We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Locally Compact Quantum Metric Spaces and Spectral Triples | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Locally Compact Quantum Metric Spaces and Spectral Triples

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 516 Accesses

Abstract

In this chapter, we start by giving an overview of quantum (locally) compact metric spaces. Then, we show that we can associate quantum compact metric spaces to some Markov semigroups of Fourier multipliers satisfying additional conditions: an injectivity and a gap condition on the cocycle which represents the semigroup, and the finite dimensionality (with explicit control on p) of the cocycle Hilbert space. We show a similar result for semigroups of Schur multipliers and obtain a quantum locally compact metric space. We further explore the connections of our gap condition between Fourier multipliers and Schur multipliers with some examples. In the sequel, we introduce spectral triples (= noncommutative manifolds) associated to Markov semigroups of Fourier multipliers or Schur multipliers satisfying again some technical conditions, and in all we investigate four different settings. Along the way, we introduce a Banach space variant of the notion of spectral triple suitable for our context. Finally, we investigate the bisectoriality and the functional calculus of some Hodge-Dirac operators which are crucial in the noncommutative geometries which we introduce here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that D is an unbounded operator acting on the Hilbert space of L2-spinors and that the functions of C(M) act on the same Hilbert space by multiplication operators.

  2. 2.

    Indeed, \( \operatorname {{\mathrm {Lip}}}(X)\) contains the constant functions. Moreover, \( \operatorname {{\mathrm {Lip}}}(X)\) separates points in X. If x 0, y 0 ∈ X with x 0 ≠ y 0, we can use the lipschitz function \(f \colon X\to \mathbb {R}\), x↦dist(x, y 0) since we have f(x 0) > 0 = f(y 0).

  3. 3.

    The original formulation [78, p. 329], [223, Definition 6.1] of the distance distmk(μ, ν) between two Borel probability measures μ and ν on X is given by the infimum of ∫X×Xdist(x, y) dπ(x, y) over all Borel probability measures π on X × X whose marginals are given by μ and ν.

  4. 4.

    It is not clear if the support must be in addition open in [143] since the indicator 1A of a subset A is continuous if and only if A is both open and closed.

  5. 5.

    Recall that a family (x s)sI vanishes at infinity means that for any ε > 0, there exists a finite subset J of I such that for any s ∈ I − J we have |x s| < ε.

  6. 6.

    Write \(x=A^{-\frac {1}{2}}A_p^{\frac {1}{2}}x\).

  7. 7.

    More generally, if 1 < p <  the operator space \(\mathrm {L}^p(\mathbb {T}^2)\) has CCAP by Junge and Ruan [121, Proposition 3.5] since an abelian group is weakly amenable with Cowling-Haagerup constant equal to 1.

  8. 8.

    If \(\eta \in \big ( \xi _1 + \frac {\sqrt {\mathrm {Gap}_\alpha }}{2} \mathrm {B}_n \big ) \cap \big ( \xi _2 + \frac {\sqrt {\mathrm {Gap}_\alpha }}{2} \mathrm {B}_n \big )\) then \(|\xi _1-\xi _2| \leqslant |\xi _1-\eta |+|\eta -\xi _2| < \frac {\sqrt {\mathrm {Gap}_\alpha }}{2}+\frac {\sqrt {\mathrm {Gap}_\alpha }}{2}=\sqrt {\mathrm {Gap}_\alpha }\) which is impossible.

  9. 9.

    Since I is finite, we have \( \operatorname {\mathrm {dom}} A_p^{\frac {1}{2}}=S^p_I\). Write \(x=A^{-\frac {1}{2}}A_p^{\frac {1}{2}}x\).

  10. 10.

    Since I is finite, we have \( \operatorname {\mathrm {dom}} A_{p_0}^{\frac {1}{2}}=S^{p_0}_I\).

  11. 11.

    For any \(n,m \in \mathbb {Z}\), we have the cocycle law

    $$\displaystyle \begin{aligned} \begin{array}{rcl} b(n)& +&\displaystyle \pi_n(b_m) =\big(\mathrm{e}^{2 \pi \mathrm{i} \alpha n},\mathrm{e}^{2 \pi \mathrm{i} \beta n}\big) - (1,1) +\pi_n\big[\big(\mathrm{e}^{2 \pi \mathrm{i} \alpha m},\mathrm{e}^{2 \pi \mathrm{i} \beta m}\big) - (1,1) \big] \\ & =&\displaystyle \big(\mathrm{e}^{2 \pi \mathrm{i} \alpha n},\mathrm{e}^{2 \pi \mathrm{i} \beta n}\big) - (1,1) + \big(\mathrm{e}^{2 \pi \mathrm{i} \alpha (n+m)},\mathrm{e}^{2 \pi \mathrm{i} \beta (n+m)}\big) -\big(\mathrm{e}^{2 \pi \mathrm{i} \alpha n},\mathrm{e}^{2 \pi \mathrm{i} \beta n}\big) \\ & =&\displaystyle \big(\mathrm{e}^{2 \pi \mathrm{i} \alpha (n+m)},\mathrm{e}^{2 \pi \mathrm{i} \beta (n+m)}\big) - (1,1) =b(n+m). \end{array} \end{aligned} $$
  12. 12.

    It may perhaps be possible to replace the reflexivity by an assumption of weak compactness, see [110, p. 361].

  13. 13.

    In the sense of [136, p. 167].

  14. 14.

    Recall that the term ψ,q,p(a)x is by definition equal to .

  15. 15.

    For any x ∈ Γq(H) and any s ∈ G, we have

    and

    .

  16. 16.

    For t > 0, let μ t(b) denote the generalized singular number of |b|, so that for any continuous function \(\mathbb {R}_+ \to \mathbb {R}\) of bounded variation [227, p. 30]. If b were unbounded, then μ t(b) → as t → 0. Taking ξ = ϕ(|b|) ≠ 0 with ϕ a smoothed indicator function of an interval [x, y] with large x, it is not difficult to see that \(\left \Vert b\xi \right \Vert { }_p \geqslant x \left \Vert \xi \right \Vert { }_p\), which is the desired contradiction.

  17. 17.

    Recall that the term α,q,p(a)x is by definition equal to α,q(a)(1 ⊗ x).

  18. 18.

    Recall that a family (x i)iI vanishes at infinity means that for any ε > 0, there exists a finite subset J of I such that for any i ∈ I − J we have \(|x_i| \leqslant \varepsilon \).

  19. 19.

    The entries are 1 on the j-row and zero anywhere else.

  20. 20.

    Note that since \(\Gamma _{-1}(H) \overline \otimes \mathrm {B}(\ell ^2_I)\) is then finite-dimensional, the spaces \(\mathrm {L}^p(\Gamma _{-1}(H) \overline \otimes \mathrm {B}(\ell ^2_I))\) are all isomorphic for different values of p, \(\overline { \operatorname {\mathrm {Ran}} \mathscr {D}_{\alpha ,-1,2}} = \overline { \operatorname {\mathrm {Ran}} \mathscr {D}_{\alpha ,-1,p}}\) for all 1 < p <  and thus, \(|\mathscr {D}_{\alpha ,-1,2}|{ }^{-1}\) extends to a compact operator on \(\overline { \operatorname {\mathrm {Ran}} \mathscr {D}_{\alpha ,-1,p}}\), too.

  21. 21.

    We have

    $$\displaystyle \begin{aligned} \begin{array}{rcl} & &\displaystyle \sum_{k,l} J_{kl} R(\lambda,\mathrm{L}_{s_q(\alpha_k -\alpha_l)})Q_{kl} \left( \lambda - \sum_{i,j} J_{ij} \mathrm{L}_{s_q(\alpha_i - \alpha_j)} Q_{ij} \right) \\ & &\displaystyle \qquad \quad = \sum_{k,l}J_{kl} \lambda R(\lambda,\mathrm{L}_{s_q(\alpha_k - \alpha_l)})Q_{kl} - \sum_{k,l,i,j} J_{kl}R(\lambda,\mathrm{L}_{s_q(\alpha_k - \alpha_l)})Q_{kl}J_{ij} \mathrm{L}_{s_q(\alpha_i - \alpha_j)}Q_{ij} \\ & &\displaystyle \qquad \quad = \sum_{k,l} J_{kl}\lambda R(\lambda,\mathrm{L}_{s_q(\alpha_k - \alpha_l)})Q_{kl}- \sum_{k,l,i,j} \delta_{k=i} \delta_{l = j} J_{kl}R(\lambda,\mathrm{L}_{s_q(\alpha_k - \alpha_l)}) \mathrm{L}_{s_q(\alpha_i - \alpha_j)} Q_{ij} \\ & &\displaystyle \qquad \quad = \sum_{k,l}J_{kl} R(\lambda,\mathrm{L}_{s_q(\alpha_k - \alpha_l)})(\lambda - \mathrm{L}_{s_q(\alpha_k-\alpha_l)}) Q_{kl} \\ & &\displaystyle \qquad \quad = \sum_{k,l}J_{kl}\mathrm{Id}_{\mathrm{L}^p(\Gamma_q(H))} Q_{kl} = \mathrm{Id}_{\mathrm{L}^p(\Gamma_q(H) \overline\otimes \mathrm{B}(\ell^2_I))}, \end{array} \end{aligned} $$

    and similarly the other way around.

References

  1. E.M. Alfsen, Compact Convex Sets and Boundary Integrals. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 57 (Springer, New York, 1971)

    Google Scholar 

  2. E.M. Alfsen, F.W. Shultz, Geometry of state spaces of operator algebras, in Mathematics: Theory & Applications (Birkhauser Boston, Inc., Boston, 2003)

    MATH  Google Scholar 

  3. C. Arhancet, On Matsaev’s conjecture for contractions on noncommutative L p-spaces. J. Operator Theory 69(2), 387–421 (2013)

    MathSciNet  MATH  Google Scholar 

  4. C. Arhancet, Dilations of markovian semigroups of Fourier multipliers on locally compact groups. Proc. Amer. Math. Soc. 148(6), 2551–2563 (2020)

    MathSciNet  MATH  Google Scholar 

  5. C. Arhancet, Dilations of markovian semigroups of measurable Schur multipliers. Preprint online on https://arxiv.org/abs/1910.14434

  6. C. Arhancet, C. Kriegler, Projections, multipliers and decomposable maps on noncommutative Lp-spaces. Submitted, Preprint online on https://arxiv.org/abs/1707.05591

  7. B. Bekka, P. de la Harpe, Pierre, A. Valette, Kazhdan’s Property (T). New Mathematical Monographs, vol. 11 (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  8. J.V. Bellissard, M. Marcolli, K. Reihani, Dynamical Systems on Spectral Metric Spaces. Preprint online on https://arxiv.org/abs/1008.4617

  9. D. Blecher, C. Le Merdy, Operator Algebras and Their Modules-An Operator Space Approach. London Mathematical Society Monographs. New Series, vol. 30 (Oxford Science Publications, The Clarendon Press, Oxford University Press, Oxford, 2004)

    Google Scholar 

  10. V.I. Bogachev, Measure Theory, vol. II (Springer, Berlin, 2007)

    MATH  Google Scholar 

  11. M. Bożejko, R. Speicher, Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces. Math. Ann. 300(1), 97–120 (1994)

    MathSciNet  MATH  Google Scholar 

  12. N.P. Brown, N. Ozawa, C -algebras and finite-dimensional approximations. Graduate Studies in Mathematics, vol. 88 (American Mathematical Society, Providence, 2008)

    Google Scholar 

  13. A.L. Carey, V. Gayral, A. Rennie, F.A. Sukochev, Index theory for locally compact noncommutative geometries. Mem. Amer. Math. Soc. 231(1085) (2014)

    Google Scholar 

  14. I. Chatterji, Introduction to the rapid decay property, in Around Langlands Correspondences. Contemporary Mathematics, vol. 691 (American Mathematical Society, Providence, 2017), pp. 53–72

    Google Scholar 

  15. F. Cipriani, D. Guido, T. Isola, J.-L. Sauvageot, Spectral triples for the Sierpinski gasket. J. Funct. Anal. 266(8), 4809–4869 (2014)

    MathSciNet  MATH  Google Scholar 

  16. A. Connes, Compact metric spaces, Fredholm modules, and hyperfiniteness. Ergodic Theory Dynam. Systems 9(2), 207–220 (1989)

    MathSciNet  MATH  Google Scholar 

  17. A. Connes, Noncommutative Geometry (Academic Press, Inc., San Diego, 1994)

    MATH  Google Scholar 

  18. J. De Cannière, U. Haagerup, Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups. Amer. J. Math. 107(2), 455–500 (1985)

    MathSciNet  MATH  Google Scholar 

  19. J. Dieudonné, Treatise on Analysis, vol. II. Enlarged and corrected printing. Translated by I. G. Macdonald. With a loose erratum. Pure and Applied Mathematics, 10-II (Academic Press [Harcourt Brace Jovanovich, Publishers], New York, 1976)

    Google Scholar 

  20. R.M. Dudley, Real Analysis and Probability (CRC Press, Boca Raton, 2018)

    Google Scholar 

  21. M. Egert, On Kato’s conjecture and mixed boundary conditions. PhD (2015)

    Google Scholar 

  22. K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194 (Springer, New York, 2000)

    Google Scholar 

  23. I. Forsyth, B. Mesland, A. Rennie, Dense domains, symmetric operators and spectral triples. New York J. Math. 20, 1001–1020 (2014)

    MathSciNet  MATH  Google Scholar 

  24. V. Gayral, J.M. Gracia-Bondía, B. Iochum, T. Schücker, J.C. Varilly, Moyal planes are spectral triples. Comm. Math. Phys. 246(3), 569–623 (2004)

    MathSciNet  MATH  Google Scholar 

  25. S. Ghorpade, B.V. Limaye, A course in multivariable calculus and analysis, in Undergraduate Texts in Mathematics (Springer, New York, 2010)

    MATH  Google Scholar 

  26. J.M. Gracia-Bondía, J.C. Varilly, H. Figueroa, Elements of noncommutative geometry, in Birkhäuser Advanced Texts: Basler Lehrbücher (Birkhäuser Boston, Inc., Boston, 2001)

    Google Scholar 

  27. M. Haase, The functional calculus for sectorial operators, in Operator Theory: Advances and Applications, vol. 169 (Birkhäuser Verlag, Basel, 2006)

    MATH  Google Scholar 

  28. T. Hytönen, J. van Neerven, M. Veraar, L. Weis, Analysis in Banach Spaces, vol. II. Probabilistic Methods and Operator Theory (Springer, Berlin, 2018)

    MATH  Google Scholar 

  29. M. Junge, T. Mei, Noncommutative Riesz transforms–a probabilistic approach. Amer. J. Math. 132(3), 611–680 (2010)

    MathSciNet  MATH  Google Scholar 

  30. M. Junge, Z.-J. Ruan, Approximation properties for noncommutative L p-spaces associated with discrete groups. Duke Math. J. 117(2), 313–341 (2003)

    MathSciNet  MATH  Google Scholar 

  31. M. Junge, D. Sherman, Noncommutative L p modules. J. Operator Theory 53(1), 3–34 (2005)

    MathSciNet  MATH  Google Scholar 

  32. M. Junge, C. Le Merdy, Q. Xu, H functional calculus and square functions on noncommutative L p-spaces. Astérisque No. 305 (2006)

    Google Scholar 

  33. M. Junge, T. Mei, J. Parcet, Smooth Fourier multipliers on group von Neumann algebras. Geom. Funct. Anal. 24(6), 1913–1980 (2014)

    MathSciNet  MATH  Google Scholar 

  34. M. Junge, T. Mei, J. Parcet, Noncommutative Riesz transforms–dimension free bounds and Fourier multipliers. J. Eur. Math. Soc. (JEMS) 20(3), 529–595 (2018)

    Google Scholar 

  35. R.V. Kadison, A representation theory for commutative topological algebra. Mem. Amer. Math. Soc. (7), 39 (1951)

    Google Scholar 

  36. T. Kato, Perturbation Theory for Linear Operators, 2nd edn. Grundlehren der Mathematischen Wissenschaften, Band 132 (Springer, Berlin, 1976)

    Google Scholar 

  37. F. Latrémolière, Quantum locally compact metric spaces. J. Funct. Anal. 264(1), 362–402 (2013)

    MathSciNet  MATH  Google Scholar 

  38. F. Latrémolière, Convergence of fuzzy tori and quantum tori for the quantum Gromov-Hausdorff propinquity: an explicit approach. Münster J. Math. 8(1), 57–98 (2015)

    MathSciNet  MATH  Google Scholar 

  39. F. Latrémolière, The dual Gromov-Hausdorff propinquity. J. Math. Pures Appl. (9) 103(2), 303–351 (2015)

    Google Scholar 

  40. F. Latrémolière, Equivalence of quantum metrics with a common domain. J. Math. Anal. Appl. 443(2), 1179–1195 (2016)

    MathSciNet  MATH  Google Scholar 

  41. F. Latrémolière, Quantum metric spaces and the Gromov-Hausdorff propinquity, in Noncommutative Geometry and Optimal Transport. Contemporary Mathematics, vol. 676 (American Mathematical Society, Providence, 2016), pp. 47–133

    Google Scholar 

  42. F. Latrémolière, The quantum Gromov-Hausdorff propinquity. Trans. Amer. Math. Soc. 368(1), 365–411 (2016)

    MathSciNet  MATH  Google Scholar 

  43. F. Latrémolière, Heisenberg Modules over Quantum 2-tori are metrized quantum vector bundles. Preprint online on https://arxiv.org/abs/1703.07073

  44. F. Latrémolière, The Gromov-Hausdorff propinquity for metric Spectral Triples. Preprint online on https://arxiv.org/abs/1811.10843

  45. A. McIntosh, S. Monniaux, Hodge-Dirac, Hodge-Laplacian and Hodge-Stokes operators in L p spaces on Lipschitz domains. Rev. Mat. Iberoam. 34(4), 1711–1753 (2018)

    MathSciNet  MATH  Google Scholar 

  46. R.E. Megginson, An introduction to Banach space theory, in Graduate Texts in Mathematics, vol. 183 (Springer, New York, 1998)

    MATH  Google Scholar 

  47. J.v. Neerven, The Adjoint of a Semigroup of Linear Operators. Lecture Notes in Mathematics, vol. 1529 (Springer, Berlin, 1992), x+195 pp.

    Google Scholar 

  48. N. Ozawa, M. Rieffel, Hyperbolic group C -algebras and free-product C -algebras as compact quantum metric spaces. Canad. J. Math. 57(5), 1056–1079 (2005)

    MathSciNet  MATH  Google Scholar 

  49. V. Paulsen, Completely Bounded Maps and Operator Algebras (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  50. G. Pisier, Regular operators between non-commutative L p-spaces. Bull. Sci. Math. 119(2), 95–118 (1995)

    MathSciNet  MATH  Google Scholar 

  51. G. Pisier, Introduction to Operator Space Theory (Cambridge University Press, Cambridge, 2003)

    MATH  Google Scholar 

  52. G. Pisier, Q. Xu, Non-commutative L p-spaces, in Handbook of the Geometry of Banach Spaces, vol. II, ed. by W.B. Johnson, J. Lindenstrauss (Elsevier, Amsterdam, 2003), pp. 1459–1517

    MATH  Google Scholar 

  53. J.G. Ratcliffe, Foundations of Hyperbolic Manifolds. Graduate Texts in Mathematics, vol. 149 (Springer, New York, 1994)

    Google Scholar 

  54. M. Reed, B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn. (Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980)

    Google Scholar 

  55. M.A. Rieffel, Metrics on state spaces. Doc. Math. 4, 559–600 (1999)

    MathSciNet  MATH  Google Scholar 

  56. M.A. Rieffel, Compact quantum metric spaces, in Operator Algebras, Quantization, and Noncommutative Geometry. Contemporary Mathematics, vol. 365 (American Mathematical Society, Providence, 2004), pp. 315–330

    Google Scholar 

  57. M.A. Rieffel, Gromov-Hausdorff distance for quantum metric spaces. Appendix 1 by Hanfeng Li. Gromov-Hausdorff distance for quantum metric spaces. Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance. Mem. Amer. Math. Soc. 168(796), 1–65 (2004)

    Google Scholar 

  58. K. Schmüdgen, Unbounded self-adjoint operators on Hilbert space, in Graduate Texts in Mathematics, vol. 265 (Springer, Dordrecht, 2012)

    MATH  Google Scholar 

  59. F. Sukochev, D. Zanin, The Connes character formula for locally compact spectral triples. Preprint online on https://arxiv.org/abs/1803.01551

  60. J.C. Varilly, Dirac operators and spectral geometry. Lecture notes on noncommutative geometry and quantum groups edited by P. M. Hajac. https://www.mimuw.edu.pl/~pwit/toknotes/

  61. C. Villani, Optimal transport. Old and new, in Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338 (Springer, Berlin, 2009)

    Google Scholar 

  62. N. Weaver, Lipschitz algebras and derivations of von Neumann algebras. J. Funct. Anal. 139(2), 261–300 (1996)

    MathSciNet  MATH  Google Scholar 

  63. N. Weaver, Lipschitz Algebras, 2nd edn. (World Scientific Publishing Co. Pte. Ltd., Hackensack, 2018)

    MATH  Google Scholar 

  64. Q. Xu, Non-commutative L p-spaces. Script not available

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arhancet, C., Kriegler, C. (2022). Locally Compact Quantum Metric Spaces and Spectral Triples. In: Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers. Lecture Notes in Mathematics, vol 2304. Springer, Cham. https://doi.org/10.1007/978-3-030-99011-4_5

Download citation

Publish with us

Policies and ethics