Skip to main content

Representation and Processing of Instantaneous and Durative Temporal Phenomena

  • Conference paper
  • First Online:
Logic-Based Program Synthesis and Transformation (LOPSTR 2021)

Abstract

Event definitions in Complex Event Processing systems are constrained by the expressiveness of each system’s language. Some systems allow the definition of instantaneous complex events, while others allow the definition of durative complex events. While there are exceptions that offer both options, they often lack of intervals relations such as those specified by the Allen’s interval algebra. In this paper, we propose a new logic based temporal phenomena definition language, specifically tailored for Complex Event Processing. Our proposed language allows the representation of both instantaneous and durative phenomena and the temporal relations between them. Moreover, we demonstrate the expressiveness of our proposed language by employing a maritime use case where we define maritime events of interest. We analyse the execution semantics of our proposed language for stream processing and finally, we introduce and evaluate on real world data, Phenesthe, our open-source Complex Event Processing system.

This work has been funded by the Engineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral Training in Distributed Algorithms at the University of Liverpool, and Denbridge Marine Limited, United Kingdom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Phenesthe corresponds to the Greek word ‘\(\mathrm {\Phi }\upalpha \acute{\upiota }\upnu \upvarepsilon \upsigma \upvartheta \upalpha \upiota \)’ which means ‘to appear’. Phenesthe (\(\mathrm {\Phi }\upalpha \acute{\upiota }\upnu \upvarepsilon \upsigma \upvartheta \upalpha \upiota \)) and phenomenon (\(\upvarphi \upalpha \upiota \upnu \acute{\mathrm {o}}\upmu \upvarepsilon \upnu \mathrm {o}\upnu \)) are different forms of the ancient Greek verb ‘\(\mathrm {\Phi }\upalpha \acute{\upiota }\upnu \upomega \)’ meaning ‘I cause to appear’.

  2. 2.

    We extend the set of all allowed values with \(t_\circ \) denoting a time instant that is currently not known but the domain of its possible values is known.

References

  1. Ahmed, A., Lisitsa, A., Dixon, C.: A misuse-based network intrusion detection system using temporal logic and stream processing. In: 2011 5th International Conference on Network and System Security, pp. 1–8 (2011). https://doi.org/10.1109/ICNSS.2011.6059953

  2. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983). https://doi.org/10.1145/182.358434

    Article  MATH  Google Scholar 

  3. Anicic, D., Fodor, P., Rudolph, S., Stühmer, R., Stojanovic, N., Studer, R.: A rule-based language for complex event processing and reasoning. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 42–57. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15918-3_5

    Chapter  Google Scholar 

  4. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex event processing in ETALIS. Semant. Web 3(4), 397–407 (2012). https://doi.org/10.3233/SW-2011-0053

    Article  Google Scholar 

  5. Artikis, A., Sergot, M., Paliouras, G.: An event calculus for event recognition. IEEE Trans. Knowl. Data Eng. 27(4), 895–908 (2015). https://doi.org/10.1109/TKDE.2014.2356476

    Article  Google Scholar 

  6. Balbiani, P., Goranko, V., Sciavicco, G.: Two-sorted point-interval temporal logics. Electron. Notes Theor. Comput. Sci. 278, 31–45 (2011). https://doi.org/10.1016/j.entcs.2011.10.004

    Article  MathSciNet  MATH  Google Scholar 

  7. Beck, H., Dao-Tran, M., Eiter, T.: LARS: a logic-based framework for analytic reasoning over streams. Artif. Intell. 261, 16–70 (2018). https://doi.org/10.1016/j.artint.2018.04.003

    Article  MathSciNet  MATH  Google Scholar 

  8. Bellini, P., Mattolini, R., Nesi, P.: Temporal logics for real-time system specification. ACM Comput. Surv. 32(1), 12–42 (2000). https://doi.org/10.1145/349194.349197

    Article  Google Scholar 

  9. Bohlen, M.H., Busatto, R., Jensen, C.S.: Point-versus interval-based temporal data models. In: Proceedings 14th International Conference on Data Engineering, pp. 192–200 (1998). https://doi.org/10.1109/ICDE.1998.655777

  10. Chittaro, L., Montanari, A.: Efficient temporal reasoning in the cached event calculus. Comput. Intell. 12(3), 359–382 (1996). https://doi.org/10.1111/j.1467-8640.1996.tb00267.x

    Article  MathSciNet  Google Scholar 

  11. Chomicki, J.: Temporal query languages: a survey. In: Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS, vol. 827, pp. 506–534. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0014006

    Chapter  MATH  Google Scholar 

  12. Cugola, G., Margara, A.: TESLA: a formally defined event specification language. In: DEBS ’10, p. 50. ACM Press (2010). https://doi.org/10.1145/1827418.1827427

  13. Dohr, A., Engels, C., Behrend, A.: Algebraic operators for processing sets of temporal intervals in relational databases. In: TIME (2018)

    Google Scholar 

  14. Chen, H.-Y., Tsai, J.J.P., Bi, Y.: An event-based real-time logic to specify the behavior and timing properties of real-time systems. In: Proceedings of the Third International Conference on Tools for Artificial Intelligence - TAI 91, pp. 210–219 (1991). https://doi.org/10.1109/TAI.1991.167097

  15. Khan, A., Bozzato, L., Serafini, L., Lazzerini, B.: Visual reasoning on complex events in soccer videos using answer set programming. In: Calvanese, D., Iocchi, L. (eds.) GCAI 2019. Proceedings of the 5th Global Conference on Artificial Intelligence. EPiC Series in Computing, vol. 65, pp. 42–53 (2019). https://doi.org/10.29007/pjd4

  16. Kowalski, R., Sergot, M.: A logic-based calculus of events. N. Gener. Comput. 4(1), 67–95 (1986). https://doi.org/10.1007/BF03037383

    Article  MATH  Google Scholar 

  17. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-07003-1

  18. Mao, C., Eran, A., Luo, Y.: Efficient genomic interval queries using augmented range trees. Sci. Rep. 9(1), 5059 (2019). https://doi.org/10.1038/s41598-019-41451-3

    Article  Google Scholar 

  19. Mileo, A., Abdelrahman, A., Policarpio, S., Hauswirth, M.: StreamRule: a nonmonotonic stream reasoning system for the semantic web. In: Faber, W., Lembo, D. (eds.) RR 2013. LNCS, vol. 7994, pp. 247–252. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39666-3_23

    Chapter  Google Scholar 

  20. Mueller, E.T.: Chapter 5 - the commonsense law of inertia. In: Mueller, E.T. (ed.) Commonsense Reasoning (Second Edn.), pp. 77–89. Morgan Kaufmann, Boston (2015). https://doi.org/10.1016/B978-0-12-801416-5.00005-X

  21. Pitsikalis, M., Artikis, A., Dreo, R., Ray, C., Camossi, E., Jousselme, A.L.: Composite event recognition for maritime monitoring. In: DEBS (2019), pp. 163–174. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3328905.3329762

  22. Pitsikalis, M., Lisitsa, A., Luo, S.: Phenesthe (2021). https://github.com/manospits/Phenesthe

  23. Pitsikalis, M., Lisitsa, A., Luo, S.: Representation and processing of instantaneous and durative temporal phenomena (2021). https://arxiv.org/abs/2108.13365

  24. Ray, C., Dréo, R., Camossi, E., Jousselme, A.L., Iphar, C.: Heterogeneous integrated dataset for maritime intelligence, surveillance, and reconnaissance. Data Brief 25, 104141 (2019). https://doi.org/10.1016/j.dib.2019.104141

    Article  Google Scholar 

  25. Roy, J.: Rule-based expert system for maritime anomaly detection. In: Carapezza, E.M. (ed.) Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IX, vol. 7666, pp. 597–608. International Society for Optics and Photonics, SPIE (2010). https://doi.org/10.1117/12.849131

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manolis Pitsikalis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pitsikalis, M., Lisitsa, A., Luo, S. (2022). Representation and Processing of Instantaneous and Durative Temporal Phenomena. In: De Angelis, E., Vanhoof, W. (eds) Logic-Based Program Synthesis and Transformation. LOPSTR 2021. Lecture Notes in Computer Science, vol 13290. Springer, Cham. https://doi.org/10.1007/978-3-030-98869-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98869-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98868-5

  • Online ISBN: 978-3-030-98869-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics