Skip to main content

VINEVI: A Virtualized Network Vision Architecture for Smart Monitoring of Heterogeneous Applications and Infrastructures

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2022)

Abstract

Monitoring heterogeneous infrastructures and applications is essential to cope with user requirements properly, but it still lacks enhancements. The well-known state-of-the-art methods and tools do not support seamless monitoring of bare-metal, low-cost infrastructures, neither hosted nor virtualized services with fine-grained details. This work proposes VIrtualized NEtwork VIsion architecture (VINEVI), an intelligent method for seamless monitoring heterogeneous infrastructures and applications. The VINEVI architecture advances state of the art with a node-embedded traffic classification agent placing physical and virtualized infrastructures enabling real-time traffic classification. VINEVI combines this real-time traffic classification with well-known tools such as Prometheus and Victoria Metrics to monitor the entire stack from the hardware to the virtualized applications. Experimental results showcased that VINEVI architecture allowed seamless heterogeneous infrastructure monitoring with a higher level of detail beyond literature. Also, our node-embedded real-time Internet traffic classifier evolved with flexibility the methods with monitoring heterogeneous infrastructures seamlessly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh, M., Baranwal, G.: Quality of service (QoS) in internet of things. In: 2018 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU), pp. 1–6 (2018)

    Google Scholar 

  2. ETSI Mobile-edge Computing (MEC) Industry Initiative: Mobile Edge Computing-introductory Technical White paper. etsi2014mobile (2014)

    Google Scholar 

  3. Porambage, P., Okwuibe, J., Liyanage, M., Ylianttila, M., Taleb, T.: Survey on multi-access edge computing for internet of things realization. IEEE Commun. Surv. Tutor. 20(4), 2961–2991 (2018)

    Article  Google Scholar 

  4. Birje, M.N., Bulla, C.: Commercial and open source cloud monitoring tools: a review. In: Satapathy, S.C., Raju, K.S., Shyamala, K., Krishna, D.R., Favorskaya, M.N. (eds.) Advances in Decision Sciences, Image Processing, Security and Computer Vision. LAIS, vol. 3, pp. 480–490. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-24322-7_59

    Chapter  Google Scholar 

  5. D’Alconzo, A., Drago, I., Morichetta, A., Mellia, M., Casas, P.: A survey on big data for network traffic monitoring and analysis. IEEE Trans. Netw. Serv. Manag. 16(3), 800–813 (2019)

    Article  Google Scholar 

  6. Kontsek, M., Moravcik, M., Jurc, J., Sterbak, M.: Survey of the monitoring tools suitable for CC environment. In: 2020 18th International Conference on Emerging eLearning Technologies and Applications (ICETA), pp. 330–335 (2020)

    Google Scholar 

  7. Calzarossa, M.C., Massari, L., Tessera, D.: Performance Monitoring Guidelines, pp. 109–114. Association for Computing Machinery, New York (2021)

    Google Scholar 

  8. Popiolek, P.F., dos Santos Machado, K., Mendizabal, O.M.: Low overhead performance monitoring for shared infrastructures. Expert Syst. Appl. 171, 114558 (2021)

    Google Scholar 

  9. Dawson, D., Desmarais, R., Kienle, H.M., Müller, H.A.: Monitoring in adaptive systems using reflection. In: Proceedings of the 2008 International Workshop on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2008, pp. 81–88. Association for Computing Machinery, New York (2008)

    Google Scholar 

  10. Müller, C., et al.: Comprehensive explanation of SLA violations at runtime. IEEE Trans. Serv. Comput. 7(2), 168–183 (2014)

    Article  Google Scholar 

  11. Cedillo, P., Insfran, E., Abrahão, S., Vanderdonckt, J.: Empirical evaluation of a method for monitoring cloud services based on models at runtime. IEEE Access 9, 55898–55919 (2021)

    Article  Google Scholar 

  12. Taherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Stankovski, V.: Monitoring self-adaptive applications within edge computing frameworks: a state-of-the-art review. J. Syst. Softw. 136, 19–38 (2018)

    Article  Google Scholar 

  13. da Cunha, H.G.V.O., Moreira, R., de Oliveira Silva, F.: A comparative study between containerization and full-virtualization of virtualized everything functions in edge computing. In: Barolli, L., Woungang, I., Enokido, T. (eds.) AINA 2021. LNNS, vol. 226, pp. 771–782. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75075-6_63

    Chapter  Google Scholar 

  14. Kreutz, D., Ramos, F.M.V., Veríssimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)

    Article  Google Scholar 

  15. Tsai, P.-W., Tsai, C.-W., Hsu, C.-W., Yang, C.-S.: Network monitoring in software-defined networking: a review. IEEE Syst. J. 12(4), 3958–3969 (2018)

    Article  Google Scholar 

  16. Zhou, D., Yan, Z., Fu, Y., Yao, Z.: A survey on network data collection. J. Netw. Comput. Appl. 116, 9–23 (2018)

    Article  Google Scholar 

  17. Borylo, P., Davoli, G., Rzepka, M., Lason, A., Cerroni, W.: Unified and standalone monitoring module for NFV/SDN infrastructures. J. Netw. Comput. Appl. 175, 102934 (2021)

    Article  Google Scholar 

  18. Mfula, H., Ylä-Jääski, A., Nurminen, J.K.: Seamless kubernetes cluster management in multi-cloud and edge 5G applications. In: International Conference on High Performance Computing and Simulation (HPCS 2020) (2021)

    Google Scholar 

  19. Sukhija, N., et al.: Event management and monitoring framework for HPC environments using ServiceNow and Prometheus. In: Proceedings of the 12th International Conference on Management of Digital EcoSystems, MEDES 2020, pp. 149–156. Association for Computing Machinery, New York (2020)

    Google Scholar 

  20. Bali, A., Gherbi, A.: Rule based lightweight approach for resources monitoring on IoT edge devices. In: Proceedings of the 5th International Workshop on Container Technologies and Container Clouds, WOC 2019, pp. 43–48. Association for Computing Machinery, New York (2019)

    Google Scholar 

  21. Won, H., Kim, Y.: Performance analysis of machine learning based fault detection for cloud infrastructure. In: 2021 International Conference on Information Networking (ICOIN), pp. 877–880 (2021)

    Google Scholar 

  22. Moeyersons, J., Kerkhove, S., Wauters, T., De Turck, F., Volckaert, B.: Towards cloud-based unobtrusive monitoring in remote multi-vendor environments. Softw. Practice Exp. (2021)

    Google Scholar 

  23. Moreira, R., Rodrigues, L.F., Rosa, P.F., Aguiar, R.L., d. Oliveira Silva, F.: Packet vision: a convolutional neural network approach for network traffic classification. In: 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 256–263 (2020)

    Google Scholar 

  24. Sukhija, N., Bautista, E.: Towards a framework for monitoring and analyzing high performance computing environments using kubernetes and prometheus. In: 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 257–262 (2019)

    Google Scholar 

  25. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet: alexNet-level accuracy with 50x fewer parameters and \(<\)1 mb model size. CoRR, abs/1602.07360 (2016)

    Google Scholar 

  26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR, abs/1512.03385 (2015)

    Google Scholar 

  27. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetv2: inverted residuals and linear bottlenecks. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  28. Alippi, C., Disabato, S., Roveri, M.: Moving convolutional neural networks to embedded systems: the alexnet and VGG-16 case. In: 2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pp. 212–223 (2018)

    Google Scholar 

  29. Carela-Español, V., Bujlow, T., Barlet-Ros, P.: Is our ground-truth for traffic classification reliable? In: Faloutsos, M., Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol. 8362, pp. 98–108. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04918-2_10

    Chapter  Google Scholar 

  30. Draper-Gil, G., Lashkari, A.H., Mamun, M.S.I., Ghorbani, A.A.: Characterization of encrypted and VPN traffic using time-related features. In: Proceedings of the 2nd International Conference on Information Systems Security and Privacy - Volume 1: ICISSP, pp. 407–414. INSTICC, SciTePress (2016)

    Google Scholar 

  31. Miettinen, M., Marchal, S., Hafeez, I., Asokan, N., Sadeghi, A.-R., Tarkoma, S.: IoT sentinel: automated device-type identification for security enforcement in IoT. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 2177–2184 (2017)

    Google Scholar 

  32. Moreira, R., Rosa, P.F., Aguiar, R.L.A., de Oliveira Silva, F., Nasor: a network slicing approach for multiple autonomous systems. Comput. Commun. 179, 131–144 (2021)

    Google Scholar 

  33. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  34. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV), September 2018

    Google Scholar 

  35. Dundar, A., Jin, J., Martini, B., Culurciello, E.: Embedded streaming deep neural networks accelerator with applications. IEEE Trans. Neural Netw. Learn. Syst. 28(7), 1572–1583 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. And we would like to thank National Education and Research Network (RNP) for financial support under the CT-Mon call.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Moreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moreira, R., da Cunha, H.G.V.O., Moreira, L.F.R., Silva, F.d.O. (2022). VINEVI: A Virtualized Network Vision Architecture for Smart Monitoring of Heterogeneous Applications and Infrastructures. In: Barolli, L., Hussain, F., Enokido, T. (eds) Advanced Information Networking and Applications. AINA 2022. Lecture Notes in Networks and Systems, vol 449. Springer, Cham. https://doi.org/10.1007/978-3-030-99584-3_46

Download citation

Publish with us

Policies and ethics