Skip to main content

Transforming Wastes into High Value-Added Products: An Introduction

  • Chapter
  • First Online:
Biopolymers

Abstract

Waste from various industries and human activities harms the environment, it is being accumulated rapidly due to its slow and improper management. Disposal of waste in landfills is a threat to the environment. Research interest in waste streams valorization is stimulated because of the disposal problems. Researchers are focusing on transforming the waste into useful products as it will help in waste management and also it will help in reducing environmental pollution. Waste from food industries is a reservoir of complex proteins, lipids, carbohydrates and can be used as raw material for the production of valuable metabolites. Such waste can be transformed into various high-value-added products such as biofuels, enzymes, biopolymers, biochemicals, and many other molecules. For the production of biopolymers, waste from many industries such as agriculture, dairy, meat, and seafood have great potential as primary and secondary feedstocks. Although for biomaterials production, different types of wastes can be used as substrates, currently, agro-industrial wastes are gaining more attention as it has a high rate of production worldwide. As global environmental pollution is increasing day by day due to synthetic plastics production, it has become essential to develop bio-based polymers. The biopolymers production from inexhaustible resources and microbial synthesis are facile, scalable, and are comparatively more eco-friendly than chemical synthesis methods that depend upon acid and alkali treatment or blending of co-polymer. In this review, we have discussed the transformation of waste into biopolymers, technologies for extraction and production, and their further applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdullah M, Shakrie P et al (2018) Recent advances in the use of animal-sourced gelatine as natural polymers for food, cosmetics and pharmaceutical applications. Sains Malaysiana 47(2):323–336

    Google Scholar 

  2. Aggarwal J, Sharma S, Kamyab H, Kumar A (2020) The realm of biopolymers and their usage: an overview. J Environ Treat Tech 8:1005–1016

    Google Scholar 

  3. Alashwal BY et al (2020) Improved properties of keratin-based bioplastic film blended with microcrystalline cellulose: a comparative analysis. J King Saud Univ Sci 32(1):853–857

    Google Scholar 

  4. Alipal J et al (2021) A review of gelatin: properties, sources, process, applications, and commercialisation. Mater Today Proc

    Google Scholar 

  5. Allen AD et al (2010) Biosynthesis and characterization of copolymer poly (3HB-co-3HV) from saponifiedJatrophacurcas oil by Pseudomonas oleovorans. J Ind Microbiol Biotechnol 37(8):849–856

    Google Scholar 

  6. Alva M, Luis E, Mark RR (2008) Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagusdegradans. Biotechnol Bioeng 100(5):882–888

    Google Scholar 

  7. Arancon R, Arneil D et al (2017) Advances on waste valorization: new horizons for a more sustainable society. In: Waste management and valorization. Apple Academic Press, pp 23–66

    Google Scholar 

  8. da Araújo ÍBS et al (2018) Optimal conditions for obtaining collagen from chicken feet and its characterization. Food Sci Technol 38:167–173

    Google Scholar 

  9. Arumugam GKS et al (2018) Extraction, optimization and characterization of collagen from sole fish skin. Sustain Chem Pharmacy 9:19–26

    Google Scholar 

  10. Arunmozhivarman K et al (2017) Extraction and molecular characterization of collagen from poultry meat processing by-product (chicken skin). Int. J. Pure App Biosci 5(5):1085–1091

    Article  Google Scholar 

  11. Aslan AKH, Nor et al (2016) Polyhydroxyalkanoates production from waste biomass. IOP Conf Series Earth Env Sci vol 36, no. 1. IOP Publishing

    Google Scholar 

  12. Banerjee D, Subhadip M (2012) Fungal tannase: a journey from strain isolation to enzyme applications. Dyn Biochem Process Biotechnol Mol Biol 6(2):49–60

    Google Scholar 

  13. Berger LRR et al Green conversion of agroindustrial wastes into chitin and chitosan by Rhizopusarrhizus and Cunninghamellaelegans strains. Int J Molecul Sci 15(5):9082–9102

    Google Scholar 

  14. Bilanovic DD, Malloy SH, Remeta P (2010) U.S. Patent No. 7,727,747. Washington, DC: U.S. Patent and Trademark Office

    Google Scholar 

  15. Biswas AT, Gargi C (2013) Extraction of chitosan from prawn shell wastes and examination of its viable commercial applications. Int J Theor Appl Res Mech Eng 2(3):17–24

    Google Scholar 

  16. Blakeney M (2019) Food loss and food waste: causes and solutions. Edward Elgar Publishing

    Google Scholar 

  17. Bosco F, Fulvia C (2010) Production of polyhydroxyalcanoates (PHAs) using milk whey and dairy wastewater activated sludge: production of bioplastics using dairy residues. J Biosci Bioeng 109(4):418–421

    Google Scholar 

  18. Bourguignon D (2017) Bioeconomy challenges and opportunities. Briefing, EPRS

    Google Scholar 

  19. Cesário MT et al (2014) Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosichydrolysates. New Biotechnol 31(1):104–113

    Google Scholar 

  20. Cesário MT et al (2014) Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) by Burkholderiasacchari using wheat straw hydrolysates and gamma-butyrolactone. Int J Biol Macromol 71:59–67

    Google Scholar 

  21. Chaturvedi S et al (2021) A review on properties and applications of xanthan gum. In: Microbial polymers.Springer, Singapore, pp 87–107

    Google Scholar 

  22. Chowdhury SR et al (2011) Production of extracellular polysaccharide by Bacillus megaterium RB-05 using jute as substrate. Biores Technol 102(11):6629–6632

    Google Scholar 

  23. Colombo B et al (2016) Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture. Biores Technol 218:692–699

    Google Scholar 

  24. Cruz MV et al Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology. Biores Technol 157:360–363

    Google Scholar 

  25. da Silva JA et al (2018) Xanthan gum production by Xanthomonascampestrispv. campestris IBSBF 1866 and 1867 from lignocellulosicagroindustrial wastes. Appl Biochem Biotechnol 186(3):750–763

    Google Scholar 

  26. de Jong ED, Gerfried J (2015) Biorefinery concepts in comparison to petrochemical refineries. Ind Bioref White Biotechnol. Elsevier, pp 3–33

    Google Scholar 

  27. de Sousa C, Larissa et al (2014) Biosynthesis of xanthan gum from fermenting shrimp shell: yield and apparent viscosity. Int J Poly Sci

    Google Scholar 

  28. Di Donatoa P et al (2014) Biomass and biopolymer production using vegetable wastes as cheap substrates for extremophiles. Chem Eng 38

    Google Scholar 

  29. Duan R et al (2018) The functional properties and application of gelatin derived from the skin of channel catfish (Ictaluruspunctatus). Food Chem 239:464–469

    Google Scholar 

  30. Elain A et al (2016) Valorisation of local agro-industrial processing waters as growth media for polyhydroxyalkanoates (PHA) production. Ind Crops Prod 80:1–5

    Google Scholar 

  31. Elella MHA et al (2020) Xanthan gum-derived materials for applications in environment and eco-friendly materials: a review. J Env Chem Engg:104702

    Google Scholar 

  32. European Bioplastics, e.V. (2017) Global production capacities of bioplastics 2018–2023. REPORT European Bioplastics

    Google Scholar 

  33. Fai AEC et al (2011) Physico-chemical characteristics and functional properties of chitin and chitosan produced by Mucorcircinelloides using yam bean as substrate. Molecules 16(8):7143–7154

    Google Scholar 

  34. Farhat W et al (2017) Hemicellulose extraction and characterization for applications in paper coatings and adhesives. Ind Crops Products 107:370–377

    Google Scholar 

  35. Feroz S et al (2020) Keratin-based materials for biomedical applications. Bioactive Mater 5(3):496–509

    Google Scholar 

  36. Follonier S et al Fruit pomace and waste frying oil as sustainable resources for the bioproduction of medium-chain-length polyhydroxyalkanoates. Int J Biol Macromol 71:42–52.

    Google Scholar 

  37. Galus S, Justyna K (2015) Food applications of emulsion-based edible films and coatings. Trends Food Sci Technol 45(2):273–283

    Google Scholar 

  38. Gasser E et al (2014) Microbial production of biopolymers from the renewable resource wheat straw. J Appl Microbiol 117(4):1035–1044

    Article  CAS  Google Scholar 

  39. George A et al (2020) A comprehensive review on chemical properties and applications of biopolymers and their composites. Int J Biol Macromol 154:329–338

    Google Scholar 

  40. Gunasekar V et al (2014) Xanthan from sulphuric acid treated tapioca pulp: influence of acid concentration on xanthan fermentation. Carbohyd Polym 102:669–673

    Article  CAS  Google Scholar 

  41. Gupta S (2021) Application of gelatin in biomedical field. Biocompos Bio Medicine 49

    Google Scholar 

  42. Habibi H, Kianoush KD (2017) Effective variables on production and structure of xanthan gum and its food applications: a review. Biocatal Agricul Biotechnol 10:130–140

    Google Scholar 

  43. Hu L et al (2020) Hemicellulose-based polymers processing and application. Am J Plant Sci 11.12:2066–2079

    Google Scholar 

  44. Huang CY et al (2016) Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion–hydro-extraction process. Food Chem 190:997–1006

    Google Scholar 

  45. Jiang G et al (2016) Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Molecul Sci 17(7):1157

    Google Scholar 

  46. Jonglertjunya W et al (2014) Properties of lignin extracted from sugarcane bagasse and its efficacy in maintaining postharvest quality of limes during storage. LWT Food Sci Technol 57(1):116–125

    Google Scholar 

  47. Kakkar P, Balaraman M, Ganesh S (2014) Extraction and characterization of keratin from bovine hoof: a potential material for biomedical applications. Springer Plus 3(1):1–9

    Google Scholar 

  48. Karmee SK (2018) A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. Waste Manage 72:240–254

    Article  CAS  Google Scholar 

  49. Katherine RF et al (2017) Xanthan gum production using jackfruit-seed-powder-based medium: optimization and characterization. 3 Biotech 7(4):1–10

    Google Scholar 

  50. Kaur L, Khajuria R, Parihar L, Dimpal G (2017) Polyhydroxyalkanoates: biosynthesis to commercial production—a review. J Microbiol Biotechnol Food Sci 6:1098–1106

    Google Scholar 

  51. Kerdsup P et al (2011) Xanthan production by mutant strain of Xanthomonascampestris TISTR 840 in raw cassava starch medium. Food Bioproc Technol 4(8):1459–1462

    Google Scholar 

  52. Khosravi-Darani K et al (2011) Bench scale production of xanthan from date extract by Xanthomonascampestris in submerged fermentation using central composite design. African J Biotechnol 10(62):13520–13527

    Google Scholar 

  53. Koller M, Alejandra R‐C (2015) Techniques for tracing PHA‐producing organisms and for qualitative and quantitative analysis of intra‐and extracellular PHA. Eng Life Sci 15(6):558–581

    Google Scholar 

  54. Koller M, Gerhart B (2015) Biomediated production of structurally diverse poly (hydroxyalkanoates) from surplus streams of the animal processing industry. Polimery 60

    Google Scholar 

  55. Krishnamoorthi J (2017) Isolation and partial characterization of collagen from outer skin of Sepia pharaonis. In: Ehrenberg et al (ed) (1831) from Puducherry coast. Biochem Biophys Reports 10:39–45

    Google Scholar 

  56. Kumar M et al (2020) Bacterial polyhydroxyalkanoates: opportunities, challenges, and prospects. J Cleaner Prod (2020):121500

    Google Scholar 

  57. Kumaran P, Gupta A, Sharma S (2017) Synthesis of wound-healing keratin hydrogels using chicken feathers proteins and its properties. Int J Pharm PharmSci 9(2):171–8

    Google Scholar 

  58. Lavanya DKPK et al (2011) Sources of cellulose and their applications—a review. Int J Drug Formul Res 2(6):19–38

    Google Scholar 

  59. Li P et al (2016) Biosynthesis of xanthan gum by Xanthomonascampestris LRELP-1 using kitchen waste as the sole substrate. Carbohydrate Polymers 151:684–691

    Google Scholar 

  60. Li Z, Xuejun P (2018) Strategies to modify physicochemical properties of hemicelluloses from biorefinery and paper industry for packaging material. Rev Environ Sci Bio/Technol 17(1):47–69

    Google Scholar 

  61. Liang Q et al (2014) Isolation and characterization of collagen from the cartilage of Amur sturgeon (Acipenserschrenckii). Process Biochem 49(2):318–323

    Google Scholar 

  62. Liang S, McDonald AG, Coats ER (2015) Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture. Waste Manage 45:51–56

    Article  CAS  Google Scholar 

  63. Lin S et al (2017) Extraction and characterization of pepsin soluble collagen from the body wall of sea cucumber Acaudinaleucoprocta. J Aquatic Food Product Technol 26(5):502–515

    Google Scholar 

  64. Liu X et al (2019) Hemicellulose from plant biomass in medical and pharmaceutical application: A critical review. Current Med Chem 26(14):2430–2455

    Google Scholar 

  65. Liu Y et al (2021) A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends Food Sci Technol

    Google Scholar 

  66. Marangoni C, Agenor F Jr, de Gláucia MFA (2002) Production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Ralstoniaeutropha in whey and inverted sugar with propionic acid feeding. Process Biochem 38(2):137–141

    Google Scholar 

  67. Martinez GA et al (2014) An agro-industrial waste valorization: biopolymer production from dephenolized and fermented grape pomace. Ecomonodo Conf Rimini–Italy, pp 1–6

    Google Scholar 

  68. Mesomo M et al (2009) Xanthan gum produced by Xanthomonascampestris from cheese whey: production optimisation and rheological characterisation. J Sci Food Agricul 89(14):2440–2445

    Google Scholar 

  69. Mohan SV et al (2016) Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Biores Technol 215:2–12

    Google Scholar 

  70. Mohapatra D, Sabyasachi M, Namrata S (2010) Banana and its by-product utilisation: an overview

    Google Scholar 

  71. Mokrejš P et al (2017) Preparation of keratin hydrolysate from chicken feathers and its application in cosmetics. J Visual Experim JoVE 129

    Google Scholar 

  72. Mostafa NA et al (2018) Production of biodegradable plastic from agricultural wastes. Arab J Chem 11(4):546–553

    Article  CAS  Google Scholar 

  73. Mu R et al (2019) Recent trends and applications of cellulose nanocrystals in food industry. Trends Food Sci Technol 93:136–144

    Google Scholar 

  74. Munasinghe KA, Jurgen GS, Matthew W (2015) Utilization of chicken by-products to form collagen films. J Food Proc 2015

    Google Scholar 

  75. Murad HA, Abo-Elkhair AG, Azzaz HH (2019) Production of xanthan gum from nontraditional substrates with perspective of the unique properties and wide industrial applications. JSMC Microbiol 1:6

    Google Scholar 

  76. Nery TBT et al (2008) Biossíntese de gomaxantana a partir da fermentação de soro de leite: rendimento e viscosidade. Química Nova 31(8):1937–1941

    Google Scholar 

  77. Nikel PI et al (2005) Statistical optimization of a culture medium for biomass and poly (3-hydroxybutyrate) production by a recombinant Escherichia coli strain using agroindustrial by products

    Google Scholar 

  78. Niknezhad SV et al (2015) Optimization of xanthan gum production using cheese whey and response surface methodology. Food Science and Biotechnology 24(2):453–460

    Google Scholar 

  79. Nurilmala M et al (2019) Collagen extraction from yellowfin tuna (Thunnusalbacares) skin and its antioxidant activity. J Teknologi 81(2)

    Google Scholar 

  80. Obruca S et al (2014) Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl Microbiol Biotechnol 98(13):5883–5890

    Google Scholar 

  81. Ojha N, Nilanjana D (2020) Process optimization and characterization of polyhydroxyalkanoate copolymers produced by marine Pichiakudriavzevii VIT-NN02 using banana peels and chicken feather hydrolysate. Biocatal Agricul Biotechnology 27:101616

    Google Scholar 

  82. Pais J et al Conversion of cheese whey into poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferaxmediterranei. New Biotechnology 33(1):224–230

    Google Scholar 

  83. Palaniraj A, Vijayakumar J (2011) Production, recovery and applications of xanthan gum by Xanthomonascampestris. J Food Eng 106(1):1–12

    Google Scholar 

  84. Palareti G et al (2016) Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: analysis of results obtained in the DULCIS study. Int J Lab Hematol 38(1):42–49

    Article  CAS  Google Scholar 

  85. Pantazaki AA et al (2009) Production of polyhydroxyalkanoates from whey by Thermusthermophilus HB8. Process Biochem 44(8):847–853

    Google Scholar 

  86. Patel J et al (2020) Xanthan gum derivatives: review of synthesis, properties and diverse applications. RSC Adv 10(45):27103–27136

    Google Scholar 

  87. Peng F, Ren JL, Xu F, Bian J, Peng P, Sun RC (2009) Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J Agric Food Chem 57(14):6305–6317

    Article  CAS  Google Scholar 

  88. Ponkham W, Kullaya L, Arpathsra S (2011) Extraction of collagen from hen eggshell membrane by using organic acids. Thai J Agr Sci 44:354–360

    Google Scholar 

  89. Porter SD et al (2016) A half-century of production-phase greenhouse gas emissions from food loss & waste in the global food supply chain. Sci Total Env 571:721–729

    Google Scholar 

  90. Povolo S, Sergio C (2003) Bacterial production of PHA from lactose and cheese whey permeate. Macromol Symp 197(1). Weinheim: WILEY‐VCH Verlag

    Google Scholar 

  91. Povolo S et al (2012) Production of polyhydroxyalkanoates from fatty wastes. J Poly Env 20(4):944–949

    Google Scholar 

  92. Prameela K et al (2017) Eco-friendly extraction of biopolymer chitin and carotenoids from shrimp waste. In: IOP conference series: materials science and engineering. vol 225, no. 1. IOP Publishing

    Google Scholar 

  93. Radhika D, Murugesan AG (2012) Bioproduction, statistical optimization and characterization of microbial plastic (poly 3-hydroxy butyrate) employing various hydrolysates of water hyacinth (Eichhorniacrassipes) as sole carbon source. Biores Technol 121:83–92

    Article  CAS  Google Scholar 

  94. Ramakrishnan N et al (2018) Keratin based bioplastic film from chicken feathers and its characterization. Int J Biol Macromol 111:352–358

    Google Scholar 

  95. Ramos M et al (2016) Gelatin-based films and coatings for food packaging applications. Coatings 6(4):41

    Google Scholar 

  96. Ranganathan S et al (2020) Utilization of food waste streams for the production of biopolymers. Heliyon 6(9):e04891

    Google Scholar 

  97. Rao U, Sridhar R, Sehgal PK (2010) Biosynthesis and biocompatibility of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Cupriavidusnecator from spent palm oil. Biochem Eng J 49(1):13–20

    Google Scholar 

  98. Rosalam S, Krishnaiah D, Bono A (2008) Cell free xanthan gum production using continuous recycled packed fibrous-bed bioreactor-membrane. Malaysian J Microbiol 4(1):1–5

    Google Scholar 

  99. Roy S, Jong-Whan R (2020) Preparation of antimicrobial and antioxidant gelatin/curcumin composite films for active food packaging application. Colloids Surf B Biointerf 188:110761

    Google Scholar 

  100. Saha T, MdEnamul H, Tariq M (2020) Biopolymers for sustainable packaging in food, cosmetics, and pharmaceuticals. In: Advanced processing, properties, and applications of starch and other bio-based polymers. Elsevier, pp 197–214

    Google Scholar 

  101. Sanchez-Vazquez SA, Hailes HC, Evans JRG (2013) Hydrophobic polymers from food waste: resources and synthesis. Polym Rev 53(4):627–694

    Article  CAS  Google Scholar 

  102. Saratale GD, Moo-Young J, Min-Kyu O (2016) Reutilization of green liquor chemicals for pretreatment of whole rice waste biomass and its application to 2, 3-butanediol production. Biores Technol 205:90–96

    Google Scholar 

  103. Saratale RG et al (2020) Utilization of noxious weed water hyacinth biomass as a potential feedstock for biopolymers production: a novel approach. Polymers 12(8):1704

    Google Scholar 

  104. Sarkar B et al (2006) Wastewater treatment in dairy industries—possibility of reuse. Desalination 195(1–3):141–152

    Google Scholar 

  105. Seddiqi H et al (2021) Cellulose and its derivatives: Towards biomedical applications. Cellulose 1–39

    Google Scholar 

  106. Seesuriyachan P, Techapun C, Shinkawa H, Sasaki K (2010) Solid state fermentation for extracellular polysaccharide production by Lactobacillus confusus with coconut water and sugar cane juice as renewable wastes. Biosci Biotechnol Bio Chem 74(2):423–426

    Google Scholar 

  107. Sharma P, Bajaj BK (2015) Production of poly-ȕ-hydroxybutyrate by Bacillus cereus PS 10 using biphasic-acid-pretreated rice straw. Int J Biol Macromol 79:704–710

    Article  CAS  Google Scholar 

  108. Sharma S, Arun G (2016) Sustainable management of keratin waste biomass: applications and future perspectives. Brazilian Arch Biol Technol 59

    Google Scholar 

  109. Sharma S, Ashok K (2019) Keratin as a protein biopolymer. Springer

    Google Scholar 

  110. Sharma S, Arun G, Ashok K (2019) Keratin: an introduction. Keratin as a protein biopolymer. Springer, Cham, pp 1–18

    Google Scholar 

  111. Sharma S et al (2018) An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean Technol Env Policy 20(10):2157–2167

    Google Scholar 

  112. Sharma S et al (2017) Dissolution and characterization of biofunctional keratin particles extracted from chicken feathers. In: IOP conference series: materials science and engineering. vol. 191, no. 1. IOP Publishing

    Google Scholar 

  113. Sharma S et al (2017) Study of different treatment methods on chicken feather biomass. IIUM Eng J 18(2):47–55

    Google Scholar 

  114. Sharmila G et al (2020) Food waste valorization for biopolymer production. In: Current developments in biotechnology and bioengineering. Elsevier, pp 233–249

    Google Scholar 

  115. Shavandi A et al (2017) Keratin: dissolution, extraction and biomedical application. Biomaterials Sci 5(9):1699–1735

    Google Scholar 

  116. Shukla S et al (2013) Preparation and characterization of cellulose derived from rice husk for drug delivery. Adv Mater Lett 4(9):714–719

    Article  CAS  Google Scholar 

  117. Sindhu R et al (2013) Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem Eng J 78:67–72

    Google Scholar 

  118. Sionkowska A et al (2015) Isolation and characterization of collagen from the skin of Bramaaustralis. International J Biol Macromol 80:605–609

    Google Scholar 

  119. Sirohi R et al (2020) Applications of poly-3-hydroxybutyrate based composite. Adv Appl Bio Degradable Green Comp 68:45

    Google Scholar 

  120. Sockalingam K, Abdullah HZ (1669) Extraction and characterization of gelatin biopolymer from black tilapia (Oreochromismossambicus) scales. In: AIP conference proceedings, vol 1669, no. 1. AIP Publishing LLC

    Google Scholar 

  121. Soleymanpour Z et al (2018) Xanthan gum production from acid hydrolyzed broomcorn stem as a sole carbon source by Xanthomonascampestris. 3 Biotech 8(7):1–12

    Google Scholar 

  122. Szymańska-Chargot M et al (2017) Isolation and characterization of cellulose from different fruit and vegetable pomaces. Polymers 9(10):495

    Google Scholar 

  123. Takahashi T (2009) Cellulose. Fiber ingredients. CRC Press, pp 277–296

    Google Scholar 

  124. Tapia-Blácido DR, Bianca CM, Milena MT (2017) Biopolymers from sugarcane and soybean lignocellulosic biomass. Sustain Polym Biomass 227–253

    Google Scholar 

  125. Taskin M et al (2013) Utilization of chicken feather hydrolysate as a novel fermentation substrate for production of exopolysaccharide and mycelial biomass from edible mushroom Morchellaesculenta. Int J Food Sci Nutrit 63(5):597–602

    Google Scholar 

  126. Tesfaye T, Bishop BS, Ramjugernath D (2018) Preparation, characterization and application of keratin based green biofilms from waste chicken feathers

    Google Scholar 

  127. Theagarajan R et al (2019) Alginates for food packaging applications. Alginates Appl Biomed Food Ind 207

    Google Scholar 

  128. Ventorino V et al (2017) Bio-based succinate production from Arundodonaxhydrolysate with the new natural succinic acid-producing strain Basfiasucciniciproducens BPP7. Bio Energy Res 10(2):488–498

    Google Scholar 

  129. Verlinden RAJ et al (2011) Production of polyhydroxyalkanoates from waste frying oil by Cupriavidusnecator. AMB Express 1(1):1–8

    Google Scholar 

  130. Xiang Y, Xu X, Li J (2012) Chemical properties and antioxidant activity of exopoly-saccharides fractions from mycelial culture of Inonotusobliquus in a ground corn stover medium. Food Chem 134(4):1899–1905

    Article  CAS  Google Scholar 

  131. Yoha KS et al (2019) Properties of food packaging biocomposites and its impact on environment. Compos Env Eng 347–381

    Google Scholar 

  132. Yu F et al (2018) Optimization of extraction conditions and characterization of pepsin-solubilised collagen from skin of giant croaker (Nibea japonica). Marine Drugs 16(1):29

    Google Scholar 

  133. Zaelani BFD et al (2019) Collagen isolation with acid soluble method from the skin of Red Snapper (lutjanus sp.). In: IOP Conference series: earth and environmental science, vol 241, no. 1. IOP Publishing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S., Nadda, A.K., Gupta, A., Singh, J., Mulla, S.I., Sharma, S. (2022). Transforming Wastes into High Value-Added Products: An Introduction. In: Nadda, A.K., Sharma, S., Bhat, R. (eds) Biopolymers. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-98392-5_1

Download citation

Publish with us

Policies and ethics