Skip to main content

The Neural Architecture of Violence-Related Socialization – Evidence from Functional Neuroimaging

  • Living reference work entry
  • First Online:
Handbook of Anger, Aggression, and Violence
  • 17 Accesses

Abstract

The idea of the present issue is to adumbrate different theoretical, conceptual, and empirical perspectives on the development of aggressive and violent behaviors. Key aspects are mainly discussed on the basis of noninvasively measured functional neuroimaging data. There is a variety of well-thought-out models explaining important aspects of aggression-development in humans. These models address biophysiological, genetical, contextual, socialisation-related, internal trait and state conditions, and other potential modulators of aggression development, current status, and predictors. There is some neuroscientific evidence that substantiate several model assumptions regarding functional neuroanatomy. Considering the apparent complexity of aggression and violence, it appears appropriate to follow a principle rather than a phenomenological concept, as the latter bears the risk of losing itself in an infinite number of possible examples. The principal concept suggested here, relies on a given genetic makeup, providing rudimentary abilities of behaviors that can be shaped and evolve according to socially relevant perception-action concepts at different complexity levels during lifelong experience. Thus, concepts of complex aggression and violent behaviors are not assumed to be given from the start, but their neural establishment can be facilitated by adverse internal and external developmental conditions. Consistently, involvement of highly plastic and individually recruited heteromodal association cortices during the processing of complex social interaction scenarios have been shown in support of this idea. Future research studies are suggested to keep the variety of experimental perspectives, but also testing for validity and reliability of their cross-sectional approaches by longitudinal designs and a consequent consideration of external variables to explain and validate respective neurophysiological effects. They are further suggested to develop methodological approaches to more adequately and sufficiently describe the complex neurophysiological phenomenology of different kinds of aggression and violence in samples coming from different developmental cohorts and groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

fMRI:

Functional Magnetic Resonance Imaging

PAC:

Perception-Action-Cycle

PAG:

PeriAqueductal Gray

PET:

Positron Emission Tomography

TAP:

Taylor Aggression Paradigm

References

  • Abelson RP (1981) Psychological status of the script concept. Am Psychol 36:715–729

    Article  Google Scholar 

  • Anderson CA, Bushmann BJ (2002) Human aggression. Annu Rev Psychol 53:27–51

    Article  PubMed  Google Scholar 

  • Bandura A (2001) Social cognitive theory: an agentic perspective. Annu Rev Psychol 52:1–26

    Article  PubMed  Google Scholar 

  • Beaver KM, Rowland MW, Schwartz JA, Nedelec JL (2011) The generic origins of psychopathic personality traits in adult males and females: results from an adoption-based study. J Crim Just 39:426–432

    Article  Google Scholar 

  • Barrett LE, Ochsner KN, Gross JJ (2006) On the automaticity of emotion. In: Bargh J (ed) Social psychology and the unconscious: the automaticity of higher mental processes. Psychology Press, New York, pp 173–217

    Google Scholar 

  • Basar E (2011) Brain-body-mind in the nebulous Cartesian system: a holistic approach. Springer, Heidelberg

    Book  Google Scholar 

  • Berkowitz L (1990) On the formation and regulation of anger and aggression: a cognitive neoassociationistic analysis. Am Psychol 45:494–503

    Article  PubMed  Google Scholar 

  • Blair RJR (2010) Neuroimaging of psychopathy and antisocial behavior: a targeted review. Curr Psychiatry Rep 12:76–82. https://doi.org/10.1007/s11920-009-0086-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Blair RJR (2013) The neurobiology of psychopathic traits in youths. Nat Rev Neurosci 14:786–799. https://doi.org/10.1038/nrn3577

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradley MM, Keil A, Lang PJ (2012) Orienting and emotional perception: facilitation, attenuation, and interference. Front Psychol 1-6. https://doi.org/10.3389/fpsyg.2012.00493

  • Brower MC, Price BH (2001) Neuropsychiatry of frontal lobe dysfunction in violent and criminal behaviour: a critical review. J Neurol Neurosurg Psychiatry 71:720–726

    Article  PubMed  PubMed Central  Google Scholar 

  • Buades-Rotger M, Beyer F, Krämer UM (2017) Avoidant responses to interpersonal provocation are associated with increased amygdala and decreased mentalizing network activity. Gogn Behav 4:e0337-16.2017, 1–16

    Google Scholar 

  • Damasio AR (1996) The somatic marker hypothesis and the possible functions of the prefrontal cortex. Phil Trans R Soc Lond B 351:1413–1420

    Article  Google Scholar 

  • Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6:13–34

    Article  PubMed  Google Scholar 

  • de Gelder B (2006) Towards the neurobiology of emotional body language. Nat Rev Neurosci 7:242–249

    Article  PubMed  Google Scholar 

  • Denson TF, Pedersen WC, Ronquillo J, Nandy AS (2008) The angry brain: neural correlates of anger, angry rumination, and aggressive personality. J Cogn Neurosci 21:734–744

    Article  Google Scholar 

  • Depaulis A, Keay KA, Bandler R (1992) Longitudinal neuronal organization of defensive reactions in the midbrain periaqueductal gray region of the rat. Exp Brain Res 90:307–318. https://doi.org/10.1007/BF00227243

    Article  PubMed  Google Scholar 

  • Dollard L, Doob W, Miller NE, Mowrer OH, Sears EH (1939) Frustration and aggression. Yale University Freer, New Haven

    Book  Google Scholar 

  • Dougherty DD, Shin LM, Alpert NM, Pitman RK, Orr SP, Lasko M, Macklin ML, Fischman AJ, Rauch SL (1999) Anger in healthy men: a PET study using script-driven imagery. Biol Psychiatry 46:466–472

    Article  PubMed  Google Scholar 

  • Dow-Edwards D, MacMaster FP, Peterson BS, Niesink R, Andersen S, Braams BR (2019) Experience during adolescence shapes brain development: from synapses and networks to normal and pathological behavior. Neurotoxicol Teratol 76:106834. https://doi.org/10.1016/j.ntt.2019.106834

    Article  PubMed  Google Scholar 

  • Fehr T (2012) Neuronale Korrelate der Aggression beim Menschen – virtuelle Medien und reale Lebensumgebung. In: Kaminski W, Lorber M (eds) Gamebased Learning, kopaed, München

    Google Scholar 

  • Fehr T (2022) Nompathie – chronisches Gewaltverhalten in Graubereichen von Status, Gesetz und Moral. In: Abramowski R, Lange J, Meyerhuber S, Rust U (eds) Gewaltfreie Arbeit – Arbeit der Zukunft, Loccumer Protokolle Band 72/2022, Rehburg-Loccum 2022, ISSN 0177-1132, ISBN 978-3-8172-7221-1

    Google Scholar 

  • Fehr T, Achtziger A (2021) Contextual modulation of binary decisions in dyadic social interactions. Front Behav Neurosci 15. https://doi.org/10.3389/fnbeh.2021.715030

  • Fehr T, Achtziger A, Roth G, Strüber D (2014) Neural correlates of the empathic perceptual processing of realistic social interaction scenarios displayed from a first-order perspective. Brain Res 1583:141–158

    Article  PubMed  Google Scholar 

  • Fehr T, Herrmann M (2015) Can modular psychological concepts like affect and emotion be assigned to a distinct subset of regional neural circuits? Comment on “The Quartet Theory of Human Emotions: an integrative and Neurofunctional model” by S Koelsch et al. Phys Life Rev 13:47–49

    Google Scholar 

  • Fehr T, Milz P (2019) The individuality index – a measure to quantify the degree of inter-individual variability in intra-cerebral brain electric and metabolic activity. Cogn Neurodyn 13:429–436. https://doi.org/10.1007/s11571-019-09538-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferguson CJ, Dyck D (2012) Paradigm change in aggression research: the time has come to retire the General Aggression Model. Aggress Violent Behav 17:220–228

    Article  Google Scholar 

  • Fuster JM (2016) Prefrontal cortex in decision making: the perception-action cycle. In: Dreher J-C, Tremblay L (eds) Decision neuroscience – an integrative perspective. Academic Press. https://doi.org/10.1016/B978-0-12-805308-9.00008-7

    Chapter  Google Scholar 

  • Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Jl R (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863

    Article  PubMed  Google Scholar 

  • Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM (2004) Dynamic mapping of human cortical development during childhood through early adulthood. PNAS 101:8174–8179

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu X, Liu X, Guise KG, Naidich TP, Hof PR, Fan J (2010) Functional dissociation of the frontoinsular and anterior cingulate cortices in empathy for pain. J Neurosci 30:3739–3744

    Article  PubMed  PubMed Central  Google Scholar 

  • Huesmann LR (1986) Psychological processes promoting the relation between exposure to media violence and aggressive behavior by the viewer. J Soc Issues 42:125–140

    Google Scholar 

  • King JA, Blair RJR, Mitchell DGV, Dolan RJ, Burges N (2006) Doing the right thing: a common neural circuit for appropriate violent or compassionate behavior. NeuroImage 30:1069–1076

    Article  PubMed  Google Scholar 

  • Knudsen EI (2004) Sensitive periods in the development of the brain and behavior. J Cogn Neurosci 16:1412–1425

    Article  PubMed  Google Scholar 

  • Kober H, Feldman Barrett L, Joseph J, Bliss-Moreau E, Lindquist K, Wagera TD (2008) Functional grouping and cortical–subcortical interactions in emotion: a meta-analysis of neuroimaging studies. NeuroImage 42:998–1031

    Article  PubMed  Google Scholar 

  • Krämer UM, Jansma H, Tempelmann C, Münte TF (2007) Tit-for-tat: the neural basis of reactive aggression. NeuroImage 38:203–211

    Article  PubMed  Google Scholar 

  • Krämer UM, Riba J, Richter S, Münte TF (2011) An fMRI study on the role of serotonin in reactive aggression. Plos One, 6:e27668. https://doi.org/10.1371/journal.pone.0027668

  • Lotze M, Veit R, Anders S, Birbaumer N (2007) Evidence for a different role of the ventral and dorsal medial prefrontal cortex for social reactive aggression: an interactive fMRI study. NeuroImage 34:470–478

    Article  PubMed  Google Scholar 

  • Mahan AL, Ressler KJ (2012) Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci 35:24–35. https://doi.org/10.1016/j.tins.2011.06.007

    Article  PubMed  Google Scholar 

  • Ochsner KN, Gross JJ (2005) The cognitive control of emotion. Trends Cogn Sci 9:242–249

    Article  PubMed  Google Scholar 

  • Paus T (2005) Mapping brain development and aggression. Can Child Adolesc Psychiatry Rev 14:10–15

    Google Scholar 

  • Phelps E, LeDoux J (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48:175–187. https://doi.org/10.1016/j.neuron.2005.09.025. PMID: 16242399

    Article  PubMed  Google Scholar 

  • Pietrini P, Guazzelli M, Basso G, Jaffe K, Grafman J (2000) Neural correlates of imaginal aggressive behavior assessed by positron emission tomography in healthy subjects. Am J Psychiat 157:1772–1781

    Article  PubMed  Google Scholar 

  • Ramirez JM, Andreu JM (2006) Aggression, and some related psychological constructs (anger, hostility, and impulsivity): some comments from a research project. Neurosci Biobehav R 30:276–291

    Article  Google Scholar 

  • Roberton T, Dafern M, Bucks RS (2012) Emotion regulation and aggression. Aggress Violent Behav 17:72–82

    Article  Google Scholar 

  • Roelofs K (2017) Freeze for action: neurobiological mechanisms in animal and human freezing. Philos Trans R Soc B 372:20160206. https://doi.org/10.1098/rstb.2016.0206

    Article  Google Scholar 

  • Rosenbloom MH, Schmahmann JD, Price BH (2012) The functional neuroanatomy of decision-making. J Neuropsych Clin N 24:266–277

    Google Scholar 

  • Siegel A, Victoroff J (2009) Understanding human aggression: new insights from neuroscience. Int J Law Psychiatry 32:209–215

    Article  PubMed  Google Scholar 

  • Siever LJ (2008) Neurobiology of aggression and violence. Am J Psychiatry 165:429–442

    Article  PubMed  PubMed Central  Google Scholar 

  • Strüber D, Lück M, Roth G (2008) Sex, aggression and impulse control: an integrative account. Neurocase 14:93–121

    Article  PubMed  Google Scholar 

  • Strüber D, Fehr T (2009) Geschlechtsunterschiede bei Aggression und ihre neurobiologischen Korrelate. In: Müller J (ed) Neurobiologie forensisch-relevanter Störungen. Kohlhammer, Stuttgart, Germany

    Google Scholar 

  • Svenson O (1996) Decision making and the search for fundamental psychological regularities: What can be learned from a process perspective? Organ Behav Hum Decis 65:252–267

    Article  Google Scholar 

  • Taubner S, Hauschild S, Wolter D, Roth G, Fehr T (2021) Neural response to aggressive provocation and social positive interaction in violent offenders. Brain Behav 11:e32400. https://doi.org/10.1002/brb3.2400

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor SP (1967) Aggressive behavior and physiological arousal as a function of provocation and the tendency to inhibit aggression. J Pers 35:297–310

    Article  PubMed  Google Scholar 

  • Tedeshi JT, Felson RB (1994) Violence, aggression, & coercive actions. Am Psychol Assoc., Washington, DC

    Book  Google Scholar 

  • Tremblay RE, Nagin DS (2005) The developmental origins of physical aggression in humans. In: Tremblay RE, Hartup WW, Archer J (eds) Developmental origins of aggression. Guilford Press, New York

    Google Scholar 

  • Veit R, Lotze M, Sewing S, Missenhardt H, Gaber T, Birbaumer N (2010) Aberrant social and cerebral responding in a competitive reaction time paradigm in criminal psychopaths. NeuroImage 49:3365–3372

    Article  PubMed  Google Scholar 

  • Wiechert J, Janzen A, Achtziger A, Fehr T (2021) Neural correlates of decisions in quasi-realistic, affective social interactions in individuals with violence-related socialisation. Front Behav Neurosci 15. https://doi.org/10.3389/fnbeh.2021.713311

  • Zillmann D (1971) Excitation transfer in communication-mediated aggressive behavior. J Exp Soc Psychol 7:419–434

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Fehr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fehr, T. (2023). The Neural Architecture of Violence-Related Socialization – Evidence from Functional Neuroimaging. In: Martin, C.R., Preedy, V.R., Patel, V.B. (eds) Handbook of Anger, Aggression, and Violence. Springer, Cham. https://doi.org/10.1007/978-3-030-98711-4_92-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98711-4_92-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98711-4

  • Online ISBN: 978-3-030-98711-4

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics