Skip to main content

Review on Simulation and Optimization of Vehicle Ride Comfort Based on Suspension Model

  • Conference paper
  • First Online:
Proceedings of IncoME-VI and TEPEN 2021

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 117))

  • 1524 Accesses

Abstract

At present, commercial software of the multi-body dynamics is widely used in the research of vehicle ride comfort simulation and optimization. This paper reviews some literatures on vehicle ride comfort optimization based on ADAMS, and focuses on the research based on suspension models. The suspension rigid-flexible coupling models and the simulation research about optimizing suspension model parameters to achieve multi-objective optimization are the main areas of concern. Finally, the paper is summarized and the future trend of ADAMS applied to the simulation and optimization of vehicle ride comfort is prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, Z.: Automotive Theory, 6th edn. Machinery Industry Press, Beijing, China (2009)

    Google Scholar 

  2. Yang, R., Yuan, Z., Huang, X., et al.: Collaborative optimization of vehicle handling stability and ride comfort. Automotive Eng. 31(11), 1053–1055+1059 (2009)

    Google Scholar 

  3. Yang, X., Chen, R.: History and development of vehicle ride comfort simulation modeling. J. Nanjing Instit. Technol. (Nat. Sci. Ed.) 5(3), 66–70 (2007)

    Google Scholar 

  4. Yi, F., Zhou, C.: Vehicle ride comfort simulation under pulse road surface based on multi-body dynamics. Appl. Mech. Mater. 1151(97), 1341–1344 (2011)

    Article  Google Scholar 

  5. Xiong, J., Huang, J., Liao, Q.: Research and implementation of vibration based on analysis of vehicle ride comfort. Appl. Mech. Mater. 1918(378), 281–284 (2012)

    Article  Google Scholar 

  6. LI, C., Zhang, W., Pan, X., et al.: Modeling and simulation analysis of vehicle ride comfort based on ADAMS. J. Zhengzhou Univer. (Eng. Sci.) 31(5), 99–102 (2010)

    Google Scholar 

  7. Lin, Y., Ma, T., Yao, W., et al.: Review on vehicle VNH characteristics. Automot. Eng. 24(3), 177–186 (2002)

    Google Scholar 

  8. Wang, G., Zhang, J., Ma, R., et al.: Virtual Prototyping Technology and its Practice. Northwestern Polytechnical University Press, Xi ’an, China (2002)

    Google Scholar 

  9. Wang, L., Wei, P., Liang, Y.: Parameter optimization design of double-wishbone front suspension based on ADAMS. Noise Vib. Control 39(4), 120–124 (2019)

    Google Scholar 

  10. Zhang, Y., Sun, L.: Study on control technology of active suspension based on ADAMS and MATLAB. Appl. Mech. Mater. 3365(602–605), 1372–1377 (2014)

    Article  Google Scholar 

  11. Yang, J., Zhang, G., Zhang, M.: Ride comfort analysis of car suspension parameters on the random road. Appl. Mech. Mater. 2141(248), 185–189 (2013)

    Google Scholar 

  12. Sun, J., Tian, Q., Hu, H.: Research progress on dynamic modeling and optimization of flexible multi-body system. J. Mech. 51(6), 1565–1586 (2019)

    Google Scholar 

  13. Editorial department of China journal of highway.: review of academic research on automotive engineering in china. China J. Highway Transp. 30(6), 1–197 (2017)

    Google Scholar 

  14. Jiang, B., Pan, Y.: Simulation analysis of vehicle ride comfort based on ADAMS_Car_ride. Mach. Des. Res. 30(6), 166–169 (2014)

    Google Scholar 

  15. Jiang, H., Zhang, Z., LI, L., et al.: Modeling of equal arm balanced suspension and vehicle ride comfort simulation based on ADAMS. J. Chongqing Jiaotong Univer. (Nat. Sci. Edition) 34(3), 171–174 (2015)

    Google Scholar 

  16. Chen, Q., Bai, X., Zhu, A., et al.: Influence of balanced suspension on handling stability and ride comfort of off-road vehicle. Proc. Instit. Mech. Eng 235(6), 1602–1616 (2021)

    Article  Google Scholar 

  17. Li, S., Meng, Z., Jiang, W.: Simulation analysis of automobile air suspension dynamics based on ADAMS. In: Proceedings of the 2015 International Conference on Intelligent Systems Research and Mechatronics Engineering. Atlantis Press, Paris, France (2015)

    Google Scholar 

  18. Wu, G., Fan, G., Guo, J.: Ride comfort evaluation for road vehicle based on rigid-flexible coupling multi-body dynamics. Theor. Appl. Mech. Lett. 3(1), 39–43 (2013)

    Article  Google Scholar 

  19. Ou, J., Zhang, Q., Yang, E., et al.: Research on rigid-flexible coupling vehicle ride competitiveness considering suspension flexibility. Mach. Des. Manuf. 4(2), 132–134+138 (2015)

    Google Scholar 

  20. Duan, M., Shi, J.: Research on the influence of lateral stabilizer bar on vehicle performance based on rigid-flexible coupling model. Mach. Des. Manuf. 4(4), 110–113 (2016)

    Google Scholar 

  21. Zhang, Y., Wang, W., Wang, T., et al.: Rigid-flexible coupling vehicle ride comfort simulation and experimental research. Automobile Technol. 4(5), 20–25 (2014)

    Google Scholar 

  22. Wang, T., Ou, J., Zhang, Y., et al.: Simulation analysis and optimization of car ride comfort based on rigid-flexible coupling model. J. Chongqing Univer. Technol. (Nat. Sci.) 29(12), 25–31 (2015)

    Google Scholar 

  23. Deb, K., Pratap, A., Agarwal, S., et al.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  24. Li, W., Wang, S., Zhou, B., et al.: McPherson suspension optimization based on response surface methodology and NSGA-II algorithm. J. Hunan Univer. (Nat. Sci. Ed.) 38(6), 27–32 (2011)

    Google Scholar 

  25. Gadhvi, B., Savsani, V., Patel, V.: Multi-objective optimization of vehicle passive suspension system using NSGA-II, SPEA2 and PESA-II. Procedia Technol. 23(5), 361–368 (2016)

    Article  Google Scholar 

  26. Zheng, R., Zhu, A.: Collaborative optimization of ride comfort and handling stability of a heavy off-road vehicle. Agric. Equip. Vehicle Eng. 56(12), 52–55 (2018)

    Google Scholar 

  27. Wang, Z., Wang, L., Yuan, L., et al.: Multi-objective optimization of suspension system of a light truck based on Kriging model. Mac. Des. Manuf. (S2), 31–34+39 (2018)

    Google Scholar 

  28. Chen, S., Shi, T., Wang, D., et al.: Multi-objective optimization of the vehicle ride comfort based on Kriging approximate model and NSGA-II. J. Mech. Sci. Technol. 29(3), 1007–1018 (2015)

    Article  Google Scholar 

  29. Du, X., Xiong, R., Wu, J., et al.: Multi-objective optimization of chassis based on vehicle handling stability and ride comfort. Mod. Manuf. Eng. 5, 98–101 (2018)

    Google Scholar 

  30. Zhang, J., Cui, S.: Multi-objective optimization analysis of dynamic performance of heavy haul vehicles. J. Beijing Jiaotong Univer. 42(3), 120–126 (2018)

    Google Scholar 

  31. Tey, J.Y., Ramli, R., Abdullah, A.S.: A new multi-objective optimization method for full-vehicle suspension systems. Proc. Instit. Mech. Eng. Part D J. Automobile Eng. 230(11), 1443–1458 (2016)

    Article  Google Scholar 

  32. He, S., Chen, K., Xu, E., et al.: Commercial vehicle ride comfort optimization based on intelligent algorithms and nonlinear damping. Shock. Vib. 2019, 1–16 (2019)

    Google Scholar 

  33. Mahmoodi-Kaleibar, M., Javanshir, I., Asadi, K., et al.: Optimization of suspension system of off-road vehicle for vehicle performance improvement. J. Central South Univer. 20(4), 902–910 (2013)

    Article  Google Scholar 

  34. Pang, H., Fang, Z., Li, H., et al.: Optimization and experimental study of suspension parameters of a heavy truck. J. Vib. Shock 31(08), 92–95+106 (2012)

    Google Scholar 

  35. Shi, Q., Peng, C., Chen, Y., et al.: Robust kinematics design of MacPherson suspension based on a double-loop multi-objective particle swarm optimization algorithm. Proc. Instit. Mech. Eng. Part D: J. Automobile Eng. 233(12), 3263–3278 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Centre for Efficiency and Performance Engineering (CEPE), University of Huddersfield, United Kingdom.

Funding

This work was supported in part by the Opening Project of The State Key Laboratory of Heavy Duty AC Drive Electric Locomotive Systems Integration (2020ZJKF05), and in part by Natural Science Foundation of Sichuan Province (2022JY0400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Qing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jianghu, T., Qing, X., Yingmou, Z., Zhuoyu, H. (2023). Review on Simulation and Optimization of Vehicle Ride Comfort Based on Suspension Model. In: Zhang, H., Feng, G., Wang, H., Gu, F., Sinha, J.K. (eds) Proceedings of IncoME-VI and TEPEN 2021. Mechanisms and Machine Science, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-030-99075-6_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99075-6_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99074-9

  • Online ISBN: 978-3-030-99075-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics