Skip to main content

Treatment of Novel Coronavirus (2019-nCoV) Using Hinokitiol (β-thujaplicin) Copper Chelate

  • Chapter
  • First Online:
How COVID-19 is Accelerating the Digital Revolution

Abstract

Human Coronavirus (HCoV) or Novel Coronavirus (2019-nCoV) is probably a brand new version of coronavirus that belongs to Betacoronaviruses kind Human Coronaviruses, similar to the Severe Acute Respiratory Syndrome (SARS) coronavirus and Middle-East Respiratory Syndrome (MERS) coronavirus. China recorded the number one case of this virus in December 2019 at Wuhan, the capital town of Hubei province. By 27 March 2020, 10:00 CET, nearly 23,335 humans died out of 509,164 showed instances recorded throughout the world. By the give up of January 2020, China showed that the Novel Coronavirus (2019-nCoV) transmitted from one human to another. This studies pursuits to research a completely specific medicament called “Hinokitiol Copper Chelate” towards the large quantity 2019-nCoV Spike Glycoprotein with a unmarried receptor binding domain. This take a look at gives a super version for Hinokitiol Copper Chelate to be examined in silico towards 2019-nCoV Main Protease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anthony, S. J., Epstein, J. H., Murray, K. A., Navarrete-Macias, I., Zambrana-Torrelio, C. M., et al. (2013a). A strategy to estimate unknown viral diversity in mammals. MBio, 4, e00598–e00513.

    Article  Google Scholar 

  2. Bono, L. M., Gensel, C. L., Pfennig, D. W., & Burch, C. L. (2012). Competition and the origins of novelty: Experimental evolution of niche-width expansion in a virus. Biology Letters, 9, 20120616.

    Article  Google Scholar 

  3. Bromham, L., & Penny, D. (2003). The modern molecular clock. Nature Reviews Genetics, 4, 216–224.

    Article  Google Scholar 

  4. Bull, J. J., Meyers, L. A., & Lachmann, M. (2005). Quasispecies made simple. PLoS Computational Biology, 1, e61.

    Article  Google Scholar 

  5. Bull, J. J., Sanjuan, R., & Wilke, C. O. (2007). Theory of lethal mutagenesis for viruses. Journal of Virology, 81, 2930–2939.

    Article  Google Scholar 

  6. Bull, R. A., Eden, J. S., Rawlinson, W. D., & White, P. A. (2010). Rapid evolution of pandemic noroviruses of the GII.4 lineage. PLoS Pathogens, 6, e1000831.

    Article  Google Scholar 

  7. Chow, S. S., Wilke, C. O., Ofria, C., Lenski, R. E., & Adami, C. (2004). Adaptive radiation from resource competition in digital organisms. Science, 305, 84–86.

    Article  Google Scholar 

  8. Coronavirus disease 2019 (COVID-19) Situation report – 67. Retrieved March 29, 2020 from https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200327-sitrep-67-covid-19.pdf?sfvrsn=b65f68eb_4

  9. Miyamoto, D., Kusagaya, Y., Endo, N., Sometani, A., Takeo, S., Suzuki, T., Arima, Y., Nakajima, K., & Suzuk, Y. (1998). Thujaplicin–copper chelates inhibit replication of human influenza viruses. Antiviral Research, 39(2), 89–100.

    Article  Google Scholar 

  10. Daszak, P., Cunningham, A. A., & Hyatt, A. D. (2000). Emerging infectious disease of wildlife – Threates to biodiversity and human health. Science, 287, 443–449.

    Article  Google Scholar 

  11. Docking (Molecular). (n.d.). In Wikipedia. Retrieved March 29, 2020, from https://en.wikipedia.org/wiki/Docking_(molecular)

  12. Drake, J. W. (1993). Rates of spontaneous mutation among RNA viruses. Proceedings of the National Academy of Sciences, 90, 4171–4175.

    Article  Google Scholar 

  13. Eigen, M. (1993). Viral quasispecies. Scientific American, 269, 42–49.

    Article  Google Scholar 

  14. Elfiky, A. (2020). Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sciences, 248, 117477.

    Article  Google Scholar 

  15. Erles, K., Toomey, C., Brooks, H. W., & Brownlie, J. (2003). Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease. Virology Journal, 310, 216–223.

    Article  Google Scholar 

  16. Gao, F., Bailes, E., Robertson, D. L., Chen, Y., Rodenburg, C. M., Michael, S. F., Cummins, L. B., Arthur, L. O., Martine, P., Shaw, G. M., Sharp, P. M., & Hahn, B. H. (1999). Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature, 397, 436–441.

    Article  Google Scholar 

  17. Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., et al. (2013). The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. Journal of Virology, 87, 5502–5511.

    Article  Google Scholar 

  18. Gojobori, T., Moriyama, E. N., & Kimura, M. (1990). Molecular clock of viral evolution and the neutral theory. Proceedings of the National Academy of Sciences, 87, 10015–10018.

    Article  Google Scholar 

  19. Graham, R. L., Becker, M. M., Eckerle, L. D., Bolles, M., Denison, M. R., & Baric, R. S. (2012). A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nature Medicine, 18, 1820–1826.

    Article  Google Scholar 

  20. Graham, R. L., Donaldson, E. F., & Baric, R. S. (2013). A decade after SARS: Strategies for controlling emerging coronaviruses. Nature Reviews. Microbiology, 11, 836–848.

    Article  Google Scholar 

  21. Hasoksuz, M., Alekseev, K., Vlasova, A., Zhang, X., Spiro, D., et al. (2007). Biologic, antigenic, and full-length genomic characterization of a bovine-like coronavirus isolated from a giraffe. Journal of Virology, 81, 4981–4990.

    Article  Google Scholar 

  22. Hayden, F., & Croisier, A. (2005). Transmission of avian influenza viruses to and between humans. The Journal of Infectious Diseases, 192, 1311–1314.

    Article  Google Scholar 

  23. Holmes, E. C., & Rambaut, A. (2004). Viral evolution and the emergence of SARS coronavirus. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 359, 1059–1065.

    Article  Google Scholar 

  24. Holmes, K. V. (2003). SARS-associated coronavirus. The New England Journal of Medicine, 348, 1948–51 104.

    Google Scholar 

  25. Howard, C. R., & Fletcher, N. F. (2012). Emerging virus disease: Can we ever expect the unexpected? Emerging Microbes and Infections, 1, e46.

    Google Scholar 

  26. In silico. (n.d.). In Wikipedia. Retrieved March 29, 2020, from http://en.wikipedia.org/wiki/Psychology; https://en.wikipedia.org/wiki/In_silico

  27. Jenkins, G. M., et al. (2002). Rates of molecular evolution in RNA viruses: A quantitative phylogenetic analysis. Journal of Molecular Evolution, 54, 156–165.

    Article  Google Scholar 

  28. Sagripanti, J.-L., Routson, L. B., & Lytle, C. D. (1993). Virus inactivation by copper or iron ions alone and in the presence of peroxide. Applied and Environmental Microbiology, 59(12), 4374–4376.

    Article  Google Scholar 

  29. Kimura, M. (1984). The neutral theory of molecular evolution. Cambridge University Press.

    Google Scholar 

  30. Kimura, M. (1991). The neutral theory of molecular evolution: A review of recent evidence. Japanese Journal of Genetics, 66, 367–386.

    Google Scholar 

  31. Leitner, T., & Albert, J. (1999). The molecular clock of HIV-1 unveiled through analysis of a known transmission history. Proceedings of the National Academy of Sciences, 96, 10752–10757.

    Article  Google Scholar 

  32. Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., Choe, H., & Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426, 450–454.

    Article  Google Scholar 

  33. Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., et al. (2005a). Bats are natural reservoirs of SARS-like coronaviruses. Science, 310, 676–679.

    Article  Google Scholar 

  34. Li, W., Wong, S. K., Li, F., Kuhn, J. H., Huang, I. C., et al. (2006). Animal origins of the severe acute respiratory syndrome coronavirus: Insight from ACE2-S-protein interactions. Journal of Virology, 80, 4211–4219.

    Article  Google Scholar 

  35. Li, W., Zhang, C., Sui, J., Kuhn, J. H., Moore, M. J., Luo, S., Wong, S., Huang, I., Xu, K., Vasilieva, N., Murakami, A., He, Y., Marasco, W. A., Guan, Y., Choe, H., & Farzan, M. (2005b). Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO Journal, 24, 1634–1643.

    Article  Google Scholar 

  36. Li, W. H., Tanimura, M., & Sharp, P. M. (1987). An evaluation of the molecular clock hypothesis using mammalian DNA sequences. Journal of Molecular Evolution, 25, 330–342.

    Article  Google Scholar 

  37. Barret, M. C., Mahon, M. F., Molloy, K. C., Wright, P., & Creeth, J. E. (2002). The structural chemistry of copper(II) hinokitiol and its adducts. Polyhedron, 21(17), 1761–1766.

    Article  Google Scholar 

  38. Nichol, S. T., Rowe, J. E., & Fitch, W. M. (1993). Punctuate equilibrium and positive Darwinian evolution in vesicular stomatitis virus. Proceedings of the National Academy of Sciences of the United States of America, 90, 10424–10428.

    Article  Google Scholar 

  39. Perlman, S., & Netland, J. (2009). Coronaviruses post-SARS: Update on replication and pathogenesis. Nature Reviews. Microbiology, 7, 439–450.

