Skip to main content

Biotechnology in Medicine: Advances-I

  • Chapter
  • First Online:
Fundamentals and Advances in Medical Biotechnology

Abstract

The recent advances in biologic medicine have paved a way to successful treatment of patients with serious diseases such as cancer, neurological cases like multiple sclerosis, autoimmune diseases such as rheumatoid arthritis (RA), and to fight against a very recent pandemic outbreak like COVID-19 disease. Biotechnology is an important field that is applied to the medical sector with the aim of improving the distinct targeted genes and customized medicines. Understanding of human genome via the human genome project, opened a new era of gene specific targeted therapy based on different disease conditions. There are numerous methods which facilitated for the advancement of medical biotechnology including microarray and next-generation sequencing. These advanced techniques of biotechnology are commonly used to improve medicines due to the advantages and pieces of knowledge it provides such as understanding the genetic composition of the different species using next-generation sequencing techniques. Understanding of genetic sequencing of an organism will provide a foundational structure of hereditary diseases manipulation and repairing of damaged genes to cure the diseases. In this chapter, we will discuss how medical biotechnology revolutionized the traditional medicine by understanding the in-depth of various diseases at a single nucleotide level using advanced biotechnological tools available till date. In addition, we will provide a brief overview on some of latest areas of medical biotechnological advancements include pioneering work in genetic testing, gene therapy and advanced drug treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bunnik EM, Le Roch KG (2013) An introduction to functional genomics and systems biology. Adv Wound Care (New Rochelle) 2(9):490–498. https://doi.org/10.1089/wound.2012.0379

    Article  Google Scholar 

  2. Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107(1):1–8. https://doi.org/10.1016/j.ygeno.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  3. Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, Waterston RH (2017) DNA sequencing at 40: past, present and future. Nature 550(7676):345–353. https://doi.org/10.1038/nature24286

    Article  CAS  PubMed  Google Scholar 

  4. Stretton AO (2002) The first sequence: Fred Sanger and insulin. Genetics 162(2):527–532

    Article  Google Scholar 

  5. Behjati S, Tarpey PS (2013) What is next generation sequencing? Arch Dis Child Educ Pract Ed 98(6):236–238. https://doi.org/10.1136/archdischild-2013-304340

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kanzi AM, San JE, Chimukangara B, Wilkinson E, Fish M, Ramsuran V, de Oliveira T (2020) Next generation sequencing and bioinformatics analysis of family genetic inheritance. Front Genet 11:544162. https://doi.org/10.3389/fgene.2020.544162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Slatko BE, Gardner AF, Ausubel FM (2018) Overview of next-generation sequencing technologies. Curr Protoc Mol Biol 122(1):e59. https://doi.org/10.1002/cpmb.59

    Article  PubMed  PubMed Central  Google Scholar 

  8. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: 10 years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351. https://doi.org/10.1038/nrg.2016.49

    Article  CAS  PubMed  Google Scholar 

  9. Ma L, Jakobiec FA, Dryja TP (2019) A review of next-generation sequencing (NGS): applications to the diagnosis of ocular infectious diseases. Semin Ophthalmol 34(4):223–231. https://doi.org/10.1080/08820538.2019.1620800

    Article  CAS  PubMed  Google Scholar 

  10. Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364. https://doi.org/10.1155/2012/251364

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hood L, Rowen L (2013) The human genome project: big science transforms biology and medicine. Genome Med 5(9):79. https://doi.org/10.1186/gm483

    Article  PubMed  PubMed Central  Google Scholar 

  12. International Human Genome Sequencing C (2004) Finishing the euchromatic sequence of the human genome. Nature 431(7011):931–945. https://doi.org/10.1038/nature03001

    Article  CAS  Google Scholar 

  13. Dillman AR, Mortazavi A, Sternberg PW (2012) Incorporating genomics into the toolkit of nematology. J Nematol 44(2):191–205

    PubMed  PubMed Central  Google Scholar 

  14. Gibbs RA (2020) The human genome project changed everything. Nat Rev Genet 21(10):575–576. https://doi.org/10.1038/s41576-020-0275-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bovee D, Zhou Y, Haugen E, Wu Z, Hayden HS, Gillett W, Tuzun E, Cooper GM, Sampas N, Phelps K, Levy R, Morrison VA, Sprague J, Jewett D, Buckley D, Subramaniam S, Chang J, Smith DR, Olson MV, Eichler EE, Kaul R (2008) Closing gaps in the human genome with fosmid resources generated from multiple individuals. Nat Genet 40(1):96–101. https://doi.org/10.1038/ng.2007.34

    Article  CAS  PubMed  Google Scholar 

  16. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, Uliano-Silva M, Chow W, Fungtammasan A, Kim J, Lee C, Ko BJ, Chaisson M, Gedman GL, Cantin LJ, Thibaud-Nissen F, Haggerty L, Bista I, Smith M, Haase B, Mountcastle J, Winkler S, Paez S, Howard J, Vernes SC, Lama TM, Grutzner F, Warren WC, Balakrishnan CN, Burt D, George JM, Biegler MT, Iorns D, Digby A, Eason D, Robertson B, Edwards T, Wilkinson M, Turner G, Meyer A, Kautt AF, Franchini P, Detrich HW 3rd, Svardal H, Wagner M, Naylor GJP, Pippel M, Malinsky M, Mooney M, Simbirsky M, Hannigan BT, Pesout T, Houck M, Misuraca A, Kingan SB, Hall R, Kronenberg Z, Sovic I, Dunn C, Ning Z, Hastie A, Lee J, Selvaraj S, Green RE, Putnam NH, Gut I, Ghurye J, Garrison E, Sims Y, Collins J, Pelan S, Torrance J, Tracey A, Wood J, Dagnew RE, Guan D, London SE, Clayton DF, Mello CV, Friedrich SR, Lovell PV, Osipova E, Al-Ajli FO, Secomandi S, Kim H, Theofanopoulou C, Hiller M, Zhou Y, Harris RS, Makova KD, Medvedev P, Hoffman J, Masterson P, Clark K, Martin F, Howe K, Flicek P, Walenz BP, Kwak W, Clawson H, Diekhans M, Nassar L, Paten B, Kraus RHS, Crawford AJ, Gilbert MTP, Zhang G, Venkatesh B, Murphy RW, Koepfli KP, Shapiro B, Johnson WE, Di Palma F, Marques-Bonet T, Teeling EC, Warnow T, Graves JM, Ryder OA, Haussler D, O'Brien SJ, Korlach J, Lewin HA, Howe K, Myers EW, Durbin R, Phillippy AM, Jarvis ED (2021) Towards complete and error-free genome assemblies of all vertebrate species. Nature 592(7856):737–746. https://doi.org/10.1038/s41586-021-03451-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moraes F, Goes A (2016) A decade of human genome project conclusion: scientific diffusion about our genome knowledge. Biochem Mol Biol Educ 44(3):215–223. https://doi.org/10.1002/bmb.20952

    Article  CAS  PubMed  Google Scholar 

  18. Emmert-Streib F, Dehmer M, Yli-Harja O (2017) Lessons from the human genome project: modesty, honesty, and realism. Front Genet 8:184. https://doi.org/10.3389/fgene.2017.00184

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rust AG, Mongin E, Birney E (2002) Genome annotation techniques: new approaches and challenges. Drug Discov Today 7(11):S70–S76. https://doi.org/10.1016/s1359-6446(02)02289-4

    Article  CAS  PubMed  Google Scholar 

  20. Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE (2002) Using the transcriptome to annotate the genome. Nat Biotechnol 20(5):508–512. https://doi.org/10.1038/nbt0502-508

    Article  CAS  PubMed  Google Scholar 

  21. Galperin MY, Makarova KS, Wolf YI, Koonin EV (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43(Database issue):D261–D269. https://doi.org/10.1093/nar/gku1223

    Article  CAS  PubMed  Google Scholar 

  22. Galperin MY, Kristensen DM, Makarova KS, Wolf YI, Koonin EV (2019) Microbial genome analysis: the COG approach. Brief Bioinform 20(4):1063–1070. https://doi.org/10.1093/bib/bbx117

    Article  CAS  PubMed  Google Scholar 

  23. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28(1):33–36. https://doi.org/10.1093/nar/28.1.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zelenin AV, Rodionov AV, Bolsheva NL, Badaeva ED, Muravenko OV (2016) Genome: origins and evolution of the term. Mol Biol (Mosk) 50(4):611–620. https://doi.org/10.7868/S0026898416040170

    Article  CAS  Google Scholar 

  25. Roy SW, Irimia M (2012) Genome evolution: where do new introns come from? Curr Biol 22(13):R529–R531. https://doi.org/10.1016/j.cub.2012.05.017

    Article  CAS  PubMed  Google Scholar 

  26. Koonin EV (2006) The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol Direct 1:22. https://doi.org/10.1186/1745-6150-1-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takahashi JS, Pinto LH, Vitaterna MH (1994) Forward and reverse genetic approaches to behavior in the mouse. Science 264(5166):1724–1733. https://doi.org/10.1126/science.8209253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dudai Y (1988) Neurogenetic dissection of learning and short-term memory in Drosophila. Annu Rev Neurosci 11:537–563. https://doi.org/10.1146/annurev.ne.11.030188.002541

    Article  CAS  PubMed  Google Scholar 

  29. Malicki JJ, Pujic Z, Thisse C, Thisse B, Wei X (2002) Forward and reverse genetic approaches to the analysis of eye development in zebrafish. Vision Res 42(4):527–533. https://doi.org/10.1016/s0042-6989(01)00262-0

    Article  CAS  PubMed  Google Scholar 

  30. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y, Dudek N, Relman DA, Finstad KM, Amundson R, Thomas BC, Banfield JF (2016) A new view of the tree of life. Nat Microbiol 1:16048. https://doi.org/10.1038/nmicrobiol.2016.48

    Article  CAS  PubMed  Google Scholar 

  31. Tsuru T, Kawai M, Mizutani-Ui Y, Uchiyama I, Kobayashi I (2006) Evolution of paralogous genes: reconstruction of genome rearrangements through comparison of multiple genomes within Staphylococcus aureus. Mol Biol Evol 23(6):1269–1285. https://doi.org/10.1093/molbev/msk013

    Article  CAS  PubMed  Google Scholar 

  32. Govindarajan R, Duraiyan J, Kaliyappan K, Palanisamy M (2012) Microarray and its applications. J Pharm Bioallied Sci 4(Suppl 2):S310–S312. https://doi.org/10.4103/0975-7406.100283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tarasov KV, Brugh SA, Tarasova YS, Boheler KR (2007) Serial analysis of gene expression (SAGE): a useful tool to analyze the cardiac transcriptome. Methods Mol Biol 366:41–59. https://doi.org/10.1007/978-1-59745-030-0_3

    Article  CAS  PubMed  Google Scholar 

  34. Patino WD, Mian OY, Hwang PM (2002) Serial analysis of gene expression: technical considerations and applications to cardiovascular biology. Circ Res 91(7):565–569. https://doi.org/10.1161/01.res.0000036018.76903.18

    Article  CAS  PubMed  Google Scholar 

  35. Kim HL (2003) Comparison of oligonucleotide-microarray and serial analysis of gene expression (SAGE) in transcript profiling analysis of megakaryocytes derived from CD34+ cells. Exp Mol Med 35(5):460–466. https://doi.org/10.1038/emm.2003.60

    Article  CAS  PubMed  Google Scholar 

  36. Soulet D, Rivest S (2002) Perspective: how to make microarray, serial analysis of gene expression, and proteomic relevant to day-to-day endocrine problems and physiological systems. Endocrinology 143(6):1995–2001. https://doi.org/10.1210/endo.143.6.8868

    Article  CAS  PubMed  Google Scholar 

  37. Chang HY, Thomson JA, Chen X (2006) Microarray analysis of stem cells and differentiation. Methods Enzymol 420:225–254. https://doi.org/10.1016/S0076-6879(06)20010-7

    Article  CAS  PubMed  Google Scholar 

  38. Mello-Coelho V, Hess KL (2005) A conceptual and practical overview of cDNA microarray technology: implications for basic and clinical sciences. Braz J Med Biol Res 38(10):1543–1552. https://doi.org/10.1590/s0100-879x2005001000011

    Article  PubMed  Google Scholar 

  39. Alevizos I, Mahadevappa M, Zhang X, Ohyama H, Kohno Y, Posner M, Gallagher GT, Varvares M, Cohen D, Kim D, Kent R, Donoff RB, Todd R, Yung CM, Warrington JA, Wong DT (2001) Oral cancer in vivo gene expression profiling assisted by laser capture microdissection and microarray analysis. Oncogene 20(43):6196–6204. https://doi.org/10.1038/sj.onc.1204685

    Article  CAS  PubMed  Google Scholar 

  40. Costouros NG, Libutti SK (2002) Microarray technology and gene expression analysis for the study of angiogenesis. Expert Opin Biol Ther 2(5):545–556. https://doi.org/10.1517/14712598.2.5.545

    Article  CAS  PubMed  Google Scholar 

  41. Macgregor PF, Squire JA (2002) Application of microarrays to the analysis of gene expression in cancer. Clin Chem 48(8):1170–1177

    Article  CAS  Google Scholar 

  42. Martinez-Climent JA, Alizadeh AA, Segraves R, Blesa D, Rubio-Moscardo F, Albertson DG, Garcia-Conde J, Dyer MJ, Levy R, Pinkel D, Lossos IS (2003) Transformation of follicular lymphoma to diffuse large cell lymphoma is associated with a heterogeneous set of DNA copy number and gene expression alterations. Blood 101(8):3109–3117. https://doi.org/10.1182/blood-2002-07-2119

    Article  CAS  PubMed  Google Scholar 

  43. Perez-Diez A, Morgun A, Shulzhenko N (2007) Microarrays for cancer diagnosis and classification. Adv Exp Med Biol 593:74–85. https://doi.org/10.1007/978-0-387-39978-2_8

    Article  PubMed  Google Scholar 

  44. Kim H (2004) Role of microarray in cancer diagnosis. Cancer Res Treat 36(1):1–3. https://doi.org/10.4143/crt.2004.36.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Russo G, Zegar C, Giordano A (2003) Advantages and limitations of microarray technology in human cancer. Oncogene 22(42):6497–6507. https://doi.org/10.1038/sj.onc.1206865

    Article  CAS  PubMed  Google Scholar 

  46. Mohr S, Leikauf GD, Keith G, Rihn BH (2002) Microarrays as cancer keys: an array of possibilities. J Clin Oncol 20(14):3165–3175. https://doi.org/10.1200/JCO.2002.12.073

    Article  CAS  PubMed  Google Scholar 

  47. Lu N, Hu Y, Zhu L, Yang X, Yin Y, Lei F, Zhu Y, Du Q, Wang X, Meng Z, Zhu B (2014) DNA microarray analysis reveals that antibiotic resistance-gene diversity in human gut microbiota is age related. Sci Rep 4:4302. https://doi.org/10.1038/srep04302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nagaich U (2015) Recombinant DNA technology: a revolutionizing outlook. J Adv Pharm Technol Res 6(4):147. https://doi.org/10.4103/2231-4040.166456

    Article  PubMed  PubMed Central  Google Scholar 

  49. Siddiqui MA (1982) Recombinant DNA technology and its application to developmental biology. J Craniofac Genet Dev Biol 2(1):75–92

    CAS  PubMed  Google Scholar 

  50. Hodges CA, Stice SL (2003) Generation of bovine transgenics using somatic cell nuclear transfer. Reprod Biol Endocrinol 1:81. https://doi.org/10.1186/1477-7827-1-81

    Article  PubMed  PubMed Central  Google Scholar 

  51. Matoba S, Zhang Y (2018) Somatic cell nuclear transfer reprogramming: mechanisms and applications. Cell Stem Cell 23(4):471–485. https://doi.org/10.1016/j.stem.2018.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang X, Qu J, Li J, He H, Liu Z, Huan Y (2020) Epigenetic reprogramming during somatic cell nuclear transfer: recent progress and future directions. Front Genet 11:205. https://doi.org/10.3389/fgene.2020.00205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gouveia C, Huyser C, Egli D, Pepper MS (2020) Lessons learned from somatic cell nuclear transfer. Int J Mol Sci 21(7):2314. https://doi.org/10.3390/ijms21072314

    Article  CAS  PubMed Central  Google Scholar 

  54. Miller AD (1992) Human gene therapy comes of age. Nature 357(6378):455–460. https://doi.org/10.1038/357455a0

    Article  CAS  PubMed  Google Scholar 

  55. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M (2018) Gene therapy comes of age. Science 359:6372. https://doi.org/10.1126/science.aan4672

    Article  CAS  Google Scholar 

  56. George LA (2017) Hemophilia gene therapy comes of age. Blood Adv 1(26):2591–2599. https://doi.org/10.1182/bloodadvances.2017009878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, Chattopadhyay S, Chandra D, Chilukuri N, Betapudi V (2019) Gene therapy leaves a vicious cycle. Front Oncol 9:297. https://doi.org/10.3389/fonc.2019.00297

    Article  PubMed  PubMed Central  Google Scholar 

  58. Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY (2018) Gene therapy for neurological disorders: progress and prospects. Nat Rev Drug Discov 17(10):767. https://doi.org/10.1038/nrd.2018.158

    Article  CAS  PubMed  Google Scholar 

  59. Bunnell BA, Morgan RA (1998) Gene therapy for infectious diseases. Clin Microbiol Rev 11(1):42–56

    Article  CAS  Google Scholar 

  60. Cross D, Burmester JK (2006) Gene therapy for cancer treatment: past, present and future. Clin Med Res 4(3):218–227. https://doi.org/10.3121/cmr.4.3.218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pickler RH, Munro CL (1995) Gene therapy for inherited disorders. J Pediatr Nurs 10(1):40–47. https://doi.org/10.1016/S0882-5963(05)80097-1

    Article  CAS  PubMed  Google Scholar 

  62. Cavazzana M, Bushman FD, Miccio A, Andre-Schmutz I, Six E (2019) Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nat Rev Drug Discov 18(6):447–462. https://doi.org/10.1038/s41573-019-0020-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All images created using Biorender.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Avin Balaji Ragunathrao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimoga Rajanna, S.K., Adiga, M., Kavitha, G.C., Srinivasa, C., Joshi, S., Balaji Ragunathrao, V.A. (2022). Biotechnology in Medicine: Advances-I. In: Anwar, M., Ahmad Rather, R., Farooq, Z. (eds) Fundamentals and Advances in Medical Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-98554-7_3

Download citation

Publish with us

Policies and ethics