Skip to main content

Modern Approaches to Biofilm Management on Dental Implants

  • Chapter
  • First Online:
Dental Implants and Oral Microbiome Dysbiosis

Abstract

Dental implants are considered the gold standard treatment modality for the replacement of missing teeth. Implants made of titanium alloy (Ti-6Al-4V) and zirconia are used by clinicians worldwide. The major drawback to dental implants is their high susceptibility to biologic complications, primarily of an infective nature. Implant surfaces are rough and are highly prone to biofilm formation since they are constantly exposed to physiologic fluids intra-orally. Microbial colonisation on biofilms can result in peri-implantitis with eventual failure of the implant and prostheses. This chapter aims to provide a comprehensive outlook on the various strategies used to manage the formation of biofilms around dental implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Subramani K, Jung RE, Molenberg A, Hammerle CHF. Biofilm on dental implants: a review of the literature. Int J Oral Maxillofac Implants. 2009;24(4):616–26.

    PubMed  Google Scholar 

  2. Lee A, Wang H-L. Biofilm related to dental implants. Implant Dent. 2010;19(5):387–93.

    Article  PubMed  Google Scholar 

  3. Busscher HJ, Rinastiti M, Siswomihardjo W, van der Mei HC. Biofilm formation on dental restorative and implant materials. J Dent Res. 2010;89(7):657–65.

    Article  PubMed  Google Scholar 

  4. Bordin D, Cavalcanti IMG, Jardim Pimentel M, Fortulan CA, Sotto-Maior BS, Del Bel Cury AA, et al. Biofilm and saliva affect the biomechanical behavior of dental implants. J Biomech. 2015;48(6):997–1002.

    Article  PubMed  Google Scholar 

  5. Lafaurie GI, Sabogal MA, Castillo DM, Rincón MV, Gómez LA, Lesmes YA, et al. Microbiome and microbial biofilm profiles of peri-implantitis: a systematic review. J Periodontol. 2017;88(10):1066–89.

    Article  PubMed  Google Scholar 

  6. Esfahanizadeh N, Mirmalek SP, Bahador A, Daneshparvar H, Akhoundi N, Pourhajibagher M. Formation of biofilm on various implant abutment materials. Gen Dent. 2018;66(5):39–44.

    PubMed  Google Scholar 

  7. Valen H, Scheie AA. Biofilms and their properties. Eur J Oral Sci. 2018;126(Suppl 1):13–8.

    Article  PubMed  Google Scholar 

  8. Daubert DM, Weinstein BF. Biofilm as a risk factor in implant treatment. Periodontol 2000. 2019;81(1):29–40.

    Article  PubMed  Google Scholar 

  9. Larsen T, Fiehn N-E. Dental biofilm infections—an update. APMIS Acta Pathol Microbiol Immunol Scand. 2017;125(4):376–84.

    Article  Google Scholar 

  10. Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol. 2017;44(Suppl 18):S12–22.

    Article  PubMed  Google Scholar 

  11. Alcheikh A, Pavon-Djavid G, Helary G, Petite H, Migonney V, Anagnostou F. PolyNaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits Staphylococcus aureus adhesion. J Mater Sci Mater Med. 2013;24(7):1745–54.

    Article  PubMed  Google Scholar 

  12. Teratanatorn P, Hoskins R, Swift T, Douglas CWI, Shepherd J, Rimmer S. Binding of bacteria to poly(N-isopropylacrylamide) modified with vancomycin: comparison of behavior of linear and highly branched polymers. Biomacromolecules. 2017;18(9):2887–99.

    Article  PubMed  Google Scholar 

  13. Schaer TP, Stewart S, Hsu BB, Klibanov AM. Hydrophobic polycationic coatings that inhibit biofilms and support bone healing during infection. Biomaterials. 2012;33(5):1245–54.

    Article  PubMed  Google Scholar 

  14. Buxadera-Palomero J, Calvo C, Torrent-Camarero S, Gil FJ, Mas-Moruno C, Canal C, et al. Biofunctional polyethylene glycol coatings on titanium: an in vitro-based comparison of functionalization methods. Colloids Surf B Biointerfaces. 2017;152:367–75.

    Article  PubMed  Google Scholar 

  15. Buxadera-Palomero J, Canal C, Torrent-Camarero S, Garrido B, Javier Gil F, Rodríguez D. Antifouling coatings for dental implants: polyethylene glycol-like coatings on titanium by plasma polymerization. Biointerphases. 2015;10(2):029505.

    Article  PubMed  Google Scholar 

  16. Bumgardner JD, Wiser R, Gerard PD, Bergin P, Chestnutt B, Marin M, et al. Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants. J Biomater Sci Polym Ed. 2003;14(5):423–38.

    Article  PubMed  Google Scholar 

  17. Lin M-H, Wang Y-H, Kuo C-H, Ou S-F, Huang P-Z, Song T-Y, et al. Hybrid ZnO/chitosan antimicrobial coatings with enhanced mechanical and bioactive properties for titanium implants. Carbohydr Polym. 2021;257:117639.

    Article  PubMed  Google Scholar 

  18. Divakar DD, Jastaniyah NT, Altamimi HG, Alnakhli YO, et al. Enhanced antimicrobial activity of naturally derived bioactive molecule chitosan conjugated silver nanoparticle against dental implant pathogens. Int J Biol Macromol. 2018;108:790–7.

    Article  PubMed  Google Scholar 

  19. Cicciù M, Fiorillo L, Cervino G. Chitosan use in dentistry: a systematic review of recent clinical studies. Mar Drugs. 2019;17(7):E417.

    Article  PubMed  Google Scholar 

  20. Lestari W, Yusry WNAW, Haris MS, Jaswir I, Idrus E. A glimpse on the function of chitosan as a dental hemostatic agent. Jpn Dent Sci Rev. 2020;56(1):147–54.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lv H, Chen Z, Yang X, Cen L, Zhang X, Gao P. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation. J Dent. 2014;42(11):1464–72.

    Article  PubMed  Google Scholar 

  22. Correa DS, Tayalia P, Cosendey G, dos Santos DS, Aroca RF, Mazur E, et al. Two-photon polymerization for fabricating structures containing the biopolymer chitosan. J Nanosci Nanotechnol. 2009;9(10):5845–9.

    Article  PubMed  Google Scholar 

  23. Zhang T, Zhang X, Mao M, Li J, Wei T, Sun H. Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: in vitro and in vivo studies. J Periodontal Implant Sci. 2020;50(6):392–405.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aguilar A, Zein N, Harmouch E, Hafdi B, Bornert F, Offner D, et al. Application of chitosan in bone and dental engineering. Mol Basel Switz. 2019;24(16):E3009.

    Google Scholar 

  25. Zhang C, Hui D, Du C, Sun H, Peng W, Pu X, et al. Preparation and application of chitosan biomaterials in dentistry. Int J Biol Macromol. 2021;167:1198–210.

    Article  PubMed  Google Scholar 

  26. Fakhri E, Eslami H, Maroufi P, Pakdel F, Taghizadeh S, Ganbarov K, et al. Chitosan biomaterials application in dentistry. Int J Biol Macromol. 2020;162:956–74.

    Article  PubMed  Google Scholar 

  27. Godoy-Gallardo M, Guillem-Marti J, Sevilla P, Manero JM, Gil FJ, Rodriguez D. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation. Mater Sci Eng C Mater Biol Appl. 2016;59:524–32.

    Article  PubMed  Google Scholar 

  28. Babapour A, Yang B, Bahang S, Cao W. Low-temperature sol-gel-derived nanosilver-embedded silane coating as biofilm inhibitor. Nanotechnology. 2011;22(15):155602.

