Skip to main content

Evolution of AI in Medical Imaging

  • Chapter
  • First Online:
  • 539 Accesses

Abstract

Artificial intelligence has already found applications in medical imaging, and this will increase substantially in the future. In fact, it is widely recognized that AI will completely transform the field. This chapter provides a general overview of some of the advancements in AI techniques, as well as their historical and current uses in medical imaging. It also highlights some areas of emerging research and provides a glimpse of the potential future role of AI in medicine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ledley RS, Lusted LB. Reasoning foundations of medical diagnosis. Science. 1959;130(3366):9–21.

    CAS  PubMed  Google Scholar 

  2. Haug PJ. Uses of diagnostic expert systems in clinical care. In: Proceedings of the annual symposium on computer application in medical care. Bethesda: American Medical Informatics Association; 1993.

    Google Scholar 

  3. Ambinder EP. A history of the shift toward full computerization of medicine. J Oncol Pract. 2005;1(2):54.

    PubMed  PubMed Central  Google Scholar 

  4. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst. 2012;25:1097–105.

    Google Scholar 

  5. He K, et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision. New York: IEEE; 2015.

    Google Scholar 

  6. Silver D, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529(7587):484–9.

    CAS  PubMed  Google Scholar 

  7. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

    Google Scholar 

  8. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

    Google Scholar 

  9. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. New York: Springer; 2015.

    Google Scholar 

  10. He K, et al. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

    Google Scholar 

  11. Szegedy C, et al. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

    Google Scholar 

  12. Goodfellow I, et al. Generative adversarial nets. In: Advances in neural information processing systems. 2014.

    Google Scholar 

  13. Hosny A, et al. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ledley RS. Using electronic computers in medical diagnosis. IRE Trans Med Electron. 1960;4:274–80.

    Google Scholar 

  15. Amosov N, Shkabara E. Experience in determining diagnosis with the aid of diagnostic machines. Eksp Khirurgiia. 1961;6:15–22.

    CAS  PubMed  Google Scholar 

  16. Rikli AE, et al. Computer analysis of electrocardiographic measurements. Circulation. 1961;24(3):643–9.

    CAS  PubMed  Google Scholar 

  17. Paycha F. Diagnosis with the aid of artificial intelligence: demonstration of the 1st diagnostic machine. Presse Therm Clim. 1968;105(1):22.

    CAS  PubMed  Google Scholar 

  18. DeCote R, Horvath WJ. An electronic computer for vector electrocardiography. IRE Trans Med Electron. 1957;1957:31–7.

    Google Scholar 

  19. Caceres CA. How can the waveforms of a clinical electrocardiogram be measured automatically by a computer? IRE Trans Biomed Electron. 1962;9(1):21–2.

    Google Scholar 

  20. Pipberger HV, Stallmann F. Use of computers in ECG interpretation. Am Heart J. 1962;64:285.

    CAS  PubMed  Google Scholar 

  21. Steinberg C, Abraham S, Caceres C. Pattern recognition in the clinical electrocardiogram. IRE Trans Biomed Electron. 1962;9(1):23–30.

    Google Scholar 

  22. Lipkin M, Hardy JD. Mechanical correlation of data in differential diagnosis of hematological diseases. J Am Med Assoc. 1958;166(2):113–25.

    CAS  PubMed  Google Scholar 

  23. Jonnard R. Random selection system for automatic biochemical analysis-partial functional analysis. IRE Trans Biomed Electron. 1961;8(2):83–98.

    CAS  Google Scholar 

  24. Moyer D, Talbott G. Instrumentation for the diagnosis of coronary-artery disease. Trans Am Inst Electr Eng. 1962;80(6):717–21.

    Google Scholar 

  25. Ledley RS, Lusted LB. Computers in medical data processing. Oper Res. 1960;8(3):299–310.

    Google Scholar 

  26. Gillon J. Is automatic diagnosis in the future? Concours Med. 1962;84:3829–33.

    CAS  PubMed  Google Scholar 

  27. Schweisheimer W. Can electronic machines facilitate and improve medical diagnosis? Hippokrates. 1962;33:162.

    CAS  PubMed  Google Scholar 

  28. Lodwick GS, Keats TE, Dorst JP. The coding of roentgen images for computer analysis as applied to lung cancer. Radiology. 1963;81(2):185–200.

    CAS  PubMed  Google Scholar 

  29. Tang X. The role of artificial intelligence in medical imaging research. BJR Open. 2019;2(1):20190031.

    PubMed  PubMed Central  Google Scholar 

  30. Champaign JL, Cederbom GJ. Advances in breast cancer detection with screening mammography. Ochsner J. 2000;2(1):33–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shiraishi J, et al. Computer-aided diagnosis and artificial intelligence in clinical imaging. In: Seminars in nuclear medicine. London: Elsevier; 2011.

    Google Scholar 

  32. Ayer T, et al. Computer-aided diagnostic models in breast cancer screening. Imaging Med. 2010;2(3):313.

    PubMed  PubMed Central  Google Scholar 

  33. Nagaraj S, Rao G, Koteswararao K. The role of pattern recognition in computer-aided diagnosis and computer-aided detection in medical imaging: a clinical validation. Int J Comput Appl. 2010;8(5):18–22.

    Google Scholar 

  34. Cole EB, et al. Impact of computer-aided detection systems on radiologist accuracy with digital mammography. Am J Roentgenol. 2014;203(4):909–16.

    Google Scholar 

  35. Lehman CD, et al. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med. 2015;175(11):1828–37.

    PubMed  PubMed Central  Google Scholar 

  36. Fenton JJ, et al. Influence of computer-aided detection on performance of screening mammography. N Engl J Med. 2007;356(14):1399–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gilbert FJ, et al. Single reading with computer-aided detection for screening mammography. N Engl J Med. 2008;359(16):1675–84.

    CAS  PubMed  Google Scholar 

  38. Oakden-Rayner L. The rebirth of CAD: how is modern AI different from the CAD we know? Oak Brook: Radiological Society of North America; 2019.

    Google Scholar 

  39. Lee J-G, et al. Deep learning in medical imaging: general overview. Korean J Radiol. 2017;18(4):570–84.

    PubMed  PubMed Central  Google Scholar 

  40. Asada N, et al. Potential usefulness of an artificial neural network for differential diagnosis of interstitial lung diseases: pilot study. Radiology. 1990;177(3):857–60.

    CAS  PubMed  Google Scholar 

  41. Lin J-S, et al. Reduction of false positives in lung nodule detection using a two-level neural classification. IEEE Trans Med Imaging. 1996;15(2):206–17.

    CAS  PubMed  Google Scholar 

  42. Ashizawa K, et al. Artificial neural networks in chest radiography: application to the differential diagnosis of interstitial lung disease. Acad Radiol. 1999;6(1):2–9.

    CAS  PubMed  Google Scholar 

  43. Ashizawa K, et al. Effect of an artificial neural network on radiologists' performance in the differential diagnosis of interstitial lung disease using chest radiographs. AJR Am J Roentgenol. 1999;172(5):1311–5.

    CAS  PubMed  Google Scholar 

  44. Lo S-C, et al. Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans Med Imaging. 1995;14(4):711–8.

    CAS  PubMed  Google Scholar 

  45. Wang D, et al. Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718, 2016.

    Google Scholar 

  46. Kallenberg M, et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging. 2016;35(5):1322–31.

    PubMed  Google Scholar 

  47. Cheng J-Z, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep. 2016;6(1):1–13.

    Google Scholar 

  48. Hua K-L, et al. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther. 2015;8:2015–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumar D, Wong A, Clausi DA. Lung nodule classification using deep features in CT images. In: 2015 12th conference on computer and robot vision. New York: IEEE; 2015.

    Google Scholar 

  50. Chen J, et al. Use of an artificial neural network to construct a model of predicting deep fungal infection in lung cancer patients. Asian Pac J Cancer Prev. 2015;16(12):5095–9.

    PubMed  Google Scholar 

  51. Esteva A, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Teramoto A, et al. Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique. Med Phys. 2016;43(6):2821–7.

    PubMed  Google Scholar 

  53. Wang H, et al. Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18 F-FDG PET/CT images. EJNMMI Res. 2017;7(1):11.

    PubMed  PubMed Central  Google Scholar 

  54. Chen T, Metaxas D. Medical image computing and computer-assisted intervention—Miccai 2000. Vol. 1935 of lecture notes in computer science. New York: Springer; 2000.

    Google Scholar 

  55. Kooi T, et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal. 2017;35:303–12.

    PubMed  Google Scholar 

  56. Paul R, et al. Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography. 2016;2(4):388.

    PubMed  PubMed Central  Google Scholar 

  57. Nie D, et al. 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. In: International conference on medical image computing and computer-assisted intervention. New York: Springer; 2016.

    Google Scholar 

  58. Ardila D, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25(6):954–61.

    CAS  PubMed  Google Scholar 

  59. Suk H-I, et al. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage. 2014;101:569–82.

    PubMed  Google Scholar 

  60. Suk H-I, Shen D. Deep learning-based feature representation for AD/MCI classification. In: International conference on medical image computing and computer-assisted intervention. New York: Springer; 2013.

    Google Scholar 

  61. Liu S, et al. Early diagnosis of Alzheimer’s disease with deep learning. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). New York: IEEE; 2014.

    Google Scholar 

  62. Hosseini-Asl E, Gimel’farb G, El-Baz A. Alzheimer’s disease diagnostics by a deeply supervised adaptable 3D convolutional network. arXiv preprint arXiv:1607.00556, 2016.

    Google Scholar 

  63. Payan A, Montana G. Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks. arXiv preprint arXiv:1502.02506, 2015.

    Google Scholar 

  64. Choi H, et al. Refining diagnosis of Parkinson’s disease with deep learning-based interpretation of dopamine transporter imaging. NeuroImage. 2017;16:586–94.

    PubMed  PubMed Central  Google Scholar 

  65. Kim DH, Wit H, Thurston M. Artificial intelligence in the diagnosis of Parkinson’s disease from ioflupane-123 single-photon emission computed tomography dopamine transporter scans using transfer learning. Nucl Med Commun. 2018;39(10):887–93.

    PubMed  Google Scholar 

  66. Haralick RM, Shapiro LG. Image segmentation techniques. Comput Vis Graph Image Process. 1985;29(1):100–32.

    Google Scholar 

  67. Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000;2(1):315–37.

    CAS  PubMed  Google Scholar 

  68. Grau V, et al. Improved watershed transform for medical image segmentation using prior information. IEEE Trans Med Imaging. 2004;23(4):447–58.

    CAS  PubMed  Google Scholar 

  69. Sharma N, Aggarwal LM. Automated medical image segmentation techniques. J Med Phys. 2010;35(1):3.

    PubMed  PubMed Central  Google Scholar 

  70. Han X, et al. Atlas-based auto-segmentation of head and neck CT images. In: International conference on medical image computing and computer-assisted intervention. New York: Springer; 2008.

    Google Scholar 

  71. Parisot S, et al. A probabilistic atlas of diffuse WHO grade II glioma locations in the brain. PLoS One. 2016;11(1):e0144200.

    PubMed  PubMed Central  Google Scholar 

  72. Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(4):640–51.

    PubMed  Google Scholar 

  73. Middleton I, Damper RI. Segmentation of magnetic resonance images using a combination of neural networks and active contour models. Med Eng Phys. 2004;26(1):71–86.

    PubMed  Google Scholar 

  74. Ning F, et al. Toward automatic phenotyping of developing embryos from videos. IEEE Trans Image Process. 2005;14(9):1360–71.

    PubMed  Google Scholar 

  75. Ciresan D, et al. Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in neural information processing systems. 2012.

    Google Scholar 

  76. Prasoon A, et al. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: International conference on medical image computing and computer-assisted intervention. 2013. Springer.

    Google Scholar 

  77. Cernazanu-Glavan C, Holban S. Segmentation of bone structure in X-ray images using convolutional neural network. Adv Electron Comput Eng. 2013;13(1):87–94.

    Google Scholar 

  78. Moeskops P, et al. Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging. 2016;35(5):1252–61.

    PubMed  Google Scholar 

  79. Zhu Q, et al. Deeply-supervised CNN for prostate segmentation. In: 2017 international joint conference on neural networks (IJCNN). New York: IEEE; 2017.

    Google Scholar 

  80. Rastgarpour M, Shanbehzadeh J. Application of ai techniques in medical image segmentation and novel categorization of available methods and in tools. In: Proceedings of the international multiconference of engineers and computer scientists. Princeton: Citeseer; 2011.

    Google Scholar 

  81. Pereira S, et al. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging. 2016;35(5):1240–51.

    PubMed  Google Scholar 

  82. Roth HR, et al. Deep learning and its application to medical image segmentation. Med Imaging Technol. 2018;36(2):63–71.

    Google Scholar 

  83. Tang X, Wang B, Rong Y. Artificial intelligence will reduce the need for clinical medical physicists. J Appl Clin Med Phys. 2018;19(1):6.

    PubMed  PubMed Central  Google Scholar 

  84. Feng X, et al. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images. Med Phys. 2019;46(5):2169–80.

    PubMed  Google Scholar 

  85. Dong X, et al. Automatic multiorgan segmentation in thorax CT images using U-net-GAN. Med Phys. 2019;46(5):2157–68.

    PubMed  PubMed Central  Google Scholar 

  86. Milletari F, Navab N, Ahmadi S-A. V-net: fully convolutional neural networks for volumetric medical image segmentation. In: Fourth international conference on 3D Vision (3DV). New York: IEEE; 2016. p. 2016.

    Google Scholar 

  87. de Brebisson A, Montana G. Deep neural networks for anatomical brain segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2015.

    Google Scholar 

  88. Moeskops P, et al. Deep learning for multi-task medical image segmentation in multiple modalities. In: International conference on medical image computing and computer-assisted intervention. New York: Springer; 2016.

    Google Scholar 

  89. Ghafoorian M, et al. Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities. Sci Rep. 2017;7:5110.

    PubMed  PubMed Central  Google Scholar 

  90. Sun J, Li H, Xu Z. Deep ADMM-Net for compressive sensing MRI. In: Advances in neural information processing systems. 2016.

    Google Scholar 

  91. Wang S, et al. Accelerating magnetic resonance imaging via deep learning. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI). New York: IEEE; 2016.

    Google Scholar 

  92. Qin C, et al. Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging. 2018;38(1):280–90.

    PubMed  Google Scholar 

  93. Zhu B, et al. Image reconstruction by domain-transform manifold learning. Nature. 2018;555(7697):487–92.

    CAS  PubMed  Google Scholar 

  94. Gong E, et al. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging. 2018;48(2):330–40.

    PubMed  Google Scholar 

  95. Golkov V, et al. Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans Med Imaging. 2016;35(5):1344–51.

    PubMed  Google Scholar 

  96. Deistung A, et al. Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2⁎-imaging at ultra-high magnetic field strength. NeuroImage. 2013;65:299–314.

    PubMed  Google Scholar 

  97. Deistung A, Schweser F, Reichenbach JR. Overview of quantitative susceptibility mapping. NMR Biomed. 2017;30(4):e3569.

    Google Scholar 

  98. Yoon J, et al. Quantitative susceptibility mapping using deep neural network: QSMnet. NeuroImage. 2018;179:199–206.

    PubMed  Google Scholar 

  99. Ma D, et al. Magnetic resonance fingerprinting. Nature. 2013;495(7440):187–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Cohen O, Zhu B, Rosen MS. MR fingerprinting deep reconstruction network (DRONE). Magn Reson Med. 2018;80(3):885–94.

    PubMed  PubMed Central  Google Scholar 

  101. Hoppe E, et al. Deep learning for magnetic resonance fingerprinting: a new approach for predicting quantitative parameter values from time series. In: GMDS. 2017.

    Google Scholar 

  102. Fang Z, et al. Quantification of relaxation times in MR fingerprinting using deep learning. In: Proceedings of the International Society for Magnetic Resonance in Medicine... Scientific Meeting and Exhibition. International Society for Magnetic Resonance in Medicine. Scientific Meeting and Exhibition. Bethesda: NIH Public Access; 2017.

    Google Scholar 

  103. Creswell A, et al. Generative adversarial networks: an overview. IEEE Signal Process Mag. 2018;35(1):53–65.

    Google Scholar 

  104. Hong Y, et al. How generative adversarial networks and their variants work: an overview. ACM Comput Surv. 2019;52(1):1–43.

    Google Scholar 

  105. Huang H, Yu PS, Wang C. An introduction to image synthesis with generative adversarial nets. arXiv preprint arXiv:1803.04469, 2018.

    Google Scholar 

  106. Osokin A, et al. Gans for biological image synthesis. In: Proceedings of the IEEE international conference on computer vision. New York: IEEE; 2017.

    Google Scholar 

  107. Antipov G, Baccouche M, Dugelay J-L. Face aging with conditional generative adversarial networks. In: 2017 IEEE international conference on image processing (ICIP). New York: IEEE; 2017.

    Google Scholar 

  108. Shin H-C, et al. Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: International workshop on simulation and synthesis in medical imaging. New York: Springer; 2018.

    Google Scholar 

  109. Mok TC, Chung AC. Learning data augmentation for brain tumor segmentation with coarse-to-fine generative adversarial networks. In: International MICCAI brainlesion workshop. New York: Springer; 2018.

    Google Scholar 

  110. Kitchen A, Seah J. Deep generative adversarial neural networks for realistic prostate lesion MRI synthesis. arXiv preprint arXiv:1708.00129, 2017.

    Google Scholar 

  111. Frid-Adar M, et al. Synthetic data augmentation using GAN for improved liver lesion classification. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). New York: IEEE; 2018.

    Google Scholar 

  112. Guibas JT, Virdi TS, Li PS. Synthetic medical images from dual generative adversarial networks. arXiv preprint arXiv:1709.01872, 2017.

    Google Scholar 

  113. Bermudez C, et al. Learning implicit brain MRI manifolds with deep learning. In: Medical imaging 2018: image processing. Bellingham: International Society for Optics and Photonics. p. 2018.

    Google Scholar 

  114. Zhang Q, et al. Medical image synthesis with generative adversarial networks for tissue recognition. In: 2018 IEEE international conference on healthcare informatics (ICHI). New York: IEEE; 2018.

    Google Scholar 

  115. Nie D, et al. Medical image synthesis with context-aware generative adversarial networks. In: International conference on medical image computing and computer-assisted intervention. New York: Springer; 2017.

    Google Scholar 

  116. Nie D, et al. Estimating CT image from MRI data using 3D fully convolutional networks. In: Deep learning and data labeling for medical applications. New York: Springer; 2016. p. 170–8.

    Google Scholar 

  117. Wolterink JM, et al. Deep MR to CT synthesis using unpaired data. In: International workshop on simulation and synthesis in medical imaging. New York: Springer; 2017.

    Google Scholar 

  118. Li R, et al. Deep learning based imaging data completion for improved brain disease diagnosis. In: International conference on medical image computing and computer-assisted intervention. New York: Springer; 2014.

    Google Scholar 

  119. Strack R. Imaging: AI transforms image reconstruction. Nat Methods. 2018;15(5):309–10.

    CAS  Google Scholar 

  120. McCann MT, Jin KH, Unser M. Convolutional neural networks for inverse problems in imaging: a review. IEEE Signal Process Mag. 2017;34(6):85–95.

    Google Scholar 

  121. Jin KH, et al. Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process. 2017;26(9):4509–22.

    Google Scholar 

  122. Schlemper J, et al. A deep cascade of convolutional neural networks for MR image reconstruction. In: International conference on information processing in medical imaging. New York: Springer; 2017.

    Google Scholar 

  123. Lucas A, et al. Using deep neural networks for inverse problems in imaging: beyond analytical methods. IEEE Signal Process Mag. 2018;35(1):20–36.

    Google Scholar 

  124. Kim K, et al. Penalized PET reconstruction using deep learning prior and local linear fitting. IEEE Trans Med Imaging. 2018;37(6):1478–87.

    PubMed  PubMed Central  Google Scholar 

  125. Gong K, et al. Iterative PET image reconstruction using convolutional neural network representation. IEEE Trans Med Imaging. 2018;38(3):675–85.

    PubMed Central  Google Scholar 

  126. Häggström I, et al. DeepPET: a deep encoder–decoder network for directly solving the PET image reconstruction inverse problem. Med Image Anal. 2019;54:253–62.

    PubMed  PubMed Central  Google Scholar 

  127. Antun V, et al. On instabilities of deep learning in image reconstruction and the potential costs of AI. Proc Natl Acad Sci. 2020;117(48):30088–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Benou A, et al. Ensemble of expert deep neural networks for spatio-temporal denoising of contrast-enhanced MRI sequences. Med Image Anal. 2017;42:145–59.

    CAS  PubMed  Google Scholar 

  129. Liu C-C, Qi J. Higher SNR PET image prediction using a deep learning model and MRI image. Phys Med Biol. 2019;64(11):115004.

    PubMed  PubMed Central  Google Scholar 

  130. Lu W, et al. An investigation of quantitative accuracy for deep learning based denoising in oncological PET. Phys Med Biol. 2019;64(16):165019.

    CAS  PubMed  Google Scholar 

  131. Cui J, et al. PET image denoising using unsupervised deep learning. Eur J Nucl Med Mol Imaging. 2019;46(13):2780–9.

    PubMed  PubMed Central  Google Scholar 

  132. Gong K, et al. Pet image denoising using a deep neural network through fine tuning. IEEE Trans Radiat Plasma Med Sci. 2018;3(2):153–61.

    PubMed  PubMed Central  Google Scholar 

  133. Yang Q, et al. CT image denoising with perceptive deep neural networks. arXiv preprint arXiv:1702.07019, 2017.

    Google Scholar 

  134. Schaefferkoetter J, Yan J, Ortega C, et al. Convolutional neural networks for improving image quality with noisy PET data. EJNMMI Res. 2020;10:105. https://doi.org/10.1186/s13550-020-00695-1.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Küstner T, et al. Automated reference-free detection of motion artifacts in magnetic resonance images. Medicine. 2018;31(2):243–56.

    Google Scholar 

  136. Li T, et al. Motion correction of respiratory-gated PET images using deep learning based image registration framework. Phys Med Biol. 2020;65(15):155003.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Gurbani SS, et al. A convolutional neural network to filter artifacts in spectroscopic MRI. Magn Reson Med. 2018;80(5):1765–75.

    PubMed  PubMed Central  Google Scholar 

  138. Kyathanahally SP, Döring A, Kreis R. Deep learning approaches for detection and removal of ghosting artifacts in MR spectroscopy. Magn Reson Med. 2018;80(3):851–63.

    PubMed  Google Scholar 

  139. Robinson MD, et al. New applications of super-resolution in medical imaging. Super-Resolut Imaging. 2010;2010:384–412.

    Google Scholar 

  140. Shilling RZ, et al. A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI. IEEE Trans Med Imaging. 2008;28(5):633–44.

    PubMed  Google Scholar 

  141. Ropele S, et al. Super-resolution MRI using microscopic spatial modulation of magnetization. Magn Reson Med. 2010;64(6):1671–5.

    PubMed  Google Scholar 

  142. Van Steenkiste G, et al. Super-resolution T1 estimation: quantitative high resolution T1 mapping from a set of low resolution T1-weighted images with different slice orientations. Magn Reson Med. 2017;77(5):1818–30.

    PubMed  Google Scholar 

  143. Bahrami K, et al. 7T-guided super-resolution of 3T MRI. Med Phys. 2017;44(5):1661–77.

    PubMed  PubMed Central  Google Scholar 

  144. Ledig C, et al. Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

    Google Scholar 

  145. Liu C, et al. Fusing multi-scale information in convolution network for MR image super-resolution reconstruction. Biomed Eng Online. 2018;17(1):114.

    PubMed  PubMed Central  Google Scholar 

  146. Chaudhari AS, et al. Super-resolution musculoskeletal MRI using deep learning. Magn Reson Med. 2018;80(5):2139–54.

    PubMed  PubMed Central  Google Scholar 

  147. Zeng K, et al. Simultaneous single-and multi-contrast super-resolution for brain MRI images based on a convolutional neural network. Comput Biol Med. 2018;99:133–41.

    PubMed  Google Scholar 

  148. Isola P, et al. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

    Google Scholar 

  149. Zhu J-Y, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision. 2017.

    Google Scholar 

  150. Cohen JP, Luck M, Honari S. Distribution matching losses can hallucinate features in medical image translation. In: International conference on medical image computing and computer-assisted intervention. New York: Springer; 2018.

    Google Scholar 

  151. Armanious K, et al. Unsupervised medical image translation using cycle-MedGAN. In: 2019 27th European signal processing conference (EUSIPCO). New York: IEEE; 2019.

    Google Scholar 

  152. Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44(4):1408–19.

    CAS  PubMed  Google Scholar 

  153. Torrado-Carvajal A, et al. Dixon-VIBE deep learning (DIVIDE) pseudo-CT synthesis for pelvis PET/MR attenuation correction. J Nucl Med. 2019;60(3):429–35.

    PubMed  PubMed Central  Google Scholar 

  154. Leynes AP, et al. Zero-echo-time and Dixon deep pseudo-CT (ZeDD CT): direct generation of pseudo-CT images for pelvic PET/MRI attenuation correction using deep convolutional neural networks with multiparametric MRI. J Nucl Med. 2018;59(5):852–8.

    PubMed  PubMed Central  Google Scholar 

  155. Spuhler KD, et al. Synthesis of patient-specific transmission data for PET attenuation correction for PET/MRI neuroimaging using a convolutional neural network. J Nucl Med. 2019;60(4):555–60.

    CAS  PubMed  Google Scholar 

  156. Beyer T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41(8):1369.

    CAS  PubMed  Google Scholar 

  157. Wohlhart P, Lepetit V. Learning descriptors for object recognition and 3d pose estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

    Google Scholar 

  158. Dollár P, Welinder P, Perona P. Cascaded pose regression. In: 2010 IEEE computer society conference on computer vision and pattern recognition. New York: IEEE; 2010.

    Google Scholar 

  159. Zach C, Penate-Sanchez A, Pham M-T. A dynamic programming approach for fast and robust object pose recognition from range images. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

    Google Scholar 

  160. Mottaghi R, Xiang Y, Savarese S. A coarse-to-fine model for 3d pose estimation and sub-category recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

    Google Scholar 

  161. Litjens G, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

    PubMed  Google Scholar 

  162. Wu G, et al. Scalable high-performance image registration framework by unsupervised deep feature representations learning. IEEE Trans Biomed Eng. 2015;63(7):1505–16.

    PubMed  PubMed Central  Google Scholar 

  163. Sloan JM, Goatman KA, Siebert JP. Learning rigid image registration-utilizing convolutional neural networks for medical image registration. 2018.

    Google Scholar 

  164. Yang X, et al. Quicksilver: fast predictive image registration–a deep learning approach. NeuroImage. 2017;158:378–96.

    PubMed  Google Scholar 

  165. Haskins G, et al. Learning deep similarity metric for 3D MR–TRUS image registration. Int J Comput Assist Radiol Surg. 2019;14(3):417–25.

    PubMed  Google Scholar 

  166. Cao X, et al. Deformable image registration using a cue-aware deep regression network. IEEE Trans Biomed Eng. 2018;65(9):1900–11.

    PubMed  PubMed Central  Google Scholar 

  167. Shan S, et al. Unsupervised end-to-end learning for deformable medical image registration. arXiv preprint arXiv:1711.08608, 2017.

    Google Scholar 

  168. Kearney V, et al. An unsupervised convolutional neural network-based algorithm for deformable image registration. Phys Med Biol. 2018;63(18):185017.

    PubMed  Google Scholar 

  169. de Vos BD, et al. A deep learning framework for unsupervised affine and deformable image registration. Med Image Anal. 2019;52:128–43.

    PubMed  Google Scholar 

  170. Zheng J, et al. Pairwise domain adaptation module for CNN-based 2-D/3-D registration. J Med Imaging. 2018;5(2):021204.

    Google Scholar 

  171. Antoniol G, et al. Radiological reporting based on voice recognition. In: International conference on human-computer interaction. New York: Springer; 1993.

