Skip to main content

Quantum-Secure Aggregate One-time Signatures with Detecting Functionality

  • Conference paper
  • First Online:
Book cover Advanced Information Networking and Applications (AINA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 450))

Abstract

An aggregate signature (ASIG) scheme allows any user to compress multiple signatures into a short signature called an aggregate signature. While a conventional ASIG scheme cannot detect any invalid messages from an aggregate signature, an ASIG scheme with detecting functionality (D-ASIG) has an additional property which can identify invalid messages from aggregate signatures. Hence, D-ASIG is useful to reduce the total amount of signature-sizes on a channel. On the other hand, development of quantum computers has been advanced recently. However, all existing D-ASIG schemes are insecure against attacks using quantum algorithms, which we call quantum attacks. In this paper, we propose a D-ASIG scheme with quantum-security which means security in a quantum setting. Hence, we first introduce quantum-security notions of ASIGs and D-ASIGs because there is no research on such security notions for (D-)ASIGs. Second, we propose a lattice-based aggregate one-time signature scheme with detecting functionality, and prove that this scheme satisfies our quantum-security in the quantum random oracle model and the certified key model. Hence, this scheme is the first quantum-secure D-ASIG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3

    Chapter  MATH  Google Scholar 

  2. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_26

    Chapter  Google Scholar 

  3. Boneh, D., Kim, S.: One-time and interactive aggregate signatures from lattices (2020). https://crypto.stanford.edu/~skim13/agg_ots.pdf

  4. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_21

    Chapter  MATH  Google Scholar 

  5. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications, 2nd edn. Series on Applied Mathematics, vol. 12. World Scientific (2000)

    Google Scholar 

  6. Hartung, G., Kaidel, B., Koch, A., Koch, J., Rupp, A.: Fault-tolerant aggregate signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 331–356. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_13

    Chapter  Google Scholar 

  7. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_27

    Chapter  Google Scholar 

  8. Ishii, R., et al.: Aggregate signature with traceability of devices dynamically generating invalid signatures. In: Zhou, J., et al. (eds.) ACNS 2021. LNCS, vol. 12809, pp. 378–396. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81645-2_22

    Chapter  Google Scholar 

  9. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures, multisignatures, and verifiably encrypted signatures without random oracles. J. Cryptol. 26(2), 340–373 (2013)

    Article  MathSciNet  Google Scholar 

  10. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital signatures. J. Cryptol. 31(3), 774–797 (2018)

    Article  MathSciNet  Google Scholar 

  11. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge SNARKs from linear-size universal and updatable structured reference strings. In: ACM Conference on Computer and Communications Security, pp. 2111–2128. ACM (2019)

    Google Scholar 

  12. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

    Article  MathSciNet  Google Scholar 

  13. Rückert, M., Schröder, D.: Aggregate and verifiably encrypted signatures from multilinear maps without random oracles. In: Park, J.H., Chen, H.-H., Atiquzzaman, M., Lee, C., Kim, T., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 750–759. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02617-1_76

    Chapter  Google Scholar 

  14. Sato, S., Shikata, J., Matsumoto, T.: Aggregate signature with detecting functionality from group testing. IACR Cryptol. ePrint Arch., 1219 (2020)

    Google Scholar 

  15. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This research was conducted under a contract of “Research and development on new generation cryptography for secure wireless communication services” among “Research and Development for Expansion of Radio Wave Resources (JPJ000254)”, which was supported by the Ministry of Internal Affairs and Communications, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sato, S., Shikata, J. (2022). Quantum-Secure Aggregate One-time Signatures with Detecting Functionality. In: Barolli, L., Hussain, F., Enokido, T. (eds) Advanced Information Networking and Applications. AINA 2022. Lecture Notes in Networks and Systems, vol 450. Springer, Cham. https://doi.org/10.1007/978-3-030-99587-4_49

Download citation

Publish with us

Policies and ethics