    Article  PubMed  Google Scholar 

  29. Zhang W, Wang S, Ge S, Chen J, Ji P. The relationship between substrate morphology and biological performances of nano-silver-loaded dopamine coatings on titanium surfaces. R Soc Open Sci. 2018;5(4):172310.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Singh I, Dhawan G, Gupta S, Kumar P. Recent advances in a polydopamine-mediated antimicrobial adhesion system. Front Microbiol. 2020;11:607099.

    Article  PubMed  Google Scholar 

  31. Pawar AA, Saada G, Cooperstein I, Larush L, Jackman JA, Tabaei SR, et al. High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles. Sci Adv. 2016;2(4):e1501381.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Grenho L, Salgado CL, Fernandes MH, Monteiro FJ, Ferraz MP. Antibacterial activity and biocompatibility of three-dimensional nanostructured porous granules of hydroxyapatite and zinc oxide nanoparticles—an in vitro and in vivo study. Nanotechnology. 2015;26(31):315101.

    Article  PubMed  Google Scholar 

  33. Lee J, Park S, Kang S, Park C, Yun K. Bonding evaluation between nanotube by anodic oxidation and machined dental titanium implant in beagle dog. J Nanosci Nanotechnol. 2019;19(2):912–4.

    Article  PubMed  Google Scholar 

  34. Gulati K, Ivanovski S. Dental implants modified with drug releasing titania nanotubes: therapeutic potential and developmental challenges. Expert Opin Drug Deliv. 2017;14(8):1009–24.

    Article  PubMed  Google Scholar 

  35. Noronha VT, Paula AJ, Durán G, Galembeck A, Cogo-Müller K, Franz-Montan M, et al. Silver nanoparticles in dentistry. Dent Mater Off Publ Acad Dent Mater. 2017;33(10):1110–26.

    Google Scholar 

  36. Qin H, Cao H, Zhao Y, Zhu C, Cheng T, Wang Q, et al. In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials. 2014;35(33):9114–25.

    Article  PubMed  Google Scholar 

  37. Piszczek P, Lewandowska Ż, Radtke A, Jędrzejewski T, Kozak W, Sadowska B, et al. Biocompatibility of titania nanotube coatings enriched with silver nanograins by chemical vapor deposition. Nanomater Basel Switz. 2017;7(9):E274.

    Article  Google Scholar 

  38. Gunputh UF, Le H, Lawton K, Besinis A, Tredwin C, Handy RD. Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus. Nanotoxicology. 2020;14(1):97–110.

    Article  PubMed  Google Scholar 

  39. Kulshrestha S, Khan S, Meena R, Singh BR, Khan AU. A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans. Biofouling. 2014;30(10):1281–94.

    Article  PubMed  Google Scholar 

  40. Mahamuni-Badiger PP, Patil PM, Badiger MV, Patel PR, Thorat-Gadgil BS, Pandit A, et al. Biofilm formation to inhibition: role of zinc oxide-based nanoparticles. Mater Sci Eng C Mater Biol Appl. 2020;108:110319.

    Article  PubMed  Google Scholar 

  41. Vergara-Llanos D, Koning T, Pavicic MF, Bello-Toledo H, Díaz-Gómez A, Jaramillo A, et al. Antibacterial and cytotoxic evaluation of copper and zinc oxide nanoparticles as a potential disinfectant material of connections in implant provisional abutments: an in-vitro study. Arch Oral Biol. 2021;122:105031.

    Article  PubMed  Google Scholar 

  42. Bergemann C, Zaatreh S, Wegner K, Arndt K, Podbielski A, Bader R, et al. Copper as an alternative antimicrobial coating for implants—an in vitro study. World J Transplant. 2017;7(3):193–202.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gomez-Florit M, Pacha-Olivenza MA, Fernández-Calderón MC, Córdoba A, González-Martín ML, Monjo M, et al. Quercitrin-nanocoated titanium surfaces favour gingival cells against oral bacteria. Sci Rep. 2016;6:22444.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Córdoba A, Manzanaro-Moreno N, Colom C, Rønold HJ, Lyngstadaas SP, Monjo M, et al. Quercitrin nanocoated implant surfaces reduce osteoclast activity in vitro and in vivo. Int J Mol Sci. 2018;19(11):E3319.

    Article  PubMed  Google Scholar 

  45. Wood NJ, Jenkinson HF, Davis SA, Mann S, O’Sullivan DJ, Barbour ME. Chlorhexidine hexametaphosphate nanoparticles as a novel antimicrobial coating for dental implants. J Mater Sci Mater Med. 2015;26(6):201.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Barbour ME, Gandhi N, el-Turki A, O’Sullivan DJ, Jagger DC. Differential adhesion of Streptococcus gordonii to anatase and rutile titanium dioxide surfaces with and without functionalization with chlorhexidine. J Biomed Mater Res A. 2009;90(4):993–8.

    Article  PubMed  Google Scholar 

  47. Carinci F, Lauritano D, Bignozzi CA, Pazzi D, Candotto V, Santos de Oliveira P, et al. A new strategy against peri-implantitis: antibacterial internal coating. Int J Mol Sci. 2019;20(16) E3897

    Google Scholar 

  48. Ribeiro AR, Gemini-Piperni S, Travassos R, Lemgruber L, Silva RC, Rossi AL, et al. Trojan-like internalization of anatase titanium dioxide nanoparticles by human osteoblast cells. Sci Rep. 2016;6:23615.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Metzler P, von Wilmowsky C, Stadlinger B, Zemann W, Schlegel KA, Rosiwal S, et al. Nano-crystalline diamond-coated titanium dental implants—a histomorphometric study in adult domestic pigs. J Craniomaxillofac Surg. 2013;41(6):532–8.

    Article  PubMed  Google Scholar 

  50. Li X, Qi M, Sun X, Weir MD, Tay FR, Oates TW, et al. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities. Acta Biomater. 2019;94:627–43.

    Article  PubMed  Google Scholar 

  51. Gagnon J, Clift MJD, Vanhecke D, Kuhn DA, Weber P, Petri-Fink A, et al. Integrating silver compounds and nanoparticles into ceria nanocontainers for antimicrobial applications. J Mater Chem B. 2015;3(9):1760–8.

    Article  PubMed  Google Scholar 

  52. Wang Z, Shen Y, Haapasalo M. Antibiofilm peptides against oral biofilms. J Oral Microbiol. 2017;9(1):1327308.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bechinger B, Gorr S-U. Antimicrobial peptides: mechanisms of action and resistance. J Dent Res. 2017;96(3):254–60.

    Article  PubMed  Google Scholar 

  54. Chen X, Hirt H, Li Y, Gorr S-U, Aparicio C. Antimicrobial GL13K peptide coatings killed and ruptured the wall of Streptococcus gordonii and prevented formation and growth of biofilms. PLoS One. 2014;9(11):e111579.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hirt H, Gorr S-U. Antimicrobial peptide GL13K is effective in reducing biofilms of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57(10):4903–10.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hirt H, Hall JW, Larson E, Gorr S-U. A D-enantiomer of the antimicrobial peptide GL13K evades antimicrobial resistance in the Gram positive bacteria Enterococcus faecalis and Streptococcus gordonii. PLoS One. 2018;13(3):e0194900.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shirai T, Tsuchiya H, Terauchi R, Tsuchida S, Mizoshiri N, Mori Y, et al. A retrospective study of antibacterial iodine-coated implants for postoperative infection. Medicine (Baltimore). 2019;98(45):e17932.

    Article  Google Scholar 

  58. Shirai T, Shimizu T, Ohtani K, Zen Y, Takaya M, Tsuchiya H. Antibacterial iodine-supported titanium implants. Acta Biomater. 2011;7(4):1928–33.

    Article  PubMed  Google Scholar 

  59. Inoue D, Kabata T, Kajino Y, Shirai T, Tsuchiya H. Iodine-supported titanium implants have good antimicrobial attachment effects. J Orthop Sci. 2019;24(3):548–51.

    Article  PubMed  Google Scholar 

  60. Tsuchiya H, Shirai T, Nishida H, Murakami H, Kabata T, Yamamoto N, et al. Innovative antimicrobial coating of titanium implants with iodine. J Orthop Sci. 2012;17(5):595–604.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ueoka K, Kajino Y, Kabata T, Inoue D, Yoshitani J, Ueno T, et al. The feasibility of iodine-supported processing for titanium with different surfaces. J Orthop Sci. 2020;25(6):1095–100.

    Article  PubMed  Google Scholar 

  62. Jia L, Qiu J, Du L, Li Z, Liu H, Ge S. TiO2 nanorod arrays as a photocatalytic coating enhanced antifungal and antibacterial efficiency of Ti substrates. Nanomedicine. 2017;12(7):761–76.

    Article  PubMed  Google Scholar 

  63. Nagay BE, Dini C, Cordeiro JM, Ricomini-Filho AP, de Avila ED, Rangel EC, et al. Visible-light-induced photocatalytic and antibacterial activity of TiO2 codoped with nitrogen and bismuth: new perspectives to control implant-biofilm-related diseases. ACS Appl Mater Interfaces. 2019;11(20):18186–202.

    Article  PubMed  Google Scholar 

  64. Rupp F, Haupt M, Eichler M, Doering C, Klostermann H, Scheideler L, et al. Formation and photocatalytic decomposition of a pellicle on anatase surfaces. J Dent Res. 2012;91(1):104–9.

    Article  PubMed  Google Scholar 

  65. Pantaroto HN, Ricomini-Filho AP, Bertolini MM, Dias da Silva JH, Azevedo Neto NF, Sukotjo C, et al. Antibacterial photocatalytic activity of different crystalline TiO2 phases in oral multispecies biofilm. Dent Mater. 2018;34(7):e182–95.

    Article  PubMed  Google Scholar 

  66. Jain S, Williamson RS, Marquart M, Janorkar AV, Griggs JA, Roach MD. Photofunctionalization of anodized titanium surfaces using UVA or UVC light and its effects against Streptococcus sanguinis. J Biomed Mater Res B Appl Biomater. 2018;106(6):2284–94.

    Article  PubMed  Google Scholar 

  67. Bidossi A, Bottagisio M, Logoluso N, De Vecchi E. In vitro evaluation of gentamicin or vancomycin containing bone graft substitute in the prevention of orthopedic implant-related infections. Int J Mol Sci. 2020;21(23):E9250.

    Article  PubMed  Google Scholar 

  68. Butini ME, Cabric S, Trampuz A, Di Luca M. In vitro anti-biofilm activity of a biphasic gentamicin-loaded calcium sulfate/hydroxyapatite bone graft substitute. Colloids Surf B Biointerfaces. 2018;161:252–60.

    Article  PubMed  Google Scholar 

  69. Diefenbeck M, Schrader C, Gras F, Mückley T, Schmidt J, Zankovych S, et al. Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats. Biomaterials. 2016;101:156–64.

    Article  PubMed  Google Scholar 

  70. Flores C, Degoutin S, Chai F, Raoul G, Hornez J-C, Martel B, et al. Gentamicin-loaded poly(lactic-co-glycolic acid) microparticles for the prevention of maxillofacial and orthopedic implant infections. Mater Sci Eng C Mater Biol Appl. 2016;(64):108–16.

    Google Scholar 

  71. Nichol T, Callaghan J, Townsend R, Stockley I, Hatton PV, Le Maitre C, et al. The antimicrobial activity and biocompatibility of a controlled gentamicin-releasing single-layer sol-gel coating on hydroxyapatite-coated titanium. Bone Joint J. 2021;103-B(3):522–9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cacaci M, Martini C, Guarino C, Torelli R, Bugli F, Sanguinetti M. Graphene oxide coatings as tools to prevent microbial biofilm formation on medical device. Adv Exp Med Biol. 2020;1282:21–35.

    Article  PubMed  Google Scholar 

  73. Dybowska-Sarapuk Ł, Kotela A, Krzemiński J, Wróblewska M, Marchel H, Romaniec M, et al. Graphene nanolayers as a new method for bacterial biofilm prevention: preliminary results. J AOAC Int. 2017;100(4):900–4.

    Article  PubMed  Google Scholar 

  74. Tahriri M, Del Monico M, Moghanian A, Tavakkoli Yaraki M, Torres R, Yadegari A, et al. Graphene and its derivatives: opportunities and challenges in dentistry. Mater Sci Eng C Mater Biol Appl. 2019;102:171–85.

    Article  PubMed  Google Scholar 

  75. Annunziata M, Oliva A, Basile MA, Giordano M, Mazzola N, Rizzo A, et al. The effects of titanium nitride-coating on the topographic and biological features of TPS implant surfaces. J Dent. 2011;39(11):720–8.

    Article  PubMed  Google Scholar 

  76. Scarano A, Piattelli M, Vrespa G, Caputi S, Piattelli A. Bacterial adhesion on titanium nitride-coated and uncoated implants: an in vivo human study. J Oral Implantol. 2003;29(2):80–5.

    Article  PubMed  Google Scholar 

  77. Wang J, An Y, Liang H, Tong Y, Guo T, Ma C. The effect of different titanium nitride coatings on the adhesion of Candida albicans to titanium. Arch Oral Biol. 2013;58(10):1293–301.

    Article  PubMed  Google Scholar 

  78. Kaluđerović MR, Schreckenbach JP, Graf H-L. Titanium dental implant surfaces obtained by anodic spark deposition—from the past to the future. Mater Sci Eng C Mater Biol Appl. 2016;69:1429–41.

    Article  PubMed  Google Scholar 

  79. Fröjd V, Linderbäck P, Wennerberg A, Chávez de Paz L, Svensäter G, Davies JR. Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation. BMC Oral Health. 2011;11:8.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Benčina M, Resnik M, Starič P, Junkar I. Use of plasma technologies for antibacterial surface properties of metals. Molecules. 2021;26(5):1418.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Canullo L, Genova T, Wang H-L, Carossa S, Mussano F. Plasma of argon increases cell attachment and bacterial decontamination on different implant surfaces. Int J Oral Maxillofac Implants. 2017;32(6):1315–23.

    Article  PubMed  Google Scholar 

  82. Astaneh SH, Faverani LP, Sukotjo C, Takoudis CG. Atomic layer deposition on dental materials: processing conditions and surface functionalization to improve physical, chemical, and clinical properties—a Review. Acta Biomater. 2020;

    Google Scholar 

  83. Oral implant surfaces: Part 1—review focusing on topographic and chemical properties of different surfaces and in vivo responses to them—PubMed [Internet]. [cited 2020 Dec 20]. Available from: https://pubmed.ncbi.nlm.nih.gov/15543910/.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors are not affiliated to any of the commercial manufacturers or firms mentioned in this chapter or are sponsored, in any way, for the active promotion or marketing of any product described in the chapter.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sivaswamy, V., Neelakantan, P. (2022). Modern Approaches to Biofilm Management on Dental Implants. In: Neelakantan, P., Princy Solomon, A. (eds) Dental Implants and Oral Microbiome Dysbiosis. Springer, Cham. https://doi.org/10.1007/978-3-030-99014-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99014-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99013-8

  • Online ISBN: 978-3-030-99014-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics