induces protective immunity against Trichinella spiralis. Infect Immun 70:7149–7152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McVay CS, Bracken P, Gagliardo LF et al (2000) Antibodies to tyvelose exhibit multiple modes of interference with the epithelial niche of Trichinella spiralis. Infect Immun 68:1912–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meeusen EN, Piedrafita D (2003) Exploiting natural immunity to helminth parasites for the development of veterinary vaccines. Int J Parasitol 33:1285–1290

    Article  CAS  PubMed  Google Scholar 

  • Mendez-Loredo B, Martinez Y, Zamora R et al (2001) Class specific antibody responses to newborn larva antigens during Trichinella spiralis human infection. Parasite 8:S152–S157

    Article  CAS  PubMed  Google Scholar 

  • Miller HR (1996) Mucosal mast cells and the allergic response against nematode parasites. Vet Immunol Immunopathol 54:331–336

    Article  CAS  PubMed  Google Scholar 

  • Milne LM, Bhagani S, Bannister BA et al (2001) Trichinellosis acquired in the United Kingdom. Epidemiol Infect 127(2):359–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moorhead A, Grunenwald PE, Dietz VJ et al (1999) Trichinellosis in the United States, 1991–1996: declining but not gone. Am J Trop Med Hyg 60(1):66–69

    Article  CAS  PubMed  Google Scholar 

  • Mucida D, Cheroutre H (2010) The many face-lifts of CD4 T helper cells. Adv Immunol 107:139–152

    Article  CAS  PubMed  Google Scholar 

  • Murrell KD (1985) Trichinella spiralis: acquired immunity in swine. Exp Parasitol 59:347–354

    Article  CAS  PubMed  Google Scholar 

  • Murrell KD, Bruschi F (1994) Clinical trichinellosis. In: Sun T (ed) Progress in clinical parasitology. CRC Press, Boca Raton, pp 117–150

    Google Scholar 

  • Murrell KD, Pozio E (2011) Worldwide occurrence and impact of human trichinellosis, 1986–2009. Emerg Infect Dis 17:2194–2202

    Article  PubMed  PubMed Central  Google Scholar 

  • Nezri M, Ruer J, De Bruyne A et al (2006) First report of a human case of trichinellosis due to Trichinella britovi after jackal (Canis aureus) meat consumption in Algeria. Bull Soc Pathol Exot 99:94–95

    CAS  PubMed  Google Scholar 

  • Niborski V, Vallée I, Fonseca-Linan R et al (2004) Trichinella spiralis: Stimulation of mast cells by TSL-1antigens trigger cytokine mRNA expression and release of IL-4and TNF through an Ig-independent pathway. Exp Parasitol 108:101–108

    Article  CAS  PubMed  Google Scholar 

  • Nöckler K, Kapel CMO (2007) Detection and surveillance for Trichinella: meat inspection and hygiene, and legislation. In: Dupouy-Camet J, Murrell KD (eds) FAO/WHO/OIE guidelines for the surveillance, management, prevention and control of trichinellosis. World Organisation for Animal Health Press, Paris, pp 71–85

    Google Scholar 

  • Nöckler K, Wichmann-Schauer H, Hiller P et al (2007) Trichinellosis outbreak in Bavaria caused by cured sausage from Romania, January 2007. Euro Surveill 12(8):E070823.2

    PubMed  Google Scholar 

  • Nöckler K, Pozio E, van der Giessen J et al (2019) International Commission on Trichinellosis: recommendations on post-harvest control of Trichinella in food animals. Food Waterborne Parasitol 14:e00041

    Article  Google Scholar 

  • Nuzzolo-Shihadeh L, Camacho-Ortiz A, Villarreal-Salinas D et al (2020) Human trichinosis mimicking polymyositis. Int J Infect Dis 92:19–20

    Article  PubMed  Google Scholar 

  • Owen IL, Pozio E, Tamburrini A et al (2001) Focus of human trichinellosis in Papua New Guinea. Am J Trop Med Hyg 65:553–557

    Article  CAS  PubMed  Google Scholar 

  • Paolocci N, Sironi M, Bettini M et al (1998) Immunopathological mechanisms underlying the time course of Trichinella spiralis cardiomyopathy in rats. Virchows Arch 432:261–266

    Article  CAS  PubMed  Google Scholar 

  • Papatsiros V, Athanasiou LV, Stougiou D, Christodoulopoulos G, Boutsini S (2020) Trichinella britovi as a risk factor for alternative pig production systems in Greece and Europe. Vet Res Forum: Int Q J 11:199–205

    Google Scholar 

  • Parkhouse RME, Ortega-Pierres G (1984) Stage-specific antigens of Trichinella spiralis. Parasitology 88(Pt 4):623–630

    Article  PubMed  Google Scholar 

  • Pawlowski ZS (1983) Clinical aspects in man. In: Campbell WC (ed) Trichinella and trichinosis. Plenum Press, New York and London, pp 367–401

    Chapter  Google Scholar 

  • Piekarski G (1954) Lehrbuch der Parasitologie. Springer, Berlin

    Book  Google Scholar 

  • Pielok L (2001) Clinical analysis and evaluation of selected laboratory parameters in patients examined in distant periods after trichinellosis. Wiad Parazytol 47(2):185–209

    CAS  PubMed  Google Scholar 

  • Piergili-Fioretti D, Castagna B, Frongillo RF et al (2005) Re-evaluation of patients involved in a trichinellosis outbreak caused by Trichinella britovi 15 years after infection. Vet Parasitol 132:119–123

    Article  CAS  PubMed  Google Scholar 

  • Pinelli E, Mommers M, Homan W et al (2004) Imported human trichinellosis: sequential IgG4 antibody response to Trichinella spiralis. Eur J Clin Microbiol Infect Dis 23:57–60

    Article  CAS  PubMed  Google Scholar 

  • Pinelli E, Mommers M, Kortbeek LM et al (2007) Specific IgG4 response directed against the 45-kDa glycoprotein in trichinellosis: a re-evaluation of patients 15 years after infection. Eur J Clin Microbiol Infect Dis 26:641–645

    Article  CAS  PubMed  Google Scholar 

  • Pompa-Mera EN, Yépez-Mulia L, Ocaña-Mondragón A et al (2011) Trichinella spiralis: Intranasal immunization with attenuated Salmonella enterica carrying a gp43 antigen-derived 30mer epitope elicits protection in BALB/c mice. Exp Parasitol 129:393–401

    Article  CAS  PubMed  Google Scholar 

  • Pozio E (2001) New patterns of Trichinella infections. Vet Parasitol 98:133–148

    Article  CAS  PubMed  Google Scholar 

  • Pozio E (2007) Taxonomy, biology and epidemiology of Trichinella parasites. In: Dupouy-Camet J, Murrell KD (Eds.) FAO/WHO/OIE Guidelines for the surveillance, management, prevention and control of trichinellosis. World Organisation for Animal Health Press, Paris (France), pp. 1–36

    Google Scholar 

  • Pozio E (2020) Scientific achievements of the last 60 years: from a single to a multispecies concept of the genus Trichinella. Vet Parasitol:109042. Advance online publication

    Google Scholar 

  • Pozio E, La Rosa G (2003) PCR-derived methods for the identification of Trichinella parasites from animal and human samples. Methods Mol Biol 216:299–309

    CAS  PubMed  Google Scholar 

  • Pozio E, Murrell KD (2006) Systematics and epidemiology of Trichinella. Adv Parasitol 63:367–439

    Article  PubMed  Google Scholar 

  • Pozio E, Zarlenga D (2019) International Commission on Trichinellosis: Recommendations for genotyping Trichinella muscle stage larvae. Food Waterborne Parasitol 15:e00033

    Article  PubMed  PubMed Central  Google Scholar 

  • Pozio E, Rossi P, Amati M (1987) Epidemiology of trichinosis in Italy: correlation between the wild cycle and man. Ann Parasitol Hum Comp 62:456–461

    Article  CAS  PubMed  Google Scholar 

  • Pozio E, Varese P, Gomez-Morales MA et al (1993) Comparison of human trichinellosis caused by Trichinella spiralis and by Trichinella britovi. Am J Trop Med Hyg 48:568–575

    Article  CAS  PubMed  Google Scholar 

  • Pozio E, La Rosa G, Serrano FJ et al (1996) Environmental and human influence on the ecology of Trichinella spiralis and Trichinella britovi in Western Europe. Parasitology 113:527–533

    Article  PubMed  Google Scholar 

  • Pratesi F, Bongiorni F, Kociecka W et al (2006) Heart and skeletal muscle specific antigens recognized by trichinellosis patient sera. Parasite Immunol 28:447–451

    Article  CAS  PubMed  Google Scholar 

  • Puljiz I, Beus A, Kuzman I et al (2005) Electrocardiographic changes and myocarditis in trichinellosis: a retrospective study of 154 patients. Ann Trop Med Parasitol 99:403–411

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy K, Hakimi J, Bell RG (1994) Evidence for an interleukin 4-inducible immunoglobulin E uptake and transport mechanism in the intestine. J Exp Med 180:1793–1803

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy K, Negrao-Correa D, Bell RG (1996) Local intestinal immune responses to infections with Trichinella spiralis. Real-time, continuous assay of cytokines in the intestinal (afferent) and efferent thoracic duct lymph of rats. J Immunol 156:4328–4337

    CAS  PubMed  Google Scholar 

  • Ranque S, Faugère B, Pozio E et al (2000) Trichinella pseudospiralis outbreak in France. Emerg Infect Dis 6(5):543–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedlinger J, Grencis RK, Wakelin D (1986) Antigen-specific T-cell lines transfer protective immunity against Trichinella spiralis in vivo. Immunology 58:57–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robert F, Well B, Kassis N et al (1996) Investigation of immunofluorescence cross-reaction against Trichinella spiralis by Western blot (Immunoblot) analysis. Clin Diagn Lab Immunol 3:575–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson K, Bellaby T, Chan WC et al (1995) High levels of protection induced by a40-mer synthetic peptide vaccine against the intestinal nematode parasite Trichinella spiralis. Immunology 86:495–498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rombout YB, Bosch S, van Der Giessen JW (2001) Detection and identification of eight Trichinella genotypes by reverse line blot hybridization. J Clin Microbiol 39:642–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosca EC, Simu M (2018) Border zone brain lesions due to neurotrichinosis. Int J Infect Dis 67:43–45

    Article  PubMed  Google Scholar 

  • Rostami A, Gamble HR, Dupouy-Camet J et al (2017) Meat sources of infection for outbreaks of human trichinellosis. Food Microbiol 64:65–71

    Article  PubMed  Google Scholar 

  • Ryczak M, Sorber WA, Kandora TF, Camp CJ, Rose FB (1987) Difficulties in diagnosing trichinella encephalitis. Am J Trop Med Hyg 36:573–575

    Article  CAS  PubMed  Google Scholar 

  • Sadaow L, Tantrawatpan C, Intapan PM et al (2013) Molecular differentiation of Trichinella spiralis, T. pseudospiralis, T. papuae and T. zimbabwensis by pyrosequencing. J Helminthol 13:1–6

    Google Scholar 

  • Schellenberg RS, Tan BJ, Irvine JD et al (2003) An outbreak of trichinellosis due to consumption of bear meat infected with Trichinella nativa, in 2 northern Saskatchewan communities. J Infect Dis 188:835–843

    Article  PubMed  Google Scholar 

  • Scudamore CL, Pennington AM, Thornton EM et al (1995) Release of the mucosal mast cell granule chymase, rat mast cell protease-II, during anaphylaxis is associated with the rapid development of paracellular permeability to macromolecules in rat jejunum. J Exp Med 182:1871–1881

    Article  CAS  PubMed  Google Scholar 

  • Scudamore CL, Jepson MA, Hirst BH et al (1998) The rat mucosal mast cell chymase, RMCP-II, alters epithelial cell monolayer permeability in association with altered distribution of the tight junction proteins ZO-1 and occludin. Eur J Cell Biol 75:321–330

    Article  CAS  PubMed  Google Scholar 

  • Serhir B, MacLean JD, Healey S et al (2001) Outbreak of trichinellosis associated with arctic walruses in northern Canada, 1999. Can Commun Dis Rep 27:31–36

    CAS  PubMed  Google Scholar 

  • Shin K, Watts GF, Oettgen HC et al (2008) Mouse mast cell tryptase mMCP-6 is a critical link between adaptive and innate immunity in the chronic phase of Trichinella spiralis infection. J Immunol 180:4885–4891

    Article  CAS  PubMed  Google Scholar 

  • Shupe K, Stewart GL (1991) Stimulated chemotactic response in neutrophils from Trichinella pseudospiralis-infected mice and the neutrophilotactic potential of Trichinella extracts. Int J Parasitol 21:625–630

    Article  CAS  PubMed  Google Scholar 

  • de Silva NR, Sirisena JL, Gunasekera DP et al (1999) Effect of mebendazole therapy during pregnancy on birth outcome. Lancet 353(9159):1145–1149

    Article  PubMed  Google Scholar 

  • Shimoni Z, Klein Z, Weiner P, Assous MV, Froom P (2007) The use of prednisone in the treatment of trichinellosis. IMAJ 9:537–539

    PubMed  Google Scholar 

  • Sohn WM, Kim HM, Chung DI et al (2000) The first human case of Trichinella spiralis infection in Korea. Korean J Parasitol 38:111–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somboonpatarakun C, Rodpai R, Intapan PM et al (2018) Immuno-proteomic analysis of Trichinella spiralis, T. pseudospiralis, and T. papuae extracts recognized by human T. spiralis-infected sera. Parasitol Res 117:201–212

    Article  PubMed  Google Scholar 

  • Steel N, Faniyi AA, Rahman S et al (2019) TGFβ-activation by dendritic cells drives Th17 induction and intestinal contractility and augments the expulsion of the parasite Trichinella spiralis in mice. PLoS Pathog 15(4):e1007657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart GL, Wood B, Boley RB (1985) Modulation of host response by Trichinella pseudospiralis. Parasite Immunol 7:223–233

    Article  CAS  PubMed  Google Scholar 

  • Stewart GL (1995) Myopathogenesis and myoredifferentiation in trichinosis. Bas Appl Myol 5:213–222

    Google Scholar 

  • Stoll NR (1947) This wormy world. J Parasitol 33:1–18

    CAS  PubMed  Google Scholar 

  • Sun S, Xu W, He N et al (1994) An antigenic recombinant fusion protein from Trichinella spiralis induces a protective response in BALB/c mice. J Helminthol 68:89–91

    Article  CAS  PubMed  Google Scholar 

  • Suzdaltsev AA, Verkhovtsev VN, Spiridonov AM et al (1999) Trichinosis outbreak after ingestion of barbecued badger. Int J Infect Dis 3:216

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Sasaki T, Takagi H et al (2008) The effectors responsible for gastrointestinal nematode parasites, Trichinella spiralis, expulsion in rats. Parasitol Res 103:1289–1295

    Article  PubMed  Google Scholar 

  • Taybouavone T, Hai TN, Odermatt P et al (2009) Trichinellosis during pregnancy: a case control study in the Lao Peoples’ Democratic Republic. Vet Parasitol 159:332–336

    Article  CAS  PubMed  Google Scholar 

  • Teunis PF, Koningstein M, Takumi K et al (2012) Human beings are highly susceptible to low doses of Trichinella spp. Epidemiol Infect 140:210–218

    Article  CAS  PubMed  Google Scholar 

  • Tuohy M, Lammas DA, Wakelin D et al (1990) Functional correlations between mucosal mast cell activity and immunity to Trichinella spiralis in high and low responder mice. Parasite Immunol 12:675–685

    Article  CAS  PubMed  Google Scholar 

  • Turner JE, Stockinger B, Helmby H (2013) IL-22 mediates goblet cell hyperplasia and worm expulsion in intestinal helminth infection. PLoS Pathog 9:e1003698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Urban JF Jr, Schopf L, Morris SC et al. (2000) Stat6 signaling promotes protective immunity against Trichinella spiralis through a mast cell- and T cell-dependent mechanism. J Immunol 164:2046–2052

    Google Scholar 

  • Urban JF Jr, Noben-Trauth N, Schopf L et al (2001) Cutting edge: IL-4 receptor expression by non-bone marrow-derived cells is required to expel gastrointestinal nematode parasites. J Immunol 167:6078–6081

    Article  CAS  PubMed  Google Scholar 

  • Vallance BA, Blennerhassett PA, Deng Y et al (1999) IL-5 contributes to worm expulsion and muscle hypercontractility in a primary T. spiralis infection. Am J Phys 277:G400–G408

    CAS  Google Scholar 

  • Vallance BA, Matthaei KI, Sanovic S et al (2000) Interleukin-5 deficient mice exhibit impaired host defence against challenge Trichinella spiralis infections. Parasite Immunol 22:487–492

    Article  CAS  PubMed  Google Scholar 

  • Viallet J, Maclean JD, Goresky LA et al (1986) Arctic trichinosis presenting as prolonged diarrhea. Gastroenterology 91:938–946

    Article  CAS  PubMed  Google Scholar 

  • Wakelin D (1993) Trichinella spiralis: immunity, ecology, and evolution. J Parasitol 79:488–494

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ, Cui J, Wu F, Mao FR, Jin XX (1998) Epidemiological, clinical and serological studies on trichinellosis in Henan Province, China. Acta Trop 71:255–268

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ, Cui J, Wei HY et al (2006) Vaccination of mice with DNA vaccine induces the immune response and partial protection against T. spiralis infection. Vaccine 24:1205–1212

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ, Cui J, Shen LJ (2007) The epidemiology of animal trichinellosis in China. Vet J173:391–398

    Article  Google Scholar 

  • Wang S, Zhu X, Yang Y et al (2009) Molecular cloning and characterization of heat shock protein 70 from Trichinella spiralis. Acta Trop 110:46–51

    Article  CAS  PubMed  Google Scholar 

  • Watanabe N, Bruschi F, Korenaga M (2005) IgE: a question of protective immunity in Trichinella spiralis infection. Trends Parasitol 21:175–178

    Article  CAS  PubMed  Google Scholar 

  • Watt G, Silachamroon U (2004) Areas of uncertainty in the management of human trichinellosis: a clinical perspective. Expert Rev AntiInfect Ther 2:649–652

    Article  Google Scholar 

  • Watt G, Saisorn S, Jongsakul K et al (2000) Blinded Placebo-controlled trial of antiparasitic drugs for trichinosis myositis. J Infect Dis 182:371–374

    Article  CAS  PubMed  Google Scholar 

  • Weatherly NF (1983) Anatomical pathology. In: Campbell WC (ed) Trichinella and trichinosis. Plenum Press, New York, pp 173–178

    Chapter  Google Scholar 

  • Woodbury RG, Miller HRP, Huntley JF et al (1984) Mucosal mast cells are functionally active during spontaneous expulsion of intestinal nematode infections in rat. Nature 312:450–452

    Article  CAS  PubMed  Google Scholar 

  • Wranicz MJ, Gustowska L, Gabryel P et al (1998) Trichinella spiralis: induction of the basophilic transformation of muscle cells by synchronous newborn larvae. Parasitol Res 84(5):403–407

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Gu Y, Yang Y et al (2010a) Trichinella spiralis: Immune response and protective immunity elicited by recombinant paramyosin formulated with different adjuvants. Exp Parasitol 124:403–408

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhang Z, Yang J et al (2010b) Oral vaccination with Ts87 DNA vaccine delivered by attenuated Salmonella typhimurium elicits a protective immune response against Trichinella spiralis larval challenge. Vaccine 28:2735–2742

    Article  CAS  PubMed  Google Scholar 

  • Yépez-Mulia L, Montaño-Escalona C, Fonseca-Liñán R et al (2009) Differential activation of mast cells by antigens from Trichinella spiralis muscle larvae, adults, and newborn larvae. Vet Parasitol 159:253–257

    Article  PubMed  CAS  Google Scholar 

  • Yera H, Andiva S, Perret C et al (2003) Development and evaluation of a Western blot kit for diagnosis of human trichinellosis. Clin Diagn Lab Immunol 10:793–796

    PubMed  PubMed Central  Google Scholar 

  • Zarlenga DS, Chute MB, Martin A et al (1999) A multiplex PCR for unequivocal differentiation of all encapsulated and nonencapsulated genotypes of Trichinella. Int J Parasitol 29:1859–1867

    Article  CAS  PubMed  Google Scholar 

  • Zarlenga D, Thompson P, Pozio E (2020) Trichinella species and genotypes. Res Vet Sci 133:289–296

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Li W, Fu B (2018) Vaccines against Trichinella spiralis: progress, challenges and future prospects. Transbound Emerg Dis 65:1447–1458

    Article  PubMed  Google Scholar 

  • Zimmermann WJ (1983) Surveillance in swine and other animals by muscle examination. In: Campbell WC (ed) Trichinella and trichinosis. Plenum Press, New York, pp 515–528

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Bruschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bruschi, F., Dupouy-Camet, J. (2022). Trichinellosis. In: Bruschi, F. (eds) Helminth Infections and their Impact on Global Public Health. Springer, Cham. https://doi.org/10.1007/978-3-031-00303-5_10

Download citation

Publish with us

Policies and ethics