    Google Scholar 

  172. Liu Y, Wang J. PACS and digital medicine: essential principles and modern practice. Boca Raton: CRC Press; 2010.

    Google Scholar 

  173. Karpathy A, Fei-Fei L. Deep visual-semantic alignments for generating image descriptions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

    Google Scholar 

  174. Kisilev P, et al. Medical image description using multi-task-loss CNN. In: Deep learning and data labeling for medical applications. New York: Springer; 2016. p. 121–9.

    Google Scholar 

  175. Shin H-C, et al. Interleaved text/image deep mining on a very large-scale radiology database. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

    Google Scholar 

  176. Shin H-C, et al. Learning to read chest X-rays: recurrent neural cascade model for automated image annotation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

    Google Scholar 

  177. Wang X., et al. Unsupervised category discovery via looped deep pseudo-task optimization using a large scale radiology image database. arXiv preprint arXiv:1603.07965, 2016.

    Google Scholar 

  178. Jing B, Xie P, Xing E. On the automatic generation of medical imaging reports. arXiv preprint arXiv:1711.08195, 2017.

    Google Scholar 

  179. Li Y, et al. Hybrid retrieval-generation reinforced agent for medical image report generation. In: Advances in neural information processing systems. 2018.

    Google Scholar 

  180. Moradi M, et al. Bimodal network architectures for automatic generation of image annotation from text. In: International conference on medical image computing and computer-assisted intervention. New York: Springer; 2018.

    Google Scholar 

  181. Zhang Y, et al. Learning to summarize radiology findings. arXiv preprint arXiv:1809.04698, 2018.

    Google Scholar 

  182. Pons E, et al. Natural language processing in radiology: a systematic review. Radiology. 2016;279(2):329–43.

    PubMed  Google Scholar 

  183. Zech J, et al. Natural language–based machine learning models for the annotation of clinical radiology reports. Radiology. 2018;287(2):570–80.

    PubMed  Google Scholar 

  184. Goff DJ, Loehfelm TW. Automated radiology report summarization using an open-source natural language processing pipeline. J Digit Imaging. 2018;31(2):185–92.

    PubMed  Google Scholar 

  185. Folio LR, et al. Quantitative radiology reporting in oncology: survey of oncologists and radiologists. Am J Roentgenol. 2015;205(3):233–43.

    Google Scholar 

  186. Schlegl T, et al. Predicting semantic descriptions from medical images with convolutional neural networks. In: International conference on information processing in medical imaging. New York: Springer; 2015.

    Google Scholar 

  187. Lee YH. Efficiency improvement in a busy radiology practice: determination of musculoskeletal magnetic resonance imaging protocol using deep-learning convolutional neural networks. J Digit Imaging. 2018;31(5):604–10.

    PubMed  PubMed Central  Google Scholar 

  188. Annarumma M, et al. Automated triaging of adult chest radiographs with deep artificial neural networks. Radiology. 2019;291(1):196–202.

    PubMed  Google Scholar 

  189. Miotto R, et al. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep. 2016;6(1):1–10.

    Google Scholar 

  190. Lambin P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.

    PubMed  PubMed Central  Google Scholar 

  191. Aerts HJ. The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol. 2016;2(12):1636–42.

    PubMed  Google Scholar 

  192. Kumar V, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30(9):1234–48.

    PubMed  PubMed Central  Google Scholar 

  193. Coroller TP, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol. 2015;114(3):345–50.

    PubMed  PubMed Central  Google Scholar 

  194. Huynh E, et al. Associations of radiomic data extracted from static and respiratory-gated CT scans with disease recurrence in lung cancer patients treated with SBRT. PLoS One. 2017;12(1):e0169172.

    PubMed  PubMed Central  Google Scholar 

  195. Parmar C, et al. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5:13087.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josh Schaefferkoetter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schaefferkoetter, J. (2022). Evolution of AI in Medical Imaging. In: Veit-Haibach, P., Herrmann, K. (eds) Artificial Intelligence/Machine Learning in Nuclear Medicine and Hybrid Imaging. Springer, Cham. https://doi.org/10.1007/978-3-031-00119-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00119-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00118-5

  • Online ISBN: 978-3-031-00119-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics