Skip to main content

Characterization Methods for Supercapacitors

  • Chapter
  • First Online:
Nanostructured Materials for Supercapacitors

Part of the book series: Advances in Material Research and Technology ((AMRT))

Abstract

High-performance qualification of supercapacitors is most often a consequence of favorable interactions in the electrode surface chemistry, electrode structural properties, and electrode/electrolyte interface. Supercapacitor performance can therefore be investigated by electrochemical characterization techniques which can individually access these interactions and factors contributing to its electrochemical performance, most commonly by using galvanostatic charge and discharge or cyclic voltammetry procedures. Different characterization techniques are discussed in this chapter, expatiating on the charge storage mechanism, electrode/electrolyte interactions, and accelerated aging procedures comparing long-term performance in addition to failure mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Lu, Supercapacitors, Materials, Systems, and Applications (Wiley, 2013)

    Google Scholar 

  2. M.D. Stoller, R.S. Ruoff, Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 3(9), 1294–1301 (2010)

    Article  CAS  Google Scholar 

  3. V. Khomenko, E. Frackowiak, F. Beguin, Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim. Acta 50(12), 2499–2506 (2005)

    Article  CAS  Google Scholar 

  4. K.-C. Tsay, L. Zhang, J. Zhang, Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochim. Acta 60, 428–436 (2012)

    Article  CAS  Google Scholar 

  5. K. Kierzek, J. Machnikowski, Factors influencing cycle-life of full Li-ion cell built from Si/C composite as anode and conventional cathodic material. Electrochim. Acta 192, 475–481 (2016)

    Article  CAS  Google Scholar 

  6. S. Dsoke, B. Fuchs, E. Gucciardi, M. Wohlfahrt-Mehrens, The importance of the electrode mass ratio in a Li-ion capacitor based on activated carbon and Li4Ti5O12. J. Power Sources 282, 385–393 (2015)

    Article  CAS  Google Scholar 

  7. D. Weingarth, H. Noh, A. Foelske-Schmitz, A. Wokaun, R. Kötz, A reliable determination method of stability limits for electrochemical double layer capacitors. Electrochim. Acta 103, 119–124 (2013)

    Article  CAS  Google Scholar 

  8. L.L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009)

    Article  CAS  Google Scholar 

  9. M.G. Say, R. Brooke, J. Edberg, A. Grimoldi, D. Belaineh, I. Engquist, M. Berggren, Spray-coated paper supercapacitors. npj Flex. Electron. 4(1), 1–7 (2020)

    Google Scholar 

  10. Z. Li, S. Gadipelli, H. Li, C.A. Howard, D.J. Brett, P.R. Shearing, Z. Guo, I.P. Parkin, F. Li, Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy 5(2), 160–168 (2020)

    Article  CAS  Google Scholar 

  11. D. Weingarth, A. Foelske-Schmitz, R. Kötz, Cycle versus voltage hold–Which is the better stability test for electrochemical double layer capacitors? J. Power Sources 225, 84–88 (2013)

    Article  CAS  Google Scholar 

  12. A. Bello, F. Barzegar, M. Madito, D.Y. Momodu, A.A. Khaleed, T. Masikhwa, J.K. Dangbegnon, N. Manyala, Stability studies of polypyrole-derived carbon based symmetric supercapacitor via potentiostatic floating test. Electrochim. Acta 213, 107–114 (2016)

    Article  CAS  Google Scholar 

  13. B.-A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, Physical interpretations of Nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C 122(1), 194–206 (2018)

    Article  CAS  Google Scholar 

  14. A.C. Forse, J.M. Griffin, C. Merlet, P.M. Bayley, H. Wang, P. Simon, C.P. Grey, NMR study of ion dynamics and charge storage in ionic liquid supercapacitors. J. Am. Chem. Soc. 137(22), 7231–7242 (2015)

    Article  CAS  Google Scholar 

  15. H. Wang, A.C. Forse, J.M. Griffin, N.M. Trease, L. Trognko, P.-L. Taberna, P. Simon, C.P. Grey, In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism. J. Am. Chem. Soc. 135(50), 18968–18980 (2013)

    Article  CAS  Google Scholar 

  16. S.-I. Lee, K. Saito, K. Kanehashi, M. Hatakeyama, S. Mitani, S.-H. Yoon, Y. Korai, I. Mochida, 11B NMR study of the BF4-anion in activated carbons at various stages of charge of EDLCs in organic electrolyte. Carbon 44(12), 2578–2586 (2006)

    Article  CAS  Google Scholar 

  17. P. Azaïs, L. Duclaux, P. Florian, D. Massiot, M.-A. Lillo-Rodenas, A. Linares-Solano, J.-P. Peres, C. Jehoulet, F. Béguin, Causes of supercapacitors ageing in organic electrolyte. J. Power Sources 171(2), 1046–1053 (2007)

    Article  Google Scholar 

  18. M.D. Levi, N. Shpigel, S. Sigalov, V. Dargel, L. Daikhin, D. Aurbach, In situ porous structure characterization of electrodes for energy storage and conversion by EQCM-D: a review. Electrochim. Acta 232, 271–284 (2017)

    Article  CAS  Google Scholar 

  19. M.D. Levi, N. Levy, S. Sigalov, G. Salitra, D. Aurbach, J. Maier, Electrochemical quartz crystal microbalance (EQCM) studies of ions and solvents insertion into highly porous activated carbons. J. Am. Chem. Soc. 132(38), 13220–13222 (2010)

    Article  CAS  Google Scholar 

  20. N. Shpigel, M.D. Levi, S. Sigalov, L. Daikhin, D. Aurbach, In situ real-time mechanical and morphological characterization of electrodes for electrochemical energy storage and conversion by electrochemical quartz crystal microbalance with dissipation monitoring. Acc. Chem. Res. 51(1), 69–79 (2018)

    Article  CAS  Google Scholar 

  21. M. Morcrette, Y. Chabre, G. Vaughan, G. Amatucci, J.-B. Leriche, S. Patoux, C. Masquelier, J. Tarascon, In situ X-ray diffraction techniques as a powerful tool to study battery electrode materials. Electrochim. Acta 47(19), 3137–3149 (2002)

    Article  CAS  Google Scholar 

  22. H. Wang, M. Yoshio, Graphite, a suitable positive electrode material for high-energy electrochemical capacitors. Electrochem. Commun. 8(9), 1481–1486 (2006)

    Article  CAS  Google Scholar 

  23. S.-L. Kuo, N.-L. Wu, Electrochemical characterization on MnFe2O4/carbon black composite aqueous supercapacitors. J. Power Sources 162(2), 1437–1443 (2006)

    Article  CAS  Google Scholar 

  24. S. Zhao, C. Chen, X. Zhao, X. Chu, F. Du, G. Chen, Y. Gogotsi, Y. Gao, Y. Dall’Agnese, Flexible Nb4C3Tx film with large interlayer spacing for high-performance supercapacitors. Adv. Func. Mater. 30(47), 2000815 (2020)

    Article  CAS  Google Scholar 

  25. O. Ghodbane, F. Ataherian, N.-L. Wu, F. Favier, In situ crystallographic investigations of charge storage mechanisms in MnO2-based electrochemical capacitors. J. Power Sources 206, 454–462 (2012)

    Article  CAS  Google Scholar 

  26. W. Zhu, D. Liu, A. Paolella, C. Gagnon, V. Gariepy, A. Vijh, K. Zaghib, Application of operando X-ray diffraction and Raman spectroscopies in elucidating the behavior of cathode in lithium-ion batteries. Front. Energy Res. 6, 66 (2018)

    Article  CAS  Google Scholar 

  27. Y. Guan, M. Zhang, J. Qin, X. Guo, Z. Li, B. Zhang, J. Tang, Morphological evolutions of Ti3C2Tx nanosheets and Fe3O4/Ti3C2Tx nanocomposites under potential cycling investigated using in situ electrochemical atomic force microscopy. J. Phys. Chem. C (2021)

    Google Scholar 

  28. X. Tao, J. Du, Y. Sun, S. Zhou, Y. Xia, H. Huang, Y. Gan, W. Zhang, X. Li, Exploring the energy storage mechanism of high performance MnO2 electrochemical capacitor electrodes: an in situ atomic force microscopy study in aqueous electrolyte. Adv. Func. Mater. 23(37), 4745–4751 (2013)

    CAS  Google Scholar 

  29. Z. Dong, H. Xu, F. Liang, C. Luo, C. Wang, Z.-Y. Cao, X.-J. Chen, J. Zhang, X. Wu, Raman characterization on two-dimensional materials-based thermoelectricity. Molecules 24(1), 88 (2019)

    Article  Google Scholar 

  30. D.I. Abouelamaiem, M.J. Mostazo-López, G. He, D. Patel, T.P. Neville, I.P. Parkin, D. Lozano-Castelló, E. Morallón, D. Cazorla-Amorós, A.B. Jorge, New insights into the electrochemical behaviour of porous carbon electrodes for supercapacitors. J. Energy Storage 19, 337–347 (2018)

    Article  Google Scholar 

  31. T. Tague Jr, In-situ FT-IR Spectroelectrochemistry: Experimental Setup for the Investigation of Solutes and Electrode Surfaces (Advanstar Communications INC 131 W 1ST Street, Duluth, MN 55802 USA, 2015)

    Google Scholar 

  32. F.W. Richey, B. Dyatkin, Y. Gogotsi, Y.A. Elabd, Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry. J. Am. Chem. Soc. 135(34), 12818–12826 (2013)

    Article  CAS  Google Scholar 

  33. J.-T. Li, Z.-Y. Zhou, I. Broadwell, S.-G. Sun, In-situ infrared spectroscopic studies of electrochemical energy conversion and storage. Acc. Chem. Res. 45(4), 485–494 (2012)

    Article  CAS  Google Scholar 

  34. J.K. Foley, S. Pons, In situ infrared spectroelectrochemistry. Anal. Chem. 57(8), 945A-956A (1985)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengliu Lou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eleri, O.E., Lou, F., Yu, Z. (2022). Characterization Methods for Supercapacitors. In: Thomas, S., Gueye, A.B., Gupta, R.K. (eds) Nanostructured Materials for Supercapacitors. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-99302-3_5

Download citation

Publish with us

Policies and ethics