    Article  Google Scholar 

  40. Rainey, P. B., & Travisano, M. (1998). Adaptive radiation in a hetergenous environment. Nature, 394, 69–72.

    Article  Google Scholar 

  41. Rupprecht, C. E., Hanlon, C. A., & Hemachudha, T. (2002). Rabies re-examined. The Lancet Infectious Diseases, 2, 327–343.

    Article  Google Scholar 

  42. Sanjuan, R., Cuevas, J. M., Furio, V., Holmes, E. C., & Moya, A. (2007). Selection for robustness in mutagenized RNA viruses. PLoS Genetics, 3, e93.

    Article  Google Scholar 

  43. Sanjuan, R., Moya, A., & Elena, S. F. (2004). The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proceedings of the National Academy of Sciences of the United States of America, 101, 8396–8401.

    Article  Google Scholar 

  44. Sanjuan, R., Nebot, M. R., Chirico, N., Mansky, L. M., & Belshaw, R. (2010). Viral mutation rates. Journal of Virology, 84, 9733–9748.

    Article  Google Scholar 

  45. Sanjuan, R. (2012). From molecular genetics to phylodynamics: Evolutionary relevance of mutation rates across viruses. PLoS Pathogens, 8, e1002685.

    Article  Google Scholar 

  46. Warnes, S. L., Little, Z. R., & Keevil, C. W. (2015). Human coronavirus 229E remains Infectious on common touch surface materials. MBio, 6(6), e01697-15.

    Article  Google Scholar 

  47. Scull, M. A., Gillim-Ross, S. C., Roberts, K. L., Bordonali, E., Subbarao, K., Barclay, W. S., & Pickles, R. J. (2009). Avian influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways. PLoS Pathogens, 5, e1000424.

    Article  Google Scholar 

  48. Shirato, K., Kawase, M., & Matsuyama, S. (2013). Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. Journal of Virology, 87, 12552–12561.

    Article  Google Scholar 

  49. Suttle, C. A. (2007). Marine viruses – Major players in the global ecosystem. Nature Reviews Microbiology, 5, 801–812.

    Article  Google Scholar 

  50. Taylor, L. H., Latham, S. M., & Woolhouse, M. E. J. (2001). Risk factors for human disease emergence. Philosophical Transactions. Royal Society of London, 356, 983–989.

    Article  Google Scholar 

  51. Ishida, T. (2018). Antiviral activities of Cu2+ ions in viral prevention, replication, RNA degradation, and for antiviral efficacies of lytic virus, ROS-mediated virus, copper chelation. World Scientific News, 99, 148–168.

    Google Scholar 

  52. Wang, L. F., & Eaton, B. T. (2007). Bats, civets and the emergence of SARS. Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission, 315, 325–344.

    Google Scholar 

  53. Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., et al. (2013). Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Research, 23, 986–993.

    Article  Google Scholar 

  54. Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., et al. (2014). Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26. Cell Host & Microbe, 16, 328–337.

    Article  Google Scholar 

  55. Wang, W., Lin, X. D., Guo, W. P., Zhou, R. H., Wang, M. R., et al. (2015). Discovery, diversity and evolution of novel coronaviruses sampled from rodents in China. Virology, 474, 19–27.

    Article  Google Scholar 

  56. Woo, P. C. Y., Lau, S. K. P., Huang, Y., & Yuen, K. Y. (2009). Coronavirus diversity, phylogeny and interspecies jumping. Experimental Biology and Medicine, 234, 1117–1127.

    Article  Google Scholar 

  57. Woolhouse, M. E. J., & Gowtage-Sequeria, S. (2005). Host range and emerging and reemerging pathogens. Emerging Infectious Diseases, 11, 1842–1847.

    Article  Google Scholar 

  58. Woolhouse, M. E. J., Haydon, D. T., & Antia, R. (2005). Emerging pathogens: The epidemiology and evolution of species jumps. Trends in Ecology & Evolution, 20, 238–244.

    Article  Google Scholar 

  59. Woolhouse, M. E. J. (2002). Population biology of emerging and re-emerging pathogens. Trends in Microbiology, 10, S3–S7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Anandan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anandan, R., Jhanjhi, N.Z., Deepak, B.S. (2022). Treatment of Novel Coronavirus (2019-nCoV) Using Hinokitiol (β-thujaplicin) Copper Chelate. In: Anandan, R., Suseendran, G., Chatterjee, P., Jhanjhi, N.Z., Ghosh, U. (eds) How COVID-19 is Accelerating the Digital Revolution. Springer, Cham. https://doi.org/10.1007/978-3-030-98167-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98167-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98166-2

  • Online ISBN: 978-3-030-98167-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics