Skip to main content

Cells and Structures Involved in Hair Follicle Regeneration: An Introduction

  • Chapter
  • First Online:
Hair Follicle Regeneration

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 72))

  • 673 Accesses

Abstract

Introduction The hair follicle spans across the skin epidermis, dermis, and hypodermis and undergoes repeated cycles of growth (anagen), regression (catagen), quiescence (telogen), and shedding (exogen). Research over the past decades have increasingly shown that hair regeneration not only depends on hair follicle stem cells (HFSCs), but also involves coordinated interactions with surrounding cells and structures. Methods PubMed, Web of Science, and Google Scholar were used to find peer-reviewed articles examining HFSCs, fibroblasts, adipocytes, immune cells, lymphatics, blood vessels, nerves, and exosomes in the context of hair regeneration. Results Distinct populations of HFSCs exist in the bulge and secondary germ of the hair follicle. During hair cycling, HFSCs interact with specialized dermal fibroblasts called dermal papilla cells and dermal sheath cells, which have hair-inducing properties. Dermal adipocyte differentiation and remodeling, including fluctuations in dermal adipose thickness, are associated with changes in HFSC activity. Perifollicular macrophages, mast cells, cytotoxic T cells, and regulatory T cells modulate hair growth and have been implicated in various hair disorders. The organization of lymphatic and blood vessels relative to the hair follicle may be correlated with phases of the hair cycle. Substance P and cutaneous norepinephrine signaling may also regulate hair growth. Intercellular communication in the hair follicle microenvironment may be mediated by extracellular vesicles called exosomes, which deliver a variety of cargo in a cell-specific manner. Conclusions Understanding the interdependence of cells and structures involved in the hair growth cycle, as well as mediators of intercellular signaling, are essential for the study of hair regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oh JW, Kloepper J, Langan EA, Kim Y, Yeo J, Kim MJ, Hsi TC, Rose C, Yoon GS, Lee SJ, Seykora J, Kim JC, Sung YK, Kim M, Paus R, Plikus MV (2016) A guide to studying human hair follicle cycling in vivo. J Invest Dermatol 136(1):34–44. https://doi.org/10.1038/JID.2015.354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paus R, Cotsarelis G (1999) The biology of hair follicles. N Engl J Med 341(7):491–497. https://doi.org/10.1056/NEJM199908123410706

    Article  CAS  PubMed  Google Scholar 

  3. Schneider MR, Schmidt-Ullrich R, Paus R (2009) The hair follicle as a dynamic miniorgan. Curr Biol 19(3):R132-142. https://doi.org/10.1016/j.cub.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  4. Bishop GH (1945) Regeneration after experimental removal of skin in man. Am J Anat 76(2):153–181. https://doi.org/10.1002/aja.1000760202

    Article  Google Scholar 

  5. Jahoda CA, Reynolds AJ (2001) Hair follicle dermal sheath cells: unsung participants in wound healing. The Lancet 358(9291):1445–1448. https://doi.org/10.1016/s0140-6736(01)06532-1

    Article  CAS  Google Scholar 

  6. Ansell DM, Kloepper JE, Thomason HA, Paus R, Hardman MJ (2011) Exploring the “hair growth-wound healing connection”: anagen phase promotes wound re-epithelialization. J Invest Dermatol 131(2):518–528. https://doi.org/10.1038/jid.2010.291

    Article  CAS  PubMed  Google Scholar 

  7. Garza L (2019) Developmental biology of the skin. In Kang S, Amagai M, Bruckner AL et al. (eds) Fitzpatrick's Dermatology, 9e. McGraw-Hill Education, New York, NY

    Google Scholar 

  8. Milner Y, Sudnik J, Filippi M, Kizoulis M, Kashgarian M, Stenn K (2002) Exogen, shedding phase of the hair growth cycle: characterization of a mouse model. J Invest Dermatol 119(3):639–644. https://doi.org/10.1046/j.1523-1747.2002.01842.x

    Article  CAS  PubMed  Google Scholar 

  9. Paus R, Foitzik K (2004) In search of the “hair cycle clock”: a guided tour. Differentiation 72(9–10):489–511. https://doi.org/10.1111/j.1432-0436.2004.07209004.x

    Article  CAS  PubMed  Google Scholar 

  10. Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61(7):1329–1337. https://doi.org/10.1016/0092-8674(90)90696-c

    Article  CAS  PubMed  Google Scholar 

  11. Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y (2001) Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104(2):233–245. https://doi.org/10.1016/s0092-8674(01)00208-2

    Article  CAS  PubMed  Google Scholar 

  12. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin JS, Sawicki JA, Cotsarelis G (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22(4):411–417. https://doi.org/10.1038/nbt950

    Article  CAS  PubMed  Google Scholar 

  13. Taylor G, Lehrer MS, Jensen PJ, Sun T-T, Lavker RM (2000) Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102(4):451–461. https://doi.org/10.1016/s0092-8674(00)00050-7

    Article  CAS  PubMed  Google Scholar 

  14. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11(12):1351–1354. https://doi.org/10.1038/nm1328

    Article  CAS  PubMed  Google Scholar 

  15. Akiyama M, Dale BA, Sun T-T, Holbrook KA (1995) Characterization of hair follicle bulge in human fetal skin: the human fetal bulge is a pool of undifferentiated keratinocytes. J Invest Dermatol 105(6):844–850. https://doi.org/10.1111/1523-1747.ep12326649

    Article  CAS  PubMed  Google Scholar 

  16. Lyle S, Christofidou-Solomidou M, Liu Y, Elder DE, Albelda S, Cotsarelis G (1998) The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J Cell Sci 111(Pt 21):3179–3188

    Article  CAS  Google Scholar 

  17. Cotsarelis G (2006) Epithelial stem cells: a folliculocentric view. J Invest Dermatol 126(7):1459–1468. https://doi.org/10.1038/sj.jid.5700376

    Article  CAS  PubMed  Google Scholar 

  18. Ohyama M (2005) Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest 116(1):249–260. https://doi.org/10.1172/jci26043

    Article  Google Scholar 

  19. Harries MJ, Paus R (2010) The pathogenesis of primary cicatricial alopecias. Am J Pathol 177(5):2152–2162. https://doi.org/10.2353/ajpath.2010.100454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Whiting DA (2003) Histopathologic features of alopecia areata. Arch Dermatol 139(12). doi:https://doi.org/10.1001/archderm.139.12.1555

  21. Alkhalifah A, Alsantali A, Wang E, Mcelwee KJ, Shapiro J (2010) Alopecia areata update. J Am Acad Dermatol 62(2):191–202. https://doi.org/10.1016/j.jaad.2009.10.031

    Article  CAS  PubMed  Google Scholar 

  22. Wang EHC, Sallee BN, Tejeda CI, Christiano AM (2018) JAK inhibitors for treatment of alopecia areata. J Invest Dermatol 138(9):1911–1916. https://doi.org/10.1016/j.jid.2018.05.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Greco V, Chen T, Rendl M, Schober M, Pasolli HA, Stokes N, Dela Cruz-Racelis J, Fuchs E (2009) A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4(2):155–169. https://doi.org/10.1016/j.stem.2008.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ito M, Cotsarelis G, Kizawa K, Hamada K (2004) Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation 72(9–10):548–557. https://doi.org/10.1111/j.1432-0436.2004.07209008.x

    Article  PubMed  Google Scholar 

  25. Rompolas P, Deschene ER, Zito G, Gonzalez DG, Saotome I, Haberman AM, Greco V (2012) Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487(7408):496–499. https://doi.org/10.1038/nature11218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hsu YC, Li L, Fuchs E (2014) Emerging interactions between skin stem cells and their niches. Nat Med 20(8):847–856. https://doi.org/10.1038/nm.3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garza LA, Yang CC, Zhao T, Blatt HB, Lee M, He H, Stanton DC, Carrasco L, Spiegel JH, Tobias JW, Cotsarelis G (2011) Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells. J Clin Invest 121(2):613–622. https://doi.org/10.1172/JCI44478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Inoue K, Aoi N, Sato T, Yamauchi Y, Suga H, Eto H, Kato H, Araki J, Yoshimura K (2009) Differential expression of stem-cell-associated markers in human hair follicle epithelial cells. Lab Invest 89(8):844–856. https://doi.org/10.1038/labinvest.2009.48

    Article  CAS  PubMed  Google Scholar 

  29. Ozawa M, Aiba S, Kurosawa M, Tagami H (2004) Ber-EP4 antigen is a marker for a cell population related to the secondary hair germ. Exp Dermatol 13(7):401–405. https://doi.org/10.1111/j.0906-6705.2004.00153.x

    Article  PubMed  Google Scholar 

  30. Purba TS, Haslam IS, Poblet E, Jiménez F, Gandarillas A, Izeta A, Paus R (2014) Human epithelial hair follicle stem cells and their progeny: Current state of knowledge, the widening gap in translational research and future challenges. BioEssays 36(5):513–525. https://doi.org/10.1002/bies.201300166

    Article  CAS  PubMed  Google Scholar 

  31. Trempus CS, Morris RJ, Bortner CD, Cotsarelis G, Faircloth RS, Reece JM, Tennant RW (2003) Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol 120(4):501–511. https://doi.org/10.1046/j.1523-1747.2003.12088.x

    Article  CAS  PubMed  Google Scholar 

  32. Poblet E, Jiménez F, Godínez JM, Pascual-Martín A, Izeta A (2006) The immunohistochemical expression of CD34 in human hair follicles: a comparative study with the bulge marker CK15. Clin Exp Dermatol 31(6):807–812. https://doi.org/10.1111/j.1365-2230.2006.02255.x

    Article  CAS  PubMed  Google Scholar 

  33. Jaks V, Barker N, Kasper M, Van Es JH, Snippert HJ, Clevers H, Toftgård R (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40(11):1291–1299. https://doi.org/10.1038/ng.239

    Article  CAS  PubMed  Google Scholar 

  34. Snippert HJ, Haegebarth A, Kasper M, Jaks V, Van Es JH, Barker N, Van De Wetering M, Van Den Born M, Begthel H, Vries RG, Stange DE, Toftgard R, Clevers H (2010) Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327(5971):1385–1389. https://doi.org/10.1126/science.1184733

    Article  CAS  PubMed  Google Scholar 

  35. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118(5):635–648. https://doi.org/10.1016/j.cell.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  36. Choi S, Yeon, Zhang Y, Xu M, Yang Y, Ito M, Peng T, Cui Z, Nagy A, Hadjantonakis A-K, Lang A, Richard, Cotsarelis G, Andl T, Morrisey E, Edward, Millar E, Sarah (2013) Distinct functions for Wnt/β-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell 13(6):720–733. doi:https://doi.org/10.1016/j.stem.2013.10.003

  37. Myung PS, Takeo M, Ito M, Atit RP (2013) Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration. J Invest Dermatol 133(1):31–41. https://doi.org/10.1038/jid.2012.230

    Article  CAS  PubMed  Google Scholar 

  38. Plikus MV, Mayer JA, De La Cruz D, Baker RE, Maini PK, Maxson R, Chuong C-M (2008) Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451(7176):340–344. https://doi.org/10.1038/nature06457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reddy S, Andl T, Bagasra A, Lu MM, Epstein DJ, Morrisey EE, Millar SE (2001) Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech Dev 107(1–2):69–82. https://doi.org/10.1016/s0925-4773(01)00452-x

    Article  CAS  PubMed  Google Scholar 

  40. Botchkarev VA, Botchkareva NV, Roth W, Nakamura M, Chen L-H, Herzog W, Lindner G, Mcmahon JA, Peters C, Lauster R, Mcmahon AP, Paus R (1999) Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nat Cell Biol 1(3):158–164. https://doi.org/10.1038/11078

    Article  CAS  PubMed  Google Scholar 

  41. Brownell I, Guevara E, Bai CB, Loomis CA, Joyner AL (2011) Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8(5):552–565. https://doi.org/10.1016/j.stem.2011.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kimura-Ueki M, Oda Y, Oki J, Komi-Kuramochi A, Honda E, Asada M, Suzuki M, Imamura T (2012) Hair cycle resting phase is regulated by cyclic epithelial FGF18 signaling. J Invest Dermatol 132(5):1338–1345. https://doi.org/10.1038/jid.2011.490

    Article  CAS  PubMed  Google Scholar 

  43. Sun X, Are A, Annusver K, Sivan U, Jacob T, Dalessandri T, Joost S, Fullgrabe A, Gerling M, Kasper M (2020) Coordinated hedgehog signaling induces new hair follicles in adult skin. Elife 9. https://doi.org/10.7554/eLife.46756

    Google Scholar 

  44. Hawkshaw NJ, Hardman JA, Alam M, Jimenez F, Paus R (2020) Deciphering the molecular morphology of the human hair cycle: Wnt signalling during the telogen–anagen transformation. Br J Dermatol 182(5):1184–1193. https://doi.org/10.1111/bjd.18356

    Article  CAS  PubMed  Google Scholar 

  45. Driskell RR, Clavel C, Rendl M, Watt FM (2011) Hair follicle dermal papilla cells at a glance. J Cell Sci 124(Pt 8):1179–1182. https://doi.org/10.1242/jcs.082446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jahoda CA, Horne KA, Oliver RF (1984) Induction of hair growth by implantation of cultured dermal papilla cells. Nature 311(5986):560–562. https://doi.org/10.1038/311560a0

    Article  CAS  PubMed  Google Scholar 

  47. Reynolds AJ, Jahoda CA (1992) Cultured dermal papilla cells induce follicle formation and hair growth by transdifferentiation of an adult epidermis. Development 115(2):587–593

    Article  CAS  Google Scholar 

  48. Kishimoto J, Burgeson RE, Morgan BA (2000) Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev 14(10):1181–1185

    Article  CAS  Google Scholar 

  49. Rendl M, Polak L, Fuchs E (2008) BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes Dev 22(4):543–557. https://doi.org/10.1101/gad.1614408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Higgins CA, Chen JC, Cerise JE, Jahoda CAB, Christiano AM (2013) Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. Proc Natl Acad Sci 110(49):19679–19688. https://doi.org/10.1073/pnas.1309970110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hibberts N, Howell A, Randall V (1998) Balding hair follicle dermal papilla cells contain higher levels of androgen receptors than those from non-balding scalp. J Endocrinol 156(1):59–65. https://doi.org/10.1677/joe.0.1560059

    Article  CAS  PubMed  Google Scholar 

  52. Adil A, Godwin M (2017) The effectiveness of treatments for androgenetic alopecia: a systematic review and meta-analysis. J Am Acad Dermatol 77(1):136-141.e135. https://doi.org/10.1016/j.jaad.2017.02.054

    Article  PubMed  Google Scholar 

  53. Horne KA, Jahoda CA (1992) Restoration of hair growth by surgical implantation of follicular dermal sheath. Development 116(3):563–571

    Article  CAS  Google Scholar 

  54. McElwee KJ, Kissling S, Wenzel E, Huth A, Hoffmann R (2003) Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. J Invest Dermatol 121(6):1267–1275. https://doi.org/10.1111/j.1523-1747.2003.12568.x

    Article  CAS  PubMed  Google Scholar 

  55. Rahmani W, Abbasi S, Hagner A, Raharjo E, Kumar R, Hotta A, Magness S, Metzger D, Biernaskie J (2014) Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type. Dev Cell 31(5):543–558. https://doi.org/10.1016/j.devcel.2014.10.022

    Article  CAS  PubMed  Google Scholar 

  56. Heitman N, Sennett R, Mok KW, Saxena N, Srivastava D, Martino P, Grisanti L, Wang Z, Ma’ayan A, Rompolas P, Rendl M (2020) Dermal sheath contraction powers stem cell niche relocation during hair cycle regression. Science 367(6474):161–166. https://doi.org/10.1126/science.aax9131

    Article  CAS  PubMed  Google Scholar 

  57. Reynolds AJ, Lawrence C, Cserhalmi-Friedman PB, Christiano AM, Jahoda CAB (1999) Trans-gender induction of hair follicles. Nature 402(6757):33–34. https://doi.org/10.1038/46938

    Article  CAS  PubMed  Google Scholar 

  58. Tsuboi R, Niiyama S, Irisawa R, Harada K, Nakazawa Y, Kishimoto J (2020) Autologous cell-based therapy for male and female pattern hair loss using dermal sheath cup cells: a randomized placebo-controlled double-blinded dose-finding clinical study. J Am Acad Dermatol 83(1):109–116. https://doi.org/10.1016/j.jaad.2020.02.033

    Article  CAS  PubMed  Google Scholar 

  59. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto N-J, Enerbäck S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360(15):1518–1525. https://doi.org/10.1056/nejmoa0808949

    Article  CAS  PubMed  Google Scholar 

  60. Driskell RR, Jahoda CAB, Chuong C-M, Watt FM, Horsley V (2014) Defining dermal adipose tissue. Exp Dermatol 23(9):629–631. https://doi.org/10.1111/exd.12450

    Article  PubMed  PubMed Central  Google Scholar 

  61. Guerrero-Juarez CF, Plikus MV (2018) Emerging nonmetabolic functions of skin fat. Nat Rev Endocrinol 14(3):163–173. https://doi.org/10.1038/nrendo.2017.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Donati G, Proserpio V, Lichtenberger BM, Natsuga K, Sinclair R, Fujiwara H, Watt FM (2014) Epidermal Wnt/ -catenin signaling regulates adipocyte differentiation via secretion of adipogenic factors. Proc Natl Acad Sci 111(15):E1501–E1509. https://doi.org/10.1073/pnas.1312880111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Festa E, Fretz J, Berry R, Schmidt B, Rodeheffer M, Horowitz M, Horsley V (2011) Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146(5):761–771. https://doi.org/10.1016/j.cell.2011.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hansen LS, Coggle JE, Wells J, Charles MW (1984) The influence of the hair cycle on the thickness of mouse skin. Anat Rec 210(4):569–573. https://doi.org/10.1002/ar.1092100404

    Article  CAS  PubMed  Google Scholar 

  65. Rivera-Gonzalez GC, Shook BA, Andrae J, Holtrup B, Bollag K, Betsholtz C, Rodeheffer MS, Horsley V (2016) Skin Adipocyte Stem Cell Self-Renewal Is Regulated by a PDGFA/AKT-Signaling Axis. Cell Stem Cell 19(6):738–751. https://doi.org/10.1016/j.stem.2016.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rodeheffer MS, Birsoy K, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135(2):240–249. https://doi.org/10.1016/j.cell.2008.09.036

    Article  CAS  PubMed  Google Scholar 

  67. Zhang B, Tsai P-C, Gonzalez-Celeiro M, Chung O, Boumard B, Perdigoto CN, Ezhkova E, Hsu Y-C (2016) Hair follicles’ transit-amplifying cells govern concurrent dermal adipocyte production through Sonic Hedgehog. Genes Dev 30(20):2325–2338. https://doi.org/10.1101/gad.285429.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Karnik P, Tekeste Z, Mccormick TS, Gilliam AC, Price VH, Cooper KD, Mirmirani P (2009) Hair follicle stem cell-specific PPARγ deletion causes scarring alopecia. J Invest Dermatol 129(5):1243–1257. https://doi.org/10.1038/jid.2008.369

    Article  CAS  PubMed  Google Scholar 

  69. Rahmani W, Sinha S, Biernaskie J (2020) Immune modulation of hair follicle regeneration. NPJ Regen Med 5(1). doi:https://doi.org/10.1038/s41536-020-0095-2

  70. Wang ECE, Higgins CA (2020) Immune cell regulation of the hair cycle. Exp Dermatol 29(3):322–333. https://doi.org/10.1111/exd.14070

    Article  PubMed  Google Scholar 

  71. Paus R, Van Der Veen C, Eichmüller S, Kopp T, Hagen E, Müller-Röver S, Hofmann U (1998) Generation and cyclic remodeling of the hair follicle immune system in mice. J Invest Dermatol 111(1):7–18. https://doi.org/10.1046/j.1523-1747.1998.00243.x

    Article  CAS  PubMed  Google Scholar 

  72. Christoph T, Müller-Röver S, Audring H, Tobin DJ, Hermes B, Cotsarelis G, Rückert R, Paus R (2000) The human hair follicle immune system: cellular composition and immune privilege. Br J Dermatol 142(5):862–873. https://doi.org/10.1046/j.1365-2133.2000.03464.x

    Article  CAS  PubMed  Google Scholar 

  73. Castellana D, Paus R, Perez-Moreno M (2014) Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLoS Biol 12(12). https://doi.org/10.1371/journal.pbio.1002002

  74. Wang ECE, Dai Z, Ferrante AW, Drake CG, Christiano AM (2019) A subset of TREM2(+) dermal macrophages secretes oncostatin m to maintain hair follicle stem cell quiescence and inhibit hair growth. Cell Stem Cell 24(4):654–669 e656. doi:https://doi.org/10.1016/j.stem.2019.01.011

  75. Hardman JA, Muneeb F, Pople J, Bhogal R, Shahmalak A, Paus R (2019) Human perifollicular macrophages undergo apoptosis, express wnt ligands, and switch their polarization during catagen. J Invest Dermatol 139(12):2543-2546.e2549. https://doi.org/10.1016/j.jid.2019.04.026

    Article  CAS  PubMed  Google Scholar 

  76. Suzuki S, Kato T, Takimoto H, Masui S, Oshima H, Ozawa K, Suzuki S, Imamura T (1998) Localization of rat FGF-5 protein in skin macrophage-like cells and FGF-5S protein in hair follicle: possible involvement of twoFgf-5 gene products in hair growth cycle regulation. J Invest Dermatol 111(6):963–972. https://doi.org/10.1046/j.1523-1747.1998.00427.x

    Article  CAS  PubMed  Google Scholar 

  77. Suzuki S, Ota Y, Ozawa K, Imamura T (2000) Dual-mode regulation of hair growth cycle by two Fgf-5 gene products. J Invest Dermatol 114(3):456–463. https://doi.org/10.1046/j.1523-1747.2000.00912.x

    Article  CAS  PubMed  Google Scholar 

  78. Hébert JM, Rosenquist T, Götz J, Martin GR (1994) FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell 78(6):1017–1025. https://doi.org/10.1016/0092-8674(94)90276-3

    Article  PubMed  Google Scholar 

  79. Higgins CA, Petukhova L, Harel S, Ho YY, Drill E, Shapiro L, Wajid M, Christiano AM (2014) FGF5 is a crucial regulator of hair length in humans. Proc Natl Acad Sci 111(29):10648–10653. https://doi.org/10.1073/pnas.1402862111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Paus R, Maurer M, Slominski A, Czarnetzki BM (1994) Mast cell involvement in murine hair growth. Dev Biol 163(1):230–240. https://doi.org/10.1006/dbio.1994.1139

    Article  CAS  PubMed  Google Scholar 

  81. Maurer M, Fischer E, Handjiski B, von Stebut E, Algermissen B, Bavandi A, Paus R (1997) Activated skin mast cells are involved in murine hair follicle regression (catagen). Lab Invest 77(4):319–332

    CAS  PubMed  Google Scholar 

  82. Weber A, Knop J, Maurer M (2003) Pattern analysis of human cutaneous mast cell populations by total body surface mapping. Br J Dermatol 148(2):224–228. https://doi.org/10.1046/j.1365-2133.2003.05090.x

    Article  CAS  PubMed  Google Scholar 

  83. Peters EMJ, Liotiri S, Bodó E, Hagen E, Bíró T, Arck PC, Paus R (2007) Probing the effects of stress mediators on the human hair follicle. Am J Pathol 171(6):1872–1886. https://doi.org/10.2353/ajpath.2007.061206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jaworsky C, Kligman AM, Murphy GF (1992) Characterization of inflammatory infiltrates in male pattern alopecia: implications for pathogenesis. Br J Dermatol 127(3):239–246. https://doi.org/10.1111/j.1365-2133.1992.tb00121.x

    Article  CAS  PubMed  Google Scholar 

  85. Michel L, Reygagne P, Benech P, Jean-Louis F, Scalvino S, Ly Ka So S, Hamidou Z, Bianovici S, Pouch J, Ducos B, Bonnet M, Bensussan A, Patatian A, Lati E, Wdzieczak-Bakala J, Choulot JC, Loing E, Hocquaux M (2017) Study of gene expression alteration in male androgenetic alopecia: evidence of predominant molecular signalling pathways. Br J Dermatol 177(5):1322–1336. https://doi.org/10.1111/bjd.15577

    Article  CAS  PubMed  Google Scholar 

  86. Garza LA, Liu Y, Yang Z, Alagesan B, Lawson JA, Norberg SM, Loy DE, Zhao T, Blatt HB, Stanton DC, Carrasco L, Ahluwalia G, Fischer SM, Fitzgerald GA, Cotsarelis G (2012) Prostaglandin D2 inhibits hair growth and is elevated in bald scalp of men with androgenetic alopecia. Sci Transl Med 4(126):126ra134–126ra134. doi:https://doi.org/10.1126/scitranslmed.3003122

  87. Bertolini M, Zilio F, Rossi A, Kleditzsch P, Emelianov VE, Gilhar A, Keren A, Meyer KC, Wang E, Funk W, Mcelwee K, Paus R (2014) Abnormal interactions between perifollicular mast cells and CD8+ T-cells may contribute to the pathogenesis of alopecia areata. PLoS ONE 9(5). https://doi.org/10.1371/journal.pone.0094260

  88. Petukhova L, Duvic M, Hordinsky M, Norris D, Price V, Shimomura Y, Kim H, Singh P, Lee A, Chen WV, Meyer KC, Paus R, Jahoda CAB, Amos CI, Gregersen PK, Christiano AM (2010) Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 466(7302):113–117. https://doi.org/10.1038/nature09114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xing L, Dai Z, Jabbari A, Cerise JE, Higgins CA, Gong W, De Jong A, Harel S, Destefano GM, Rothman L, Singh P, Petukhova L, Mackay-Wiggan J, Christiano AM, Clynes R (2014) Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med 20(9):1043–1049. https://doi.org/10.1038/nm.3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Harel S, Higgins CA, Cerise JE, Dai Z, Chen JC, Clynes R, Christiano AM (2015) Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci Adv 1(9). https://doi.org/10.1126/sciadv.1500973

  91. Ali N, Zirak B, Rodriguez RS, Pauli ML, Truong H-A, Lai K, Ahn R, Corbin K, Lowe MM, Scharschmidt TC, Taravati K, Tan MR, Ricardo-Gonzalez RR, Nosbaum A, Bertolini M, Liao W, Nestle FO, Paus R, Cotsarelis G, Abbas AK, Rosenblum MD (2017) Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169(6):1119-1129.e1111. https://doi.org/10.1016/j.cell.2017.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tembhre MK, Sharma VK (2013) T-helper and regulatory T-cell cytokines in the peripheral blood of patients with active alopecia areata. Br J Dermatol 169(3):543–548. https://doi.org/10.1111/bjd.12396

    Article  CAS  PubMed  Google Scholar 

  93. Wier EM, Garza LA (2020) Through the lens of hair follicle neogenesis, a new focus on mechanisms of skin regeneration after wounding. Semin Cell Dev Biol 100:122–129. https://doi.org/10.1016/j.semcdb.2019.10.002

    Article  CAS  PubMed  Google Scholar 

  94. Kasuya A, Ito T, Tokura Y (2018) M2 macrophages promote wound-induced hair neogenesis. J Dermatol Sci 91(3):250–255. https://doi.org/10.1016/j.jdermsci.2018.05.004

    Article  CAS  PubMed  Google Scholar 

  95. Rahmani W, Liu Y, Rosin NL, Kline A, Raharjo E, Yoon J, Stratton JA, Sinha S, Biernaskie J (2018) Macrophages promote wound-induced hair follicle regeneration in a CX3CR1- and TGF-beta1-dependent manner. J Invest Dermatol 138(10):2111–2122. https://doi.org/10.1016/j.jid.2018.04.010

    Article  CAS  PubMed  Google Scholar 

  96. Wang X, Chen H, Tian R, Zhang Y, Drutskaya MS, Wang C, Ge J, Fan Z, Kong D, Wang X, Cai T, Zhou Y, Wang J, Wang J, Wang S, Qin Z, Jia H, Wu Y, Liu J, Nedospasov SA, Tredget EE, Lin M, Liu J, Jiang Y, Wu Y (2017) Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat Commun 8(1):14091. https://doi.org/10.1038/ncomms14091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nelson AM, Reddy SK, Ratliff TS, Hossain MZ, Katseff AS, Zhu AS, Chang E, Resnik SR, Page C, Kim D, Whittam AJ, Miller LS, Garza LA (2015) dsRNA released by tissue damage activates TLR3 to drive skin regeneration. Cell Stem Cell 17(2):139–151. https://doi.org/10.1016/j.stem.2015.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhu AS, Li A, Ratliff TS, Melsom M, Garza LA (2017) After skin wounding, noncoding dsRNA coordinates prostaglandins and wnts to promote regeneration. J Invest Dermatol 137(7):1562–1568. https://doi.org/10.1016/j.jid.2017.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kligman AM, Strauss JS (1956) The formation of vellus hair follicles from human adult epidermis. J Invest Dermatol 27(1):19–23. https://doi.org/10.1038/jid.1956.71

    Article  CAS  PubMed  Google Scholar 

  100. Sun Z, Diao J, Guo S, Yin G (2009) A very rare complication: new hair growth around healing wounds. J Int Med Res 37(2):583–586. https://doi.org/10.1177/147323000903700236

    Article  CAS  PubMed  Google Scholar 

  101. Beachkofsky TM, Henning JS, Hivnor CM (2011) Induction of de novo hair regeneration in scars after fractionated carbon dioxide laser therapy in three patients. Dermatol Surg 37(9):1365–1368. https://doi.org/10.1111/j.1524-4725.2011.01934.x

    Article  CAS  PubMed  Google Scholar 

  102. Wong T-W, Hughes M, Wang S-H (2018) Never too old to regenerate? Wound induced hair follicle neogenesis after secondary intention healing in a geriatric patient. J Tissue Viability 27(2):114–116. https://doi.org/10.1016/j.jtv.2018.01.001

    Article  PubMed  Google Scholar 

  103. Skobe M, Detmar M (2000) Structure, function, and molecular control of the skin lymphatic system. J Invest Dermat Symp Proc 5(1):14–19. https://doi.org/10.1046/j.1087-0024.2000.00001.x

    Article  CAS  Google Scholar 

  104. Gur-Cohen S, Yang H, Baksh SC, Miao Y, Levorse J, Kataru RP, Liu X, De La Cruz-Racelis J, Mehrara BJ, Fuchs E (2019) Stem cell–driven lymphatic remodeling coordinates tissue regeneration. Science 366(6470):1218–1225. https://doi.org/10.1126/science.aay4509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Peña‐Jimenez D, Fontenete S, Megias D, Fustero‐Torre C, Graña‐Castro O, Castellana D, Loewe R, Perez‐Moreno M (2019) Lymphatic vessels interact dynamically with the hair follicle stem cell niche during skin regeneration in vivo. EMBO J 38(19). doi:https://doi.org/10.15252/embj.2019101688

  106. Mecklenburg L, Tobin DJ, Müller-Röver S, Handjiski B, Wendt G, Peters EMJ, Pohl S, Moll I, Paus R (2000) Active hair growth (Anagen) is associated with angiogenesis. J Invest Dermatol 114(5):909–916. https://doi.org/10.1046/j.1523-1747.2000.00954.x

    Article  CAS  PubMed  Google Scholar 

  107. Yano K, Brown LF, Detmar M (2001) Control of hair growth and follicle size by VEGF-mediated angiogenesis. J Clin Invest 107(4):409–417. https://doi.org/10.1172/jci11317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Burton JL, Marshall A (1979) Hypertrichosis due to minoxidil. Br J Dermatol 101(5):593–595. https://doi.org/10.1111/j.1365-2133.1979.tb15106.x

    Article  CAS  Google Scholar 

  109. Kozlowska U, Blume-Peytavi U, Kodelja V, Sommer C, Goerdt S, Majewski S, Jablonska S, Orfanos CE (1998) Expression of vascular endothelial growth factor (VEGF) in various compartments of the human hair follicle. Arch Dermatol Res 290(12):661–668. https://doi.org/10.1007/s004030050370

    Article  CAS  PubMed  Google Scholar 

  110. Lachgar C, Gall B (1998) Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells. Br J Dermatol 138(3):407–411. https://doi.org/10.1046/j.1365-2133.1998.02115.x

    Article  CAS  PubMed  Google Scholar 

  111. Messenger AG, Rundegren J (2004) Minoxidil: mechanisms of action on hair growth. Br J Dermatol 150(2):186–194. https://doi.org/10.1111/j.1365-2133.2004.05785.x

    Article  CAS  PubMed  Google Scholar 

  112. Wester RC, Maibach HI, Guy RH, Novak E (1984) Minoxidil stimulates cutaneous blood flow in human balding scalps: pharmacodynamics measured by laser Doppler velocimetry and photopulse plethysmography. J Invest Dermatol 82(5):515–517. https://doi.org/10.1111/1523-1747.ep12261084

    Article  CAS  PubMed  Google Scholar 

  113. Bunker CB, Dowd PM (1987) Alterations in scalp blood flow after the epicutaneous application of 3% minoxidil and 0.1% hexyl nicotinate in alopecia. Br J Dermatol 117(5):668–669. doi:https://doi.org/10.1111/j.1365-2133.1987.tb07505.x

  114. Botchkarev VA, Eichmuller S, Johansson O, Paus R (1997) Hair cycle-dependent plasticity of skin and hair follicle innervation in normal murine skin. J Comp Neurol 386(3):379–395. https://doi.org/10.1002/(sici)1096-9861(19970929)386:3%3c379::aid-cne4%3e3.0.co;2-z

    Article  CAS  PubMed  Google Scholar 

  115. Paus R, Peters EM, Eichmuller S, Botchkarev VA (1997) Neural mechanisms of hair growth control. J Invest Dermatol Symp Proc 2(1):61–68. https://doi.org/10.1038/jidsymp.1997.13

    Article  CAS  PubMed  Google Scholar 

  116. Arck PC, Handjiski B, Peters EMJ, Peter AS, Hagen E, Fischer A, Klapp BF, Paus R (2003) Stress inhibits hair growth in mice by induction of premature catagen development and deleterious perifollicular inflammatory events via neuropeptide substance P-dependent pathways. Am J Pathol 162(3):803–814. https://doi.org/10.1016/s0002-9440(10)63877-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chéret J, Bertolini M, Ponce L, Lehmann J, Tsai T, Alam M, Hatt H, Paus R (2018) Olfactory receptor OR2AT4 regulates human hair growth. Nat Commun 9(1). doi:https://doi.org/10.1038/s41467-018-05973-0

  118. Fan SM-Y, Chang Y-T, Chen C-L, Wang W-H, Pan M-K, Chen W-P, Huang W-Y, Xu Z, Huang H-E, Chen T, Plikus MV, Chen S-K, Lin S-J (2018) External light activates hair follicle stem cells through eyes via an ipRGC–SCN–sympathetic neural pathway. Proc Natl Acad Sci 115(29):E6880–E6889. https://doi.org/10.1073/pnas.1719548115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shwartz Y, Gonzalez-Celeiro M, Chen C-L, Pasolli HA, Sheu S-H, Fan SM-Y, Shamsi F, Assaad S, Lin ET-Y, Zhang B, Tsai P-C, He M, Tseng Y-H, Lin S-J, Hsu Y-C (2020) Cell types promoting goosebumps form a niche to regulate hair follicle stem cells. Cell 182(3):578–593.e519. https://doi.org/10.1016/j.cell.2020.06.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Carrasco E, Soto-Heredero G, Mittelbrunn M (2019) The role of extracellular vesicles in cutaneous remodeling and hair follicle dynamics. Int J Mol Sci 20(11):2758. https://doi.org/10.3390/ijms20112758

    Article  CAS  PubMed Central  Google Scholar 

  121. Van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228. https://doi.org/10.1038/nrm.2017.125

    Article  CAS  PubMed  Google Scholar 

  122. Wiklander OPB, Brennan MÁ, Lötvall J, Breakefield XO, El Andaloussi S (2019) Advances in therapeutic applications of extracellular vesicles. Sci Transl Med 11(492):eaav8521. doi:https://doi.org/10.1126/scitranslmed.aav8521

  123. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367(6478). doi:https://doi.org/10.1126/science.aau6977

  124. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q, Evans R, Fissell WH, Patton JG, Rome LH, Burnette DT, Coffey RJ (2019) Reassessment of exosome composition. Cell 177(2):428-445.e418. https://doi.org/10.1016/j.cell.2019.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, Samuel M, Pathan M, Jois M, Chilamkurti N, Gangoda L, Mathivanan S (2016) ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol 428(4):688–692. https://doi.org/10.1016/j.jmb.2015.09.019

    Article  CAS  PubMed  Google Scholar 

  126. Riazifar M, Pone EJ, Lötvall J, Zhao W (2017) Stem cell extracellular vesicles: extended messages of regeneration. Annu Rev Pharmacol Toxicol 57(1):125–154. https://doi.org/10.1146/annurev-pharmtox-061616-030146

    Article  CAS  PubMed  Google Scholar 

  127. Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581–593. https://doi.org/10.1038/nri2567

    Article  CAS  PubMed  Google Scholar 

  128. Gross JC, Chaudhary V, Bartscherer K, Boutros M (2012) Active Wnt proteins are secreted on exosomes. Nat Cell Biol 14(10):1036–1045. https://doi.org/10.1038/ncb2574

    Article  CAS  PubMed  Google Scholar 

  129. Hu S, Li Z, Lutz H, Huang K, Su T, Cores J, Dinh P-UC, Cheng K (2020) Dermal exosomes containing miR-218–5p promote hair regeneration by regulating β-catenin signaling. Science Advances 6(30):eaba1685. doi:https://doi.org/10.1126/sciadv.aba1685

  130. Kwack MH, Seo CH, Gangadaran P, Ahn BC, Kim MK, Kim JC, Sung YK (2019) Exosomes derived from human dermal papilla cells promote hair growth in cultured human hair follicles and augment the hair-inductive capacity of cultured dermal papilla spheres. Exp Dermatol 28(7):854–857. https://doi.org/10.1111/exd.13927

    Article  CAS  PubMed  Google Scholar 

  131. Rajendran RL, Gangadaran P, Bak SS, Oh JM, Kalimuthu S, Lee HW, Baek SH, Zhu L, Sung YK, Jeong SY, Lee S-W, Lee J, Ahn B-C (2017) Extracellular vesicles derived from MSCs activates dermal papilla cell in vitro and promotes hair follicle conversion from telogen to anagen in mice. Sci Rep 7(1). doi:https://doi.org/10.1038/s41598-017-15505-3

  132. Zhou L, Wang H, Jing J, Yu L, Wu X, Lu Z (2018) Regulation of hair follicle development by exosomes derived from dermal papilla cells. Biochem Biophys Res Commun 500(2):325–332. https://doi.org/10.1016/j.bbrc.2018.04.067

    Article  CAS  PubMed  Google Scholar 

  133. Mcbride JD, Rodriguez-Menocal L, Badiavas EV (2017) Extracellular vesicles as biomarkers and therapeutics in dermatology: a focus on exosomes. J Invest Dermatol 137(8):1622–1629. https://doi.org/10.1016/j.jid.2017.04.021

    Article  CAS  PubMed  Google Scholar 

  134. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach J-M, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesic 7(1):1535750. doi:https://doi.org/10.1080/20013078.2018.1535750

  135. Sebastiano V, Zhen HH, Haddad B, Bashkirova E, Melo SP, Wang P, Leung TL, Siprashvili Z, Tichy A, Li J, Ameen M, Hawkins J, Lee S, Li L, Schwertschkow A, Bauer G, Lisowski L, Kay MA, Kim SK, Lane AT, Wernig M, Oro AE (2014) Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci Transl Med 6(264):264ra163. doi:https://doi.org/10.1126/scitranslmed.3009540

  136. Umegaki-Arao N, Pasmooij AM, Itoh M, Cerise JE, Guo Z, Levy B, Gostynski A, Rothman LR, Jonkman MF, Christiano AM (2014) Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Sci Transl Med 6(264):264ra164. doi:https://doi.org/10.1126/scitranslmed.3009342

  137. Wenzel D, Bayerl J, Nystrom A, Bruckner-Tuderman L, Meixner A, Penninger JM (2014) Genetically corrected iPSCs as cell therapy for recessive dystrophic epidermolysis bullosa. Sci Transl Med 6(264):264ra165. doi:https://doi.org/10.1126/scitranslmed.3010083

  138. Hirsch T, Rothoeft T, Teig N, Bauer JW, Pellegrini G, De Rosa L, Scaglione D, Reichelt J, Klausegger A, Kneisz D, Romano O, Secone Seconetti A, Contin R, Enzo E, Jurman I, Carulli S, Jacobsen F, Luecke T, Lehnhardt M, Fischer M, Kueckelhaus M, Quaglino D, Morgante M, Bicciato S, Bondanza S, De Luca M (2017) Regeneration of the entire human epidermis using transgenic stem cells. Nature 551(7680):327–332. https://doi.org/10.1038/nature24487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Siprashvili Z, Nguyen NT, Gorell ES, Loutit K, Khuu P, Furukawa LK, Lorenz HP, Leung TH, Keene DR, Rieger KE, Khavari P, Lane AT, Tang JY, Marinkovich MP (2016) Safety and wound outcomes following genetically corrected autologous epidermal grafts in patients with recessive dystrophic epidermolysis bullosa. JAMA 316(17):1808–1817. https://doi.org/10.1001/jama.2016.15588

    Article  PubMed  Google Scholar 

  140. Lee J, Rabbani CC, Gao H, Steinhart MR, Woodruff BM, Pflum ZE, Kim A, Heller S, Liu Y, Shipchandler TZ, Koehler KR (2020) Hair-bearing human skin generated entirely from pluripotent stem cells. Nature 582(7812):399–404. https://doi.org/10.1038/s41586-020-2352-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang LL, Cotsarelis G (2020) Regenerative medicine could pave the way to treating baldness. Nature 582(7812):343–344. https://doi.org/10.1038/d41586-020-01568-2

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Garza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsai, J., Garza, L.A. (2022). Cells and Structures Involved in Hair Follicle Regeneration: An Introduction. In: Jimenez, F., Higgins, C. (eds) Hair Follicle Regeneration. Stem Cell Biology and Regenerative Medicine, vol 72. Humana, Cham. https://doi.org/10.1007/978-3-030-98331-4_3

Download citation

Publish with us

Policies and ethics