Skip to main content

The Management of Idiopathic and Refractory Syringomyelia

  • Chapter
  • First Online:
Advances and Technical Standards in Neurosurgery

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 45))

Abstract

Idiopathic syringomyelia (IS) and refractory syringomyelia (RS) are types of syringomyelia that often pose a management challenge and are associated with long-term clinical sequela. They are usually an epiphenomenon reflecting an underlying pathology where the treatment of the primary cause should be the aim for any surgical intervention. In the case of IS, the initial step is agreeing on the definition of the terms idiopathic and syringomyelia. After a rigorous exhaustive clinic-radiological workup, only IS patients with progressive neurology are treated, usually unblocking subarachnoid cerebrospinal fluid (CSF) pathway obstruction somewhere in the thoracic spinal canal and reserving shunting techniques to nonresponsive cases. Similar to IS, also RS is multifactorial, and its management varies based on the initial pathology, strongly supported by radiological and clinical features. We aim to address this topic focusing on the etiopathology, investigation paradigm, and surgical pathway, formulating algorithms of management with available evidence in literature. Surgical techniques are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Confucius C, Lin Y, Sima Q, Gu H, Wong J. The wisdom of Confucius. Book 13. New York: Illustrated Modern Library; 1943.

    Google Scholar 

  2. Aghakhani N, Baussart B, David P, Lacroix C, Benoudiba F, Tadie M, Parker F. Surgical treatment of posttraumatic syringomyelia. Neurosurgery. 2010;66(6):1120–7; discussion 1127. https://doi.org/10.1227/01.NEU.0000369609.30695.AB.

    Article  PubMed  Google Scholar 

  3. Ajit AK, Bhalla T. Posttraumatic and idiopathic syringomyelia. Benzel’s spine surgery ebook: techniques, complication avoidance and management. Amsterdam: Elsevier; 2016. p. 1572–4.

    Google Scholar 

  4. Brodbelt AR, Stoodley MA. Post-traumatic syringomyelia: a review. J Clin Neurosci. 2003;10(4):401–8. https://doi.org/10.1016/s0967-5868(02)00326-0.

    Article  CAS  PubMed  Google Scholar 

  5. Greitz D. Unraveling the riddle of syringomyelia. Neurosurg Rev. 2006;29(4):251–63; discussion 264; Epub 2006 May 31. https://doi.org/10.1007/s10143-006-0029-5.

    Article  PubMed  Google Scholar 

  6. Iskandar BJ, Oakes WJ, McLaughlin C, Osumi AK, Tien RD. Terminal syringohydromyelia and occult spinal dysraphism. J Neurosurg. 1994;81(4):513–9. https://doi.org/10.3171/jns.1994.81.4.0513.

    Article  CAS  PubMed  Google Scholar 

  7. Klekamp J. How should syringomyelia be defined and diagnosed? World Neurosurg. 2018;111:e729–45. Epub 2018 Jan 6. https://doi.org/10.1016/j.wneu.2017.12.156.

    Article  PubMed  Google Scholar 

  8. Klekamp J. Treatment of syringomyelia related to nontraumatic arachnoid pathologies of the spinal canal. Neurosurgery. 2013;72(3):376–89; discussion 389. https://doi.org/10.1227/NEU.0b013e31827fcc8f.

    Article  PubMed  Google Scholar 

  9. Klekamp J. Syringomyelia 2017. Book chapter. Syringomyelia—diagnosis and treatment. Heidelberg: Springer; 2001.

    Google Scholar 

  10. Kyoshima K, Kuroyanagi T, Oya F, Kamijo Y, El-Noamany H, Kobayashi S. Syringomyelia without hindbrain herniation: tight cisterna magna. Report of four cases and a review of the literature. Neurosurgery. 2002;96:239–49.

    Google Scholar 

  11. Lu VM, Phan K, Crowley SP, Daniels DJ. The addition of duraplasty to posterior fossa decompression in the surgical treatment of pediatric Chiari malformation type I: a systematic review and meta-analysis of surgical and performance outcomes (Erratum in: J Neurosurg Pediatr. 2018 Feb;21(2):197). J Neurosurg Pediatr. 2017;20(5):439–49. https://doi.org/10.3171/2017.6.PEDS16367.

    Article  PubMed  Google Scholar 

  12. Roy AK, Slimack NP, Ganju A. Idiopathic syringomyelia: retrospective case series, comprehensive review, and update on management. Neurosurg Focus. 2011;31(6):E15. https://doi.org/10.3171/2011.9.FOCUS11198.

    Article  PubMed  Google Scholar 

  13. Sacco D, Scott RM. Reoperation for Chiari malformations. Pediatr Neurosurg. 2003;39(4):171–8. https://doi.org/10.1159/000072467.

    Article  PubMed  Google Scholar 

  14. Sgouros S. Chapter 28: Syringomyelia principles of neurological surgery. 3rd ed. Amsterdam: Elsevier; 2015. https://doi.org/10.1016/B978-1-4377-0701-4.00028-2.

    Book  Google Scholar 

  15. Shetty J, Kandasamy J, Sokol D, Gallo P. Clinical deterioration despite syringomyelia resolution after successful foramen magnum decompression for Chiari malformation: case series. Eur J Paediatr Neurol. 2019;23(2):333–7. https://doi.org/10.1016/j.ejpn.2019.01.003.

    Article  CAS  PubMed  Google Scholar 

  16. Tosi U, Lara-Reyna J, Chae J, Sepanj R, Souweidane MM, Greenfield JP. Persistent syringomyelia after posterior fossa decompression for Chiari malformation. World Neurosurg. 2020;136:454–61. https://doi.org/10.1016/j.wneu.2020.01.148.

    Article  PubMed  Google Scholar 

  17. Tsitouras V, Sgouros S. Syringomyelia and tethered cord in children. Childs Nerv Syst. 2013;29(9):1625–34. https://doi.org/10.1007/s00381-013-2180-y.

    Article  PubMed  Google Scholar 

  18. Tubbs RS, Elton S, Grabb P, Dockery SE, Bartolucci AA, Oakes WJ. Analysis of the posterior fossa in children with the Chiari 0 malformation. Neurosurgery. 2001;48(5):1050–4; discussion 1054-5. https://doi.org/10.1097/00006123-200105000-00016.

    Article  CAS  PubMed  Google Scholar 

  19. Tubbs RS, Webb DB, Oakes WJ. Persistent syringomyelia following pediatric Chiari I decompression: radiological and surgical findings. J Neurosurg. 2004;100(5 Suppl Pediatrics):460–4. https://doi.org/10.3171/ped.2004.100.5.0460.

    Article  PubMed  Google Scholar 

  20. Struck AF, Haughton VM. Idiopathic syringomyelia: phase-contrast MR of cerebrospinal fluid flow dynamics at level of foramen magnum. Radiology. 2009;253(1):184–90. https://doi.org/10.1148/radiol.2531082135.

    Article  PubMed  Google Scholar 

  21. Mauer UM, Freude G, Danz B, Kunz U. Cardiac-gated phase-contrast magnetic resonance imaging of cerebrospinal fluid flow in the diagnosis of idiopathic syringomyelia. Neurosurgery. 2008;63(6):1139–44; discussion 1144. https://doi.org/10.1227/01.NEU.0000334411.93870.45.

    Article  PubMed  Google Scholar 

  22. Rodriguez A, Kuhn EN, Somasundaram A, Couture DE. Management of idiopathic pediatric syringohydromyelia. J Neurosurg Pediatr. 2015;16(4):452–7. https://doi.org/10.3171/2015.3.PEDS14433.

    Article  PubMed  Google Scholar 

  23. Soleman J, Roth J, Bartoli A, Rosenthal D, Korn A, Constantini S. Syringo-subarachnoid shunt for the treatment of persistent syringomyelia following decompression for Chiari type I malformation: surgical results. World Neurosurg. 2017;108:836–43. https://doi.org/10.1016/j.wneu.2017.08.002.

    Article  PubMed  Google Scholar 

  24. Soleman J, Roth J, Constantini S. Direct syrinx drainage in patients with Chiari I malformation. Childs Nerv Syst. 2019;35(10):1863–8. https://doi.org/10.1007/s00381-019-04228-7.

    Article  PubMed  Google Scholar 

  25. Holly LT, Batzdorf U. Slitlike syrinx cavities: a persistent central canal. J Neurosurg. 2002;97(2 Suppl):161–5. https://doi.org/10.3171/spi.2002.97.2.0161.

    Article  PubMed  Google Scholar 

  26. Roser F, Ebner FH, Sixt C, Hagen JM, Tatagiba MS. Defining the line between hydromyelia and syringomyelia. A differentiation is possible based on electrophysiological and magnetic resonance imaging studies. Acta Neurochir. 2010;152(2):213–9; discussion 219; Epub 2009 Jun 16. https://doi.org/10.1007/s00701-009-0427-x.

    Article  PubMed  Google Scholar 

  27. Batzdorf U. Primary spinal syringomyelia. Invited submission from the joint section meeting on disorders of the spine and peripheral nerves. J Neurosurg Spine. 2005;3:429–35.

    Article  Google Scholar 

  28. Magge SN, Smyth MD, Governale LS, Goumnerova L, Madsen J, Munro B, Nalbach SV, Proctor MR, Scott RM, Smith ER. Idiopathic syrinx in the pediatric population: a combined center experience. J Neurosurg Pediatr. 2011;7(1):30–6. https://doi.org/10.3171/2010.10.PEDS1057.

    Article  PubMed  Google Scholar 

  29. Klekamp J, Batzdorf U, Samii M, Bothe HW. Treatment of syringomyelia associated with arachnoid scarring caused by arachnoiditis or trauma. J Neurosurg. 1997;86(2):233–40. https://doi.org/10.3171/jns.1997.86.2.0233.

    Article  CAS  PubMed  Google Scholar 

  30. Klekamp J, Samii M. Syringomyelia—diagnosis and treatment. Heidelberg: Springer; 2001. ISBN 978-3-642-56023-1.

    Google Scholar 

  31. Ng S, Aghakhani N, Bauchet L. Clinical image of a spinal ependymoma discovered 8 years after initial misdiagnosis as an idiopathic syringomyelia. World Neurosurg. 2021;145:338–9. https://doi.org/10.1016/j.wneu.2020.09.162.

    Article  PubMed  Google Scholar 

  32. Fu KM, Smith JS, Polly DW, Ames CP, Berven SH, Perra JH, Glassman SD, McCarthy RE, Knapp DR, Shaffrey CI, Scoliosis Research Society Morbidity and Mortality Committee. Morbidity and mortality associated with spinal surgery in children: a review of the Scoliosis Research Society morbidity and mortality database. J Neurosurg Pediatr. 2011;7(1):37–41. https://doi.org/10.3171/2010.10.PEDS10212.

    Article  PubMed  Google Scholar 

  33. Schmidek HH, Sweet WH, editors. Operative neurosurgical techniques. 1st ed. New York: Grune and Stratton; 1982. p. 1317.

    Google Scholar 

  34. Williams B. Syringomyelia. Neurosurg Clin N Am. 1990;1(3):653–85.

    Article  CAS  Google Scholar 

  35. Aoki N, Oikawa A, Sakai T. Spontaneous regeneration of the foramen magnum after decompressive suboccipital craniectomy in Chiari malformation: case report. Neurosurgery. 1995;37:340–2.

    Article  CAS  Google Scholar 

  36. Attenello FJ, McGirt MJ, Gathinji M, Datoo G, Atiba A, Weingart J, Carson B, Jallo GI. Outcome of Chiari-associated syringomyelia after hindbrain decompression in children: analysis of 49 consecutive cases. Neurosurgery. 2008;62(6):1307–13; discussion 1313. https://doi.org/10.1227/01.neu.0000333302.72307.3b.

    Article  PubMed  Google Scholar 

  37. Schuster JM, Zhang F, Norvell DC, Hermsmeyer JT. Persistent/recurrent syringomyelia after Chiari decompression-natural history and management strategies: a systematic review. Evid Based Spine Care J. 2013;4(2):116–25. https://doi.org/10.1055/s-0033-1357362.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gallo P, Copley PC, McAllister S, Kaliaperumal C. The impact of neurosurgical technique on the short- and long-term outcomes of adult patients with Chiari I malformation. Clin Neurol Neurosurg. 2021;200:106380. Epub 2020 Nov 28. https://doi.org/10.1016/j.clineuro.2020.106380.

    Article  PubMed  Google Scholar 

  39. Gallo P, Sokol D, Kaliaperumal C, Kandasamy J. Comparison of three different cranio-cervical decompression procedures in children with Chiari malformation type I: does the surgical technique matter? Pediatr Neurosurg. 2017;52(5):289–97. https://doi.org/10.1159/000479327.

    Article  PubMed  Google Scholar 

  40. Gil Z, Rao S, Constantini S. Expansion of Chiari I-associated syringomyelia after posterior-fossa decompression. Childs Nerv Syst. 2000;16(9):555–8. https://doi.org/10.1007/s003810000329.

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki M, Davis C, Symon L, Gentili F. Syringoperitoneal shunt for treatment of cord cavitation. J Neurol Neurosurg Psychiatry. 1985;48(7):620–7. https://doi.org/10.1136/jnnp.48.7.620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Williams B, Page N. Surgical treatment of syringomyelia with syringopleural shunting. Br J Neurosurg. 1987;1(1):63–80. https://doi.org/10.3109/02688698709034342.

    Article  CAS  PubMed  Google Scholar 

  43. Soleman J, Bartoli A, Korn A, Constantini S, Roth J. Treatment failure of syringomyelia associated with Chiari I malformation following foramen magnum decompression: how should we proceed? Neurosurg Rev. 2019;42(3):705–14. https://doi.org/10.1007/s10143-018-01066-0. Epub 2018 Dec 15

    Article  PubMed  Google Scholar 

  44. Jian FZ, Chen Z, Wrede KH, Samii M, Ling F. Direct posterior reduction and fixation for the treatment of basilar invagination with atlantoaxial dislocation. Neurosurgery. 2010;66(4):678–87; discussion 687. https://doi.org/10.1227/01.NEU.0000367632.45384.5A.

    Article  PubMed  Google Scholar 

  45. Joaquim AF, Osorio JA, Riew KD. Transoral and endoscopic endonasal odontoidectomies—surgical techniques, indications, and complications. Neurospine. 2019;16(3):462–9. https://doi.org/10.14245/ns.1938248.124.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kim LJ, Rekate HL, Klopfenstein JD, Sonntag VK. Treatment of basilar invagination associated with Chiari I malformations in the pediatric population: cervical reduction and posterior occipitocervical fusion. J Neurosurg. 2004;101(2 Suppl):189–95. https://doi.org/10.3171/ped.2004.101.2.0189.

    Article  PubMed  Google Scholar 

  47. Goel A, Bhatjiwale M, Desai K. Basilar invagination: a study based on 190 surgically treated patients. J Neurosurg. 1998;88(6):962–8. https://doi.org/10.3171/jns.1998.88.6.0962.

    Article  CAS  PubMed  Google Scholar 

  48. Goel A. Treatment of basilar invagination by atlantoaxial joint distraction and direct lateral mass fixation. J Neurosurg Spine. 2004;1(3):281–6. https://doi.org/10.3171/spi.2004.1.3.0281.

    Article  PubMed  Google Scholar 

  49. Ikenouchi J, Uwabe C, Nakatsu T, Hirose M, Shiota K. Embryonic hydromyelia: cystic dilatation of the lumbosacral neural tube in human embryos. Acta Neuropathol. 2002;103(3):248–54. https://doi.org/10.1007/s00401-001-0465-9.

    Article  PubMed  Google Scholar 

  50. Lee JY, Kim KH, Wang KC. Syringomyelia in the tethered spinal cords. J Korean Neurosurg Soc. 2020;63(3):338–41. https://doi.org/10.3340/jkns.2020.0097.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kashlan ON, Wilkinson DA, Morgenstern H, Khalsa SS, Maher CO. Predictors of surgical treatment in children with tethered fibrofatty filum terminale. J Neurosurg Pediatr. 2019;1:1–8. https://doi.org/10.3171/2019.8.PEDS19292.

    Article  Google Scholar 

  52. Beaumont A, Muszynski CA, Kaufman BA. Clinical significance of terminal syringomyelia in association with pediatric tethered cord syndrome. Pediatr Neurosurg. 2007;43(3):216–21. https://doi.org/10.1159/000098834.

    Article  PubMed  Google Scholar 

  53. Bruzek AK, Starr J, Garton HJL, Muraszko KM, Maher CO, Strahle JM. Syringomyelia in children with closed spinal dysraphism: long-term outcomes after surgical intervention. J Neurosurg Pediatr. 2019;13:1–7. https://doi.org/10.3171/2019.9.PEDS1944.

    Article  Google Scholar 

  54. Pencovich N, Korn A, Constantini S. Intraoperative neurophysiologic monitoring during syringomyelia surgery: lessons from a series of 13 patients. Acta Neurochir. 2013;155:785–91. https://doi.org/10.1007/s00701-013-1648-6.

    Article  PubMed  Google Scholar 

  55. Barnett, H.J.M. (1973) Syringomyelia and tumours of the nervous system. In: Bamett, H.J.M., Foster, J.B. and Hudgson, P. (Eds.), Syringomyelia, Saunders, London, pp. 245L12-245301.

    Google Scholar 

  56. Nishiura I, et al. An extramedullary spinal cord tumor associated with syringomyelia: a case report. No Shinkei Geka. 1989;17(2):181–5.

    CAS  PubMed  Google Scholar 

  57. Poser CM. The relationship between syringomyelia and neoplasm. Springfield: Charles C Thomas; 1956.

    Google Scholar 

  58. Simon T. Beitrtige zur pathologie und pathologischen anatomie des zentralnervensystems. Arch Psychiat. 1875;5:108.

    Article  Google Scholar 

  59. Lohle PN, Wurzer HA, Hoogland PH, Seelen PJ, Go KG. The pathogenesis of syringomyelia in spinal cord ependymoma. Clin Neurol Neurosurg. 1994;96(4):323–6. https://doi.org/10.1016/0303-8467(94)90123-6.

    Article  CAS  PubMed  Google Scholar 

  60. Slooff JL, Kemohan J, MacCarthy CS. Primary intramedullary tumors of the spinal cord and filum terminale. Philadelphia: W. B. Saunders; 1964.

    Google Scholar 

  61. Yuan C, Guan J, Du Y, Zhang C, Ma L, Yao Q, Cheng L, Liu Z, Wang K, Duan W, Wang X, Wu H, Chen Z, Jian F. Repeat craniocervical decompression in patients with a persistent or worsening syrinx: a preliminary report and early results. World Neurosurg. 2020;138:e95–e105. https://doi.org/10.1016/j.wneu.2020.02.015.

    Article  PubMed  Google Scholar 

  62. McGirt MJ, Garces-Ambrossi GL, Parker S, Liauw J, Bydon M, Jallo GI, et al. Primary and revision suboccipital decompression for adult Chiari I malformation: analysis of long-term outcomes in 393 patients. Neurosurgery. 2009;65:924.

    Google Scholar 

  63. Soleman J, Roth J, Constantini S. Syringo-subarachnoid shunt: how I do it. Acta Neurochir. 2019;161:367–70. https://doi.org/10.1007/s00701-019-03810-x.

    Article  PubMed  Google Scholar 

  64. Fan T, Zhao X, Zhao H, Liang C, Wang Y, Gai Q, Zhang F. Treatment of selected syringomyelias with syringo-pleural shunt: the experience with a consecutive 26 cases. Clin Neurol Neurosurg. 2015;137:50–6. https://doi.org/10.1016/j.clineuro.2015.06.012.

    Article  PubMed  Google Scholar 

  65. Cacciola F, Capozza M, Perrini P, Benedetto N, Di Lorenzo N. Syringopleural shunt as a rescue procedure in patients with syringomyelia refractory to restoration of cerebrospinal fluid flow. Neurosurgery. 2009;65(3):471–6; discussion 476. https://doi.org/10.1227/01.NEU.0000350871.47574.DE.

    Article  PubMed  Google Scholar 

  66. McComb JG. Techniques for CSF diversion. In: Scott RM, editor. Hydrocephalus. Baltimore: Williams and Wilkins; 1990. p. 47–65.

    Google Scholar 

  67. Barbaro NM, Wilson CB, Gutin PH, Edwards MS. Surgical treatment of syringomyelia. Favorable results with syringoperitoneal shunting. J Neurosurg. 1984;61(3):531–8. https://doi.org/10.3171/jns.1984.61.3.0531.

    Article  CAS  PubMed  Google Scholar 

  68. Prince A, Mullin JP, Benzel EC. Syringomyelia. In: van de Kelft E, editor. Surgery of the spine and spinal cord. Cham: Springer; 2016. https://doi.org/10.1007/978-3-319-27613-7_13.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Gallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gallo, P., Kaliaperumal, C. (2022). The Management of Idiopathic and Refractory Syringomyelia. In: Di Rocco, C. (eds) Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-030-99166-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99166-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99165-4

  • Online ISBN: 978-3-030-99166-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics