Skip to main content

Microbial Ecology of Hot Desert Soils

  • Chapter
  • First Online:
Microbiology of Hot Deserts

Part of the book series: Ecological Studies ((ECOLSTUD,volume 244))

Abstract

Deserts are one of the major terrestrial biomes on Earth and, with the impacts of global climate change, are expanding. Given the fact that over two billion humans currently live in dryland areas, understanding how these major ecosystems function is particularly important. The poly-extreme environmental conditions of deserts, particularly (hyper)aridity, (hyper)oligotrophy, and high temperatures, limit the distribution and density of higher organisms, particularly plants. As a result, indigenous microbial communities in hot deserts are the dominant sources of primary productivity and other critical ecosystem services.

Counterintuitively, hot desert surface soils, which are exposed to the harshest of abiotic conditions, exhibit high phylogenetic and functional microbial diversity. Independent of geographical localization, these soil communities are dominated by members of the bacterial Actinobacteria and Proteobacteria phyla. Furthermore, community assembly is primarily driven by deterministic niche-partitioning and habitat-filtration processes, with evidence that biotic interactions also play a role. The functionality of desert soil communities is highly water dependent. However, despite the observations that these communities are strongly activated by water input, there is evidence that desert soil microbiomes retain functionality during dry periods, particularly driven toward nutrient and energy acquisition. Together, these studies clearly confirm that hot desert soil microbial communities are well adapted to water scarcity, oligotrophy, and resource patchiness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An S, Couteau C, Luo F, Neveu J, DuBow MS (2013) Bacterial diversity of surface sand samples from the Gobi and Taklamaken deserts. Microb Ecol 66:850–860

    Article  PubMed  Google Scholar 

  • Andrew DR, Fitak RR, Munguia-Vega A, Racolta A, Martinson VG, Dontsova K (2012) Abiotic factors shape microbial diversity in Sonoran Desert soils. Appl Environ Microbiol 78:7527–7537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angel R, Soares MIM, Ungar ED, Gillor O (2010) Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME J 4:553–563

    Article  PubMed  Google Scholar 

  • Angel R, Claus P, Conrad R (2012) Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 6:847–862

    Article  CAS  PubMed  Google Scholar 

  • Angel R, Pasternak Z, Soares MIM, Conrad R, Gillor O (2013) Active and total prokaryotic communities in dryland soils. FEMS Microbiol Ecol 86:130–138

    Article  CAS  PubMed  Google Scholar 

  • Araya JP, Gonzalez M, Cardinale M, Schnell S, Stoll A (2019) Microbiome dynamics associated with the Atacama Flowering Desert. Front Microbiol 10:3160

    Article  PubMed  Google Scholar 

  • Armstrong A, Valverde A, Ramond JB, Makhalanyane TP, Jansson JK, Hopkins DW, Aspray TJ, Seely M, Trindade MI, Cowan DA (2016) Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input. Sci Rep 6:34434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey AC, Kellom M, Poret-Peterson AT, Noonan K, Hartnett HE, Raymond J (2014) Draft genome sequence of Microvirga sp. strain BSC39, isolated from biological soil crust of Moab, Utah. Genome Announc 2:e01198

    Google Scholar 

  • Bastida F, Torres IF, Moreno JL, Baldrian P, Ondoño S, Ruiz-Navarro A, Hernández T, Richnow HH, Starke R, García C, Jehmlich N (2016) The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils. Mol Ecol 25:4660–4673

    Article  CAS  PubMed  Google Scholar 

  • Bastida F, Jehmlich N, Torres IF, García C (2018) The extracellular metaproteome of soils under semiarid climate: a methodological comparison of extraction buffers. Sci Total Environ 619:707–711

    Article  PubMed  CAS  Google Scholar 

  • Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917

    Article  CAS  PubMed  Google Scholar 

  • Bay S, Ferrari B, Greening C (2018) Life without water: how do bacteria generate biomass in desert ecosystems. Microbiol Aust 39:28–32

    Article  Google Scholar 

  • Bay SK, Waite DW, Dong X, Gillor O, Chown SL, Hugenholtz P, Greening C (2021) Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient. ISME J 1–18

    Google Scholar 

  • Belnap J, Welter JR, Grimm NB, Barger N, Ludwig JA (2005) Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 86:298–307

    Article  Google Scholar 

  • Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Büdel B, Dulić T, Darienko T, Rybalka N, Friedl T (2016) Cyanobacteria and algae of biological soil crusts. In: Biological soil crusts: an organizing principle in drylands. Springer, Cham, pp 55–80

    Google Scholar 

  • Bull AT, Asenjo JA, Goodfellow M, Gomez-Silva B (2016) The Atacama Desert: technical resources and the growing importance of novel microbial diversity. Annu Rev Microbiol 70:215–234

    Article  CAS  PubMed  Google Scholar 

  • Cable JM, Ogle K, Williams DG, Weltzin JF, Huxman TE (2008) Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran Desert: implications for climate change. Ecosystems 11:961–979

    Article  Google Scholar 

  • Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N (2016) Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol 2:1–6

    Google Scholar 

  • Collins SL, Belnap J, Grimm NB, Rudgers JA, Dahm CN, D’Odorico P, Litvak M, Natvig DO, Peters DC, Pockman WT, Sinsabaugh RL (2014) A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annu Rev Ecol Evol Syst 45:397–419

    Article  Google Scholar 

  • Connon SA, Lester ED, Shafaat HS, Obenhuber DC, Ponce A (2007) Bacterial diversity in hyperarid Atacama Desert soils. J Geophys Res 112(G4)

    Google Scholar 

  • Cordero OX, Datta MS (2016) Microbial interactions and community assembly at microscales. Curr Opin Microbiol 31:227–234

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowan DA, Hopkins DW, Jones BE, Maggs-Kölling G, Majewska R, Ramond JB (2020) Microbiomics of Namib Desert habitats. Extremophiles 24:17–29

    Article  CAS  PubMed  Google Scholar 

  • Crits-Christoph A, Robinson CK, Barnum T, Fricke WF, Davila AF, Jedynak B, McKay CP, DiRuggiero J (2013) Colonization patterns of soil microbial communities in the Atacama Desert. Microbiome 1:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    Article  CAS  Google Scholar 

  • Eldridge DJ, Woodhouse JN, Curlevski NJ, Hayward M, Brown MV, Neilan BA (2015) Soil-foraging animals alter the composition and co-occurrence of microbial communities in a desert shrubland. ISME J 9:2671–2681

    Article  PubMed  PubMed Central  Google Scholar 

  • Eldridge DJ, Maestre FT, Koen TB, Delgado-Baquerizo M (2018) Australian dryland soils are acidic and nutrient-depleted, and have unique microbial communities compared with other drylands. J Biogeogr 45:2803–2814

    Article  PubMed  PubMed Central  Google Scholar 

  • Elliott DR, Thomas AD, Hoon SR, Sen R (2014) Niche partitioning of bacterial communities in biological crusts and soils under grasses, shrubs and trees in the Kalahari. Biodivers Conserv 23:1709–1733

    Article  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    Article  CAS  PubMed  Google Scholar 

  • Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017

    Article  CAS  PubMed  Google Scholar 

  • Frossard A, Ramond JB, Seely M, Cowan DA (2015) Water regime history drives responses of soil Namib Desert microbial communities to wetting events. Sci Rep 5:12263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geisen S, Mitchell EA, Wilkinson DM, Adl S, Bonkowski M, Brown MW, Fiore-Donno AM, Heger TJ, Jassey VE, Krashevska V, Lahr DJ (2017) Soil protistology rebooted: 30 fundamental questions to start with. Soil Biol Biochem 111:94–103

    Article  CAS  Google Scholar 

  • Geisen S, Mitchell EA, Adl S, Bonkowski M, Dunthorn M, Ekelund F, Fernández LD, Jousset A, Krashevska V, Singer D, Spiegel FW (2018) Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev 42:293–323

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Martin C, Teigell-Perez N, Lyles M, Valladares B, Griffin DW (2013) Epifluorescent direct counts of bacteria and viruses from topsoil of various desert dust storm regions. Res Microbiol 164:17–21

    Article  PubMed  Google Scholar 

  • Goodfellow M, Nouioui I, Sanderson R, Xie F, Bull AT (2018) Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama Desert soils. Antonie Van Leeuwenhoek 111:1315–1332

    Article  CAS  PubMed  Google Scholar 

  • Grishkan I, Nevo E (2010) Spatiotemporal distribution of soil microfungi in the Makhtesh Ramon area, central Negev desert, Israel. Fungal Ecol 3(4):326–337

    Article  Google Scholar 

  • Gunnigle E, Ramond JB, Frossard A, Seely M, Cowan D (2014) A sequential co-extraction method for DNA, RNA and protein recovery from soil for future system-based approaches. J Microbiol Methods 103:118–123

    Article  CAS  PubMed  Google Scholar 

  • Gunnigle E, Frossard A, Ramond JB, Guerrero L, Seely M, Cowan DA (2017) Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  • Huang J, Yu H, Guan X, Wang G, Guo R (2016) Accelerated dryland expansion under climate change. Nat Clim Change 6:166–171

    Article  Google Scholar 

  • Idris H, Goodfellow M, Sanderson R, Asenjo JA, Bull AT (2017) Actinobacterial rare biospheres and dark matter revealed in habitats of the Chilean Atacama Desert. Sci Rep 7:1–11

    Article  CAS  Google Scholar 

  • Ihrmark K, Bödeker I, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2001) IPCC third assessment report. World Meteorological Organisation and UNEP

    Google Scholar 

  • IPCC (2014) Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on climate Change

    Google Scholar 

  • Jacobson KM, Jacobson PJ (1998) Rainfall regulates decomposition of buried cellulose in the Namib Desert. J Arid Environ 38:571–583

    Article  Google Scholar 

  • Jansson JK, Hofmockel KS (2018) The soil microbiome—from metagenomics to metaphenomics. Curr Opin Microbiol 43:162–168

    Article  CAS  PubMed  Google Scholar 

  • Jansson JK, Hofmockel KS (2019) Soil microbiomes and climate change. Nat Rev Microbiol 1–12

    Google Scholar 

  • Johnson RM, Ramond JB, Gunnigle E, Seely M, Cowan DA (2017) Namib Desert edaphic bacterial, fungal and archaeal communities assemble through deterministic processes but are influenced by different abiotic parameters. Extremophiles 21:381–392

    Article  PubMed  Google Scholar 

  • Jordaan K, Lappan R, Dong X, Aitkenhead IJ, Bay SK, Chiri E, Wieler N, Meredith LK, Cowan DA, Chown SL, Greening C (2020) Hydrogen-oxidizing bacteria are abundant in desert soils and strongly stimulated by hydration. Msystems 5:e01131–e01120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerepesi C, Grolmusz V (2016) Giant viruses of the Kutch desert. Arch Virol 161:721–724

    Article  CAS  PubMed  Google Scholar 

  • Kerepesi C, Grolmusz V (2017) The “Giant Virus Finder” discovers an abundance of giant viruses in the Antarctic dry valleys. Arch Virol 162:1671–1676

    Article  CAS  PubMed  Google Scholar 

  • Kieft TL (2000) Size matters: dwarf cells in soil and subsurface terrestrial environments. In: Colwell RR, Grimes DJ (eds) Nonculturable microorganisms in the environment. ASM Press, Washington, DC, pp 19–46

    Chapter  Google Scholar 

  • Knief C, Bol R, Amelung W, Kusch S, Frindte K, Eckmeier E, Jaeschke A, Dunai T, Fuentes B, Mörchen R, Schütte T (2020) Tracing elevational changes in microbial life and organic carbon sources in soils of the Atacama Desert. Global Planet Change 184:103078

    Article  Google Scholar 

  • Ladwig LM, Sinsabaugh RL, Collins SL, Thomey ML (2015) Soil enzyme responses to varying rainfall regimes in Chihuahuan Desert soils. Ecosphere 6:1–10

    Article  Google Scholar 

  • León-Sobrino C, Ramond JB, Maggs-Kölling G, Cowan DA (2019) Nutrient acquisition, rather than stress response over diel cycles, drives microbial transcription in a hyper-arid Namib Desert soil. Front Microbiol 10:1054

    Article  PubMed  PubMed Central  Google Scholar 

  • Leung PM, Bay SK, Meier DV, Chiri E, Cowan DA, Gillor O, Woebken D, Greening C (2020) Energetic basis of microbial growth and persistence in desert ecosystems. Msystems 5. https://doi.org/10.1128/mSystems.00495-19

  • Liu S, Liu W, Shi X, Li S, Hu T, Song L, Wu C (2018) Dry-hot stress significantly reduced the nitrogenase activity of epiphytic cyanolichen. Sci Total Environ 619:630–637

    PubMed  Google Scholar 

  • Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, Quero JL, Garcia-Gomez M, Gallardo A, Ulrich W et al (2015) Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc Natl Acad Sci U S A 112:15684–15689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makhalanyane TP, Valverde A, Lacap DC, Pointing SB, Tuffin MI, Cowan DA (2013) Evidence of species recruitment and development of hot desert hypolithic communities. Environ Microbiol Rep 5:219–224

    Article  PubMed  Google Scholar 

  • Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond JB, Cowan DA (2015) Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev 39:203–221

    Article  CAS  PubMed  Google Scholar 

  • Mandakovic D, Rojas C, Maldonado J, Latorre M, Travisany D, Delage E, Bihouée A, Jean G, Díaz FP, Fernández-Gómez B, Cabrera P (2018) Structure and co-occurrence patterns in microbial communities under acute environmental stress reveal ecological factors fostering resilience. Sci Rep 8:5875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marasco R, Mosqueira MJ, Fusi M, Ramond JB, Merlino G, Booth JM, Maggs-Kölling G, Cowan DA, Daffonchio D (2018) Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome 6:215

    Article  PubMed  PubMed Central  Google Scholar 

  • Mosqueira MJ, Marasco R, Fusi M, Michoud G, Merlino G, Cherif A, Daffonchio D (2019) Consistent bacterial selection by date palm root system across heterogeneous desert oasis agroecosystems. Sci Rep 9:1–12

    Article  CAS  Google Scholar 

  • Moussa TA, Al-Zahrani HS, Almaghrabi OA, Abdelmoneim TS, Fuller MP (2017) Comparative metagenomics approaches to characterize the soil fungal communities of western coastal region, Saudi Arabia. PLoS One 12(9)

    Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Ann Rev Ecol Syst 4:25–51

    Article  Google Scholar 

  • Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N (2020) The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv 6:eaax8787

    Google Scholar 

  • Ortiz M, Leung PM, Shelley G, Jirapanjawat T, Nauer PA, Van Goethem MW, Bay SK, Islam ZF, Jordaan K, Vikram S, Chown SL, Hogg ID, Makhalanyane TP, Grinter R, Cowan DA, Greening C (2021) Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. PNAS 118(45)

    Google Scholar 

  • Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562

    Article  CAS  PubMed  Google Scholar 

  • Potts M (2001) Desiccation tolerance: a simple process? Trends Microbiol 9:553–559

    Article  CAS  PubMed  Google Scholar 

  • Prentice IC (2008) Terrestrial nitrogen cycle simulation with a dynamic global vegetation model. Glob Chang Biol 14:1745–1764

    Article  Google Scholar 

  • Prestel E, Regeard C, Andrews J, Oger P, DuBow MS (2012) A novel bacteriophage morphotype with a ribbon-like structure at the tail extremity. Res J Microbiol 7:75–81

    Article  Google Scholar 

  • Quoreshi AM, Suleiman MK, Kumar V, Manuvel AJ, Sivadasan MT, Islam MA, Khasa DP (2019) Untangling the bacterial community composition and structure in selected Kuwait desert soils. App Soil Ecol 138:1–9

    Article  Google Scholar 

  • Ramond JB, Woodborne S, Hall G, Seely M, Cowan DA (2018) Namib desert primary productivity is driven by cryptic microbial community N-fixation. Sci Rep 8:1–9

    Article  CAS  Google Scholar 

  • Rivera P, Cruces F (2018) Achnanthidium exiguum (Bacillariophyta): nuevas citas para localidades andinas del norte de Chile. Gayana Botánica 75:646–649

    Article  Google Scholar 

  • Romero-Olivares AL, Allison SD, Treseder KK (2017) Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biol Biochem 107:32–40

    Article  CAS  Google Scholar 

  • Ronca S, Ramond JB, Jones BE, Seely M, Cowan DA (2015) Namib desert dune/interdune transects exhibit habitat-specific edaphic bacterial communities. Front Microbiol 6:845

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutz BA, Kieft TL (2004) Phylogenetic characterization of dwarf archaea and bacteria from a semiarid soil. Soil Biol Biochem 36:825–833

    Article  CAS  Google Scholar 

  • Safriel U, Ezcurra E, Tegen I, Schlesinger WH, Nellemann C, Batjes NH, Dent D, Groner E, Morrison S, Resenfeld D, Avner U (2006) Deserts and the planet-linkages between deserts and non-deserts. In: Global deserts outlook. UNEP, pp 50–72

    Google Scholar 

  • Santiago IF, Gonçalves VN, Gómez-Silva B, Galetovic A, Rosa LH (2018) Fungal diversity in the Atacama Desert. Antonie Van Leeuwenhoek 111:1345–1360

    Article  PubMed  Google Scholar 

  • Schulze-Makuch D, Wagner D, Kounaves SP, Mangelsdorf K, Devine KG, de Vera JP, Schmitt-Kopplin P, Grossart HP, Parro V, Kaupenjohann M, Galy A (2018) Transitory microbial habitat in the hyperarid Atacama Desert. Proc Natl Acad Sci U S A 115:2670–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scola V, Ramond JB, Frossard A, Zablocki O, Adriaenssens EM, Johnson RM, Seely M, Cowan DA (2018) Namib desert soil microbial community diversity, assembly, and function along a natural xeric gradient. Microb Ecol 75:193–203

    Article  CAS  PubMed  Google Scholar 

  • Sher Y, Zaady E, Nejidat A (2013) Spatial and temporal diversity and abundance of ammonia oxidizers in semi-arid and arid soils: indications for a differential seasonal effect on archaeal and bacterial ammonia oxidizers. FEMS Microbiol Ecol 86:544–556

    Article  CAS  PubMed  Google Scholar 

  • Sivakala KK, Jose PA, Anandham R, Thinesh T, Jebakumar SRD, Samaddar S, Chatterjee P, Sivakumar N, Sa T (2018) Spatial physicochemical and metagenomic analysis of desert environment. J Microbiol Biotechnol 28:1517–1526

    Article  CAS  PubMed  Google Scholar 

  • Smith HD, Duncan AG, Neary PL, Lloyd CR, Anderson AJ, Sims RC, McKay CP (2012) In situ microbial detection in Mojave Desert soil using native fluorescence. Astrobiology 12:247–257

    Article  CAS  PubMed  Google Scholar 

  • Srinivasiah S, Bhavsar J, Thapar K, Liles M, Schoenfeld T, Wommack KE (2008) Phages across the biosphere: contrasts of viruses in soil and aquatic environments. Res Microbiol 159:349–357

    Article  CAS  PubMed  Google Scholar 

  • Sterflinger K, Tesei D, Zakharova K (2012) Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungal Ecol 5(4):453–462

    Article  Google Scholar 

  • Štovícek A, Kim M, Or D, Gillor O (2017) Microbial community response to hydration-desiccation cycles in desert soil. Sci Rep 7:45735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stutz JC, Copeman R, Martin CA, Morton JB (2000) Patterns of species composition and distribution of arbuscular mycorrhizal fungi in arid regions of southwestern North America and Namibia, Africa. Can J Bot 78:237–245

    Google Scholar 

  • Su YG, Zhao X, Li AX, Li XR, Huang G (2011) Nitrogen fixation in biological soil crusts from the Tengger desert, northern China. Eur J Soil Biol 47:182–187

    Article  CAS  Google Scholar 

  • Takahashi Y, Matsumoto A, Seino A, Iwai Y, Omura S (1996) Rare actinomycetes isolated from desert soils. Actinomycetologica 10:91–97

    Article  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME (2014) Global diversity and geography of soil fungi. Science 346:1256688

    Article  PubMed  CAS  Google Scholar 

  • Tsonis AA, Elsner JB, Hunt AG, Jagger TH (2005) Unfolding the relation between global temperature and ENSO. Geophys Res Lett 32(9)

    Google Scholar 

  • Uhlmann E, Görke C, Petersen A, Oberwinkler F (2006) Arbuscular mycorrhizae from arid parts of Namibia. J Arid Environ 64:221–237

    Article  Google Scholar 

  • UNCCD (2017) Chapter 12: Drylands. In: The global land outlook, pp 246–269

    Google Scholar 

  • Van der Walt AJ, Johnson RM, Cowan DA, Seely M, Ramond JB (2016) Unique microbial phylotypes in Namib Desert dune and gravel plain Fairy Circle soils. Appl Environ Microbiol 82:4592–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas R, Collins SL, Thomey ML, Johnson JE, Brown RF, Natvig DO, Friggens MT (2012) Precipitation variability and fire influence the temporal dynamics of soil CO2 efflux in an arid grassland. Glob Chang Biol 18:1401–1411

    Article  Google Scholar 

  • Wasserstrom H, Ben-Ezra VE, Sherman C, Unc A, Steinberger Y (2017) The influence of flint stones on a soil microbial community in the northern Negev Desert. AIMS Microbiol 3:580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M (2017) Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu Rev Virol 4:201–219

    Article  CAS  PubMed  Google Scholar 

  • Xu LK, Baldocchi DD, Tang J (2004) How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Global Biogeochem Cycles 18:GB4002

    Google Scholar 

  • Yasir M, Azhar EI, Khan I, Bibi F, Baabdullah R, Al-Zahrani IA, Al-Ghamdi AK (2015) Composition of soil microbiome along elevation gradients in southwestern highlands of Saudi Arabia. BMC Microbiol 15:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zablocki O, Adriaenssens EM, Cowan D (2016) Diversity and ecology of viruses in hyperarid desert soils. Appl Environ Microbiol 82:770–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zablocki O, Adriaenssens EM, Frossard A, Seely M, Ramond JB, Cowan D (2017) Metaviromes of extracellular soil viruses along a Namib Desert aridity gradient. Genome Announc 5:e01470–e01416

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Liu W, Schloter M, Zhang G, Chen Q, Huang J, Li L, Elser JJ, Han X (2013a) Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes. PLoS One 8(10)

    Google Scholar 

  • Zhang N, Liu W, Yang H, Yu X, Gutknecht JL, Zhang Z, Wan S, Ma K (2013b) Soil microbial responses to warming and increased precipitation and their implications for ecosystem C cycling. Oecologia 173:1125–1142

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Ramond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramond, JB., Cowan, D.A. (2022). Microbial Ecology of Hot Desert Soils. In: Ramond, JB., Cowan, D.A. (eds) Microbiology of Hot Deserts. Ecological Studies, vol 244. Springer, Cham. https://doi.org/10.1007/978-3-030-98415-1_4

Download citation

Publish with us

Policies and ethics