Skip to main content

Biopolymers from Agriculture Waste and By-Products

  • Chapter
  • First Online:
Biopolymers

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

The scale of agricultural waste is large, including crop residues (the plant waste left in the field after harvest), which retained in the field are responsible for agricultural greenhouse gas emissions. Some of those materials are used for organic fertilizer, soil enrichment, or animal feed, but plenty is still available for other uses. The massive amounts of agricultural waste such as stems, leaves, seeds, pods, and more, which never make it off the farm, are a subject of research to use them as bio-based packaging materials. As concerns about waste and by-products grow, researchers around the world are working to turn those materials into useful products and find new ways of using agricultural waste or other unappreciated materials as a valuable biopolymer. The most remarkable works are focusing on the production of bio-based packaging, which can be an alternative to petroleum-based plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad F, Khan ST (2019) Potential industrial use of compounds from by-products of fruits and vegetables In: Malik A, Erginkaya Z, Erten H (eds) Health and safety aspects of food processing technologies. Springer, Cham, pp 273–307

    Google Scholar 

  2. Alshwal BY, Bala MS, Gupta A, Sharma S, Mishra P (2019) Improved properties of keratin-based bioplastic film blended with microcrystalline cellulose: a comparative analysis. J King Saud Univ Sci 853–857

    Google Scholar 

  3. Amran MA, Palaniveloo K, Fauzi R, Satar NM, Mohidin TBM, Mohan G, Razak SA, Arunasalam M, Nagappan T, Seelan JSS (2021) Value-added metabolites from agricultural waste and application of green extraction techniques. Sustainability 13(20):11432

    Article  CAS  Google Scholar 

  4. Andrade RM, Ferreira MS, Gonçalves ÉC (2016) Development and characterization of edible films based on fruit and vegetable residues. J Food Sci 81(2):412–418

    Article  CAS  Google Scholar 

  5. Andrade RD, Skurtys O, Osorio FA (2012) Atomizing spray systems for application of edible coatings. Comprehensive Rev Food Sci Food Safety 11:323–337

    Article  CAS  Google Scholar 

  6. Barriera JCM, Arraibi AA, Ferreira ICFR (2019) Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends Food Sci Technol 90:76–87

    Article  CAS  Google Scholar 

  7. Ben-Ohman S, Jõudu I, Bhat R (2020) Bioactives from agri-food wates: present insights and future challenges. Molecules 25:510

    Article  CAS  Google Scholar 

  8. Berthet MA, Coussy H, Chea V, Guillard V, Gastaldi E, Gontard N (2015) Sustainable food packaging: valorising wheat straw fibres for tuning PHBV-based composites properties. Compos A Appl Sci Manuf 72:139–147

    Article  CAS  Google Scholar 

  9. Berthet MA, Mayer-Laigle C, Rouau X, Gontard N, Angellier-Coussy H (2017) Sorting natural fibres: a way to better understand the role of fibre size polydispersity on the mechanical properties of biocomposites. Composites Part A 95:12–21

    Google Scholar 

  10. Carvalho V, Freitas E, Fradinho J, Reis M, Oehmen A (2019) The effect of seed sludge on the selection of a photo-EBPR system. New Biotechnol 49:112–119

    Article  CAS  Google Scholar 

  11. Chan JX, Wong JF, Hassan A, Zakaria Z (2021) Bioplasics from agricultural waste 141–169

    Google Scholar 

  12. Chang I, Im J, Chung M-K, Cho G-C (2018) Bovine casein as a new soil strengthening binder from dairy waste. Constr Build Mater 160:1–9

    Article  CAS  Google Scholar 

  13. Cinar SO, Chong ZK, Kucuker MA, Wieczorek N, Cengiz U, Kuchta K (2020) Bioplastic production from microalgae: a review. Int J Env Res Public Health 17(11):3842

    Google Scholar 

  14. Cui J, Zhao C, Feng L, Han Y, Du H, Xiao H, Zheng J (2021) Pectins from fruits: relationship between extraction methods, structural characteristics, and functional properties. Trends Food Sci Technol 110:39–54

    Article  CAS  Google Scholar 

  15. Delgado M, Felix M, Bengoechea C (2018) Development of bioplastic materials: From rapeseed oil industry by products to added-value biodegradable biocomposite materials. Ind Crops Products 401–407

    Google Scholar 

  16. Duque-Acevedo M, Belmonte-Urena LJ, Cortes-García FJ, Camacho-Ferre F (2020) Agricultural waste: review of the evolution, approaches and perspectives on alternative uses. Global Ecol Conserv 22:1–23

    Google Scholar 

  17. Eerhart AJJE, Faaij APC, Patel MK (2012) Replacing fossil-based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ Sci 5(4):6407

    Article  CAS  Google Scholar 

  18. Elbersen B, Fritsche UR, Petersen J-E, Lesschen JP (2012) Assessing the effect of stricter sustainability criteria on EU biomass crop potential. Biofuels Biobrod Bioref 7(2):173–192

    Article  CAS  Google Scholar 

  19. Esparza I, Jimènez-Moreno N, Bimbela F, Ancín-Azpilicueta C, Gandía LM (2020) Fruit and vegetable waste management: Conventional and emerging approaches. J Env Manag 265:110510

    Google Scholar 

  20. Faria Arquelau PB, Silva VDM, Garcia MAVT, Araujo RLB, Fante CA (2019) Characterization of ediblecoatings based on ripe Prata banana peel flour. Food Hydrocolloids 89:570–578

    Article  CAS  Google Scholar 

  21. Fradinho J, Allegue LD, Ventura M, Melero JA, Reis MAM, Puyol D (2021) Up-scale challenges on biopolimer production from waste streams by Purple Phototrophic Bacteria mixed cultures: a critical review. Biores Technol 527:1–12

    Google Scholar 

  22. Galus S, Mathieu H, Lenart A, Debeaufort F (2012) Effect of modified starch or maltodextrines incorporation on the barrier and mechanical properties, moisture sensitivity, and appearance of soy protein isolate-based edible films. Innov Food Sci Emerg Technol 16:148–154

    Article  CAS  Google Scholar 

  23. Gervasi T, Pellizzeri V, Calabrese G, Di Bella G, Cicero N, Dugo G (2017) Production of single cel protein (SCP) from food and agricultural waste by using Saccharomyces cerevisiae. Formerly Natural Prod Lett 32(6):648–653

    Google Scholar 

  24. Gontard N, Sonesson U, Birkved M, Majone M, Bolzonella D, Celli A, Angellier-Coussy H, Jang G-W, Verniquet A, Broeze J, Schaer B, Batista AP, Sebok A (2021) A research challenge vision regarding the management of agricultural waste in a circular bio-based economy. Critical Rev Env Sci Technol 1–41

    Google Scholar 

  25. Gutiérrez TJ, Herniou-Julien C, Álvarez K, Alvarez VA (2018) Structural properties and in vitro digestibility of edible and pH-sensitive films made from guinea arrowroot starch and wastes from wine manufacture. Carbohyd Polym 184:135–143

    Article  CAS  Google Scholar 

  26. Hilliou L, Machado D, Oliveira CSS, Gouveia AR, Reis MAM, Campanari S, Villano M, Majone M (2016) Impact of fermentation residues on the thermal, structural, and rheological properties of polyhydroxy(butyrate-co-valerate) produced from cheese whey and olive oil mill wastewater. J Appl Polym Sci 133(2):42818

    Article  CAS  Google Scholar 

  27. Jogi K, Bhat R (2020) Valorization of food processing wastes and by-products for bioplastic production. Sustain Chem Pharmacy 18:1–10

    Google Scholar 

  28. Kalinowska N, Nowak I, Zielińska A (2017) Properties of rapeseed oil used in cosmetology. Kosmetologia Estetyczna 6(2):121–123 (In Polish)

    Google Scholar 

  29. Kartik A, Akhil D, Lakshmi D, Gopinath PK, Arun J, Sivaramakrishnan R, Pugazhendhi A (2021) A critical review on the production of biopolymers from algae biomass and their applications. Biores Technol 329:124868

    Google Scholar 

  30. Koller M, Sandholzer D, Salerno A, Braunegg G, Narodoslawsky M (2013) Biopolymers from industrial residues: life cycle assessment of poly(hydroxyalkanoates) from whey. Resour Conserv Recycl 73:64–71

    Article  Google Scholar 

  31. Kraśniewska K, Galus S, Gniewosz M (2020) Biopolymers-based materials containing silver nanoparticles as active packaging for food applications-a review. Int J Mol Sci 21:1–18

    Article  CAS  Google Scholar 

  32. Kringel DH, Dias AGD, Zavareze EDR, Gandra EA (2020) Fruit wastes as promising sources of starch: extraction, properties and applications. Starch Stärke 72:1900200

    Google Scholar 

  33. Kumar YK (2021) A study on the management of the agricultural waste. Int J Mod Agriculture 10(2):2968–2976

    Google Scholar 

  34. Lau KQ, Sabran MR, Shafie SR (2021) Utilization of vegetable and fruit by-products as functional ingredient and food. Front Nutr 8:1–12

    Article  CAS  Google Scholar 

  35. Lo J, Lange D, Chew BH (2014) Ureteral stents and foley catheters-associated urinary tract infections: the role of coatings and materials in infection prevention. Antibiotics 3(1):87–97

    Article  PubMed  PubMed Central  Google Scholar 

  36. Maner S, Sharma AK, Banerjee K (2017) Wheat flour replacement by wine grape pomace powder positively affects physical, functional, and sensory properties of cookies. Proc Natl Acad Sci India Sect B Biol Sci 87:109–113

    Article  CAS  Google Scholar 

  37. Maraveas C (2020) Production of sustainable and biodegradable polymers from agricultural waste. Polymers 12:1–22

    Article  CAS  Google Scholar 

  38. Mellinas C, Ramos M, Jiménez A, Garrigós MC (2020) Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials 13:1–17

    Article  CAS  Google Scholar 

  39. Mialon L, Pemba AG, Miller SA (2010) Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid. Green Chem 12(10):1704–1706

    Article  CAS  Google Scholar 

  40. Mohsin A, Sun J, Khan IM, Hang H, Tariq M, Tian X, Guo M (2019) Sustainable biosynthesis of curdlan from orange waste by using Alcaligenes faecalis: a systematically modeled approach. Carbohyd Polym 205:626–635

    Article  CAS  Google Scholar 

  41. Morales A, Labidi J, Gullón P, Astray G (2021) Synthesis of advanced biobased green materials from renewable biopolymers. Current Opinion Green Sustain Chem 29:100436

    Google Scholar 

  42. Ningrum AS, Anggrahini S, Dyah Kusumaningrum L, Widhi Hapsari M, Schreiner M (2018) Valorization of food by products from selected tropical fruits pomace. IOP Conf Series Earth Env Sci 205:012034

    Google Scholar 

  43. Obi FO, Ugwuishiwu BO, Nwakaire JN (2016) Agricultural waste concept, generation, utilization and management. Niger J Technol 35(4):957–964

    Article  Google Scholar 

  44. Otoni CG, Avena Bustillos RJ, Azeredo HMC, Lorevice MV, Moura MR, Mattoso LHC, McHugh TH (2017) Recent advances on edible films based on fruits and vegetables - a review. Comprehensive Rev Food Sci Food Safety 16(5):1151–1169

    Article  Google Scholar 

  45. Patil AY, Hrishikesh U, Basavaraj N (2018) Influence of bio-degradable natural fiber embedded in polymer matrix. Mater Today Proc 5:7532–7540

    Article  CAS  Google Scholar 

  46. Petruzzelli DA (2015) Too Ugly to eat? Consumer perceptions and purchasing behavior regarding low-grade produce. Market Low Grade Produce 1–41

    Google Scholar 

  47. Pion F, Ducrot PH, Allais F (2014) Renewable alternating aliphatic–aromatic copolyesters derived from biobased ferulic acid, diols, and diacids: sustainable polymers with tunable thermal properties. Macromol Chem Phys 215(5):431–439

    Google Scholar 

  48. Piwowarek K, Lipińska E, Hać-Szymańczuk E (2016) Possibility of using apple pomace in the process of propionic acetic fermentation. Electron J Biotechnol 23:1–6

    Article  Google Scholar 

  49. Quiles A, Campbell GM, Struck S, Rohm H, Hernando I (2016) Fibers from fruit pomace: a review of applications in cereal-based products. Food Rev Intl 34(2):162–181

    Article  CAS  Google Scholar 

  50. Ren S, Jiménez-Flores R, Giusti MM (2021) The interactions between anthocyanin and whey protein: a review. Comprehensive Rev Food Sci Food Safety 1–20

    Google Scholar 

  51. Salehia F, Aghajanzadeh S (2020) Effect of dried fruits and vegetable powder on cake quality: a review. Trends Food Sci Technol 95:162–172

    Article  CAS  Google Scholar 

  52. Samer M, Khalefa Z, Abdelall T, Moawya W, Farouk A, Abdelaziz S, Soliman N, Salah A, Gomaa M, Mohamed M (2019) Bioplastics production from agricultural crop residues. CIGR J 21(3):190–194

    Google Scholar 

  53. Sharma S, Gupta A, Chik SMST, Kee CG, Mistry BM, Kim DH, Sharma G (2017) Characterization of keratin microparticles from feather biomass with potent antioxidant and anticancer activities. Int J Biol Macromol 111:189–196

    Article  CAS  Google Scholar 

  54. Sharma P, Gaur VK, Kim S-H, Pandey A (2019) Microbial strategies for bio-transforming food waste into resources. Biores Technol 1–51

    Google Scholar 

  55. Sharma S, Gupta A, Kumar A, Kee CG, Kamyab H, Saufi SM (2018) An efficient conversion of waste feather keratin into ecofriendly bioplastic film.Clean Technol Env Policies 1–11

    Google Scholar 

  56. Shin SH, Chang Y, Lacroix M, Han J (2017) Control of microbial growth and lipid oxidation on beef product using an apple peel-based edible coating treatment. Food Sci Technol 84:183–188

    CAS  Google Scholar 

  57. Spalvins K, Ivanovs K, Blumberga D (2018) Single cel protein production from waste biomass: review of various agricultural by-products. Agron Res 16(S2):1493–1508

    Google Scholar 

  58. Stabnikova O, Wang JY, Ivanov V (2010) Value-added biotechnological products from organic wastes in Environmental biotechnology. In: Red L, Wang V, Ivanov JH, Tay handbook of environmental engineering. Humana Press, Totowa, NJ

    Google Scholar 

  59. Tang XZ, Kumar P, Alavi S, Sandeep KP (2012) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52(5):426–442

    Article  CAS  PubMed  Google Scholar 

  60. Tarko T, Duda-Chodak A, Bebak A (2012) Biological activity of selected fruit and vegetable pomaces. Food Sci Technol Qual 4(83):55–65 (In Polish)

    Google Scholar 

  61. Tsang YF, Kumar V, Samadar P (2019) Production of bioplastics through food waste valorization. Environ Int 127:625–644

    Article  CAS  PubMed  Google Scholar 

  62. UNEP (2011) Towards a green economy: pathways to sustainable development and poverty eradication. https://www.unep.org/explore-topics/green-economy

  63. Vega-Castro O, León E, Arias M, Cesarlo MT, Ferreira F, da Fonseca MMR, Segura A, Valencia P, Simpson R, Nuñez H, Contreras-Calderon J (2021) Characterization and production of a polyhydroxyalkanoate from cassava peel waste: manufacture of biopolymer microfibers by electrospinning. J Polym Environ 29:187–200

    Article  CAS  Google Scholar 

  64. Yadav B, Pandey A, Kumar LR, Tyagi RD (2020) Bioconversion of waste (water)/residues to bioplastics–A circular bioeconomy approach. Biores Technol 298:1–15

    Article  CAS  Google Scholar 

  65. Zhuang Y, Ruan S, Yao H, Sun Y (2019) Physical properties of composite films from tilapia skin collagen with pachyrhizus starch and rambutan peel phenolics. Mar Drugs 17:662

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabina Galus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mikus, M., Galus, S. (2022). Biopolymers from Agriculture Waste and By-Products. In: Nadda, A.K., Sharma, S., Bhat, R. (eds) Biopolymers. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-98392-5_6

Download citation

Publish with us

Policies and ethics