Skip to main content

Organic Electrodes for Flexible Energy Storage Devices

  • Chapter
  • First Online:
Organic Electrodes

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 689 Accesses

Abstract

Modern society is witnessing a presumed fourth industrial insurgency characterized by a boom of intelligent and digital electronic devices as the globe progresses toward electromobility and, with it, decarbonization of its electrical supply is urgently needed. As a result, battery and supercapacitor demand has skyrocketed, as the need for the ores, metals, and materials used to manufacture them. This chapter intends to demonstrate that there is room to develop organic-based electrodes for electrochemical energy storage devices. Organic electrode materials are an alternative to the traditional inorganic electrode materials, which require intercalation and are promising candidates for advancing next-generation multifaceted and sustainable energy storage systems. We present a comprehensive overview of the fundamental understanding, history of development, types, synthesis methods, and specific applications of organic electrodes by starting with robust structural analysis. The use of organic electrodes in flexible supercapacitors and flexible batteries and their electrochemical and mechanical properties are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pandian, P. M., Pandurangan, A.: Flexible asymmetric solid-state supercapacitor of boron doped reduced graphene for high energy density and power density in energy storage device. Diam. Relat. Mater. 118,108495 (2021)

    Google Scholar 

  2. Andrade, T.S., Vakros, J., Mantzavinos, D., Lianos, P.: Biochar obtained by carbonization of spent coffee grounds and its application in the construction of an energy storage device. Chem. Eng. J. Adv. 4, 100061 (2020)

    Google Scholar 

  3. Maity, C.K., Hatui, G., Tiwari, S.K., Udayabhanu, G., Pathak, D.D., Chandra Nayak, G., Verma, K.: One pot solvothermal synthesis of novel solid state N-Doped TiO2/n-Gr for efficient energy storage devices. Vacuum 164, 88–97 (2019)

    Article  CAS  Google Scholar 

  4. Wu, W., Xu, J., Tang, X., Xie, P., Liu, X., Xu, J., Zhou, H., Zhang, D., Fan, T.: Two-dimensional nanosheets by rapid and efficient microwave exfoliation of layered materials. Chem. Mater. 30, 5932–5940 (2018)

    Article  CAS  Google Scholar 

  5. Zhang, J., Shang, Q., Hu, Y., Zhang, F., Huang, J., Lu, J., Cheng, J., Liu, C., Hu, L., Miao, H., Chen, Y., Huang, T., Zhou, Y. (2020). High-biobased-content UV-curable oligomers derived from tung oil and citric acid: Microwave-assisted synthesis and properties. Eur. Polym. J. 140, 109997

    Google Scholar 

  6. Zhang, B., Wang, H., Liu, C., Li, D., Kim, H.K., Harris, C., Lao, C.Y., Abdelkader, A., Xi, K.: Facile mechanochemical synthesis of non-stoichiometric silica-carbon composite for enhanced lithium storage properties. J. Alloys Compd. 801, 658–665 (2019)

    Google Scholar 

  7. Souza, B.L., Chauque, S., de Oliveira, P.F.M., Emmerling, F.F., Torresi, R.M.: Mechanochemical optimization of ZIF-8/Carbon/S8 composites for lithium-sulfur batteries positive electrodes. J. Electroanal. Chem. 896,115459 (2021)

    Google Scholar 

  8. Cheng, L., Du, X., Jiang, Y., Vlad, A.: Mechanochemical assembly of 3D mesoporous conducting-polymer aerogels for high performance hybrid electrochemical energy storage. Nano Energy 41, 193–200 (2017)

    Article  CAS  Google Scholar 

  9. Acharya, J., Raj, B.G.S., Ko, T.H., Khil, M.S., Kim, H.Y., Kim, B.S.: Facile one pot sonochemical synthesis of CoFe2O4/MWCNTs hybrids with well-dispersed MWCNTs for asymmetric hybrid supercapacitor applications. Int. J. Hydrogen Energy 45, 3073–3085 (2020)

    Article  CAS  Google Scholar 

  10. Iqbal, M.Z., Khan, J., Siddique, S., Afzal, A.M., Aftab, S.: Optimizing electrochemical performance of sonochemically and hydrothermally synthesized cobalt phosphate for supercapattery devices. Int. J. Hydrogen Energy 46, 15807–15819 (2021)

    Article  CAS  Google Scholar 

  11. Demirbaş, A.: Hydrogen and boron as recent alternative motor fuels. Energy Sources 27, 741–748 (2005)

    Article  Google Scholar 

  12. Ralph, T.R., Hards, G.A., Keating, J.E., Campbell, S.A., Wilkinson, D.P., Davis, M., St-Pierre, J., Johnson, M.C.: Low cost electrodes for proton exchange membrane fuel cells: performance in single cells and ballard stacks. J. Electrochem. Soc. 144, 3845–3857 (1997)

    Article  CAS  Google Scholar 

  13. Buckley, D.N., O’Dwyer, C., Quill, N., Lynch, R.P.: Electrochemical Energy Storage. In: Energy storage options and their environmental impact, pp. 115–149. The Royal Society of Chemistry (2019)

    Google Scholar 

  14. Esser, B., Dolhem, F., Becuwe, M., Poizot, P., Vlad, A., Brandell, D.: A perspective on organic electrode materials and technologies for next generation batteries. J. Power Sources 482, 228814 (2021)

    Google Scholar 

  15. Gannett, C.N., Melecio-Zambrano, L., Theibault, M.J., Peterson, B.M., Fors, B.P., Abruña, H.D.: Organic electrode materials for fast-rate, high-power battery applications. Mater Rep. Energy 1, 100008 (2021)

    Google Scholar 

  16. Ahmad, Y., Colin, M., Gervillie-Mouravieff, C., Dubois, M., Guérin, K.: Carbon in lithium-ion and post-lithium-ion batteries: recent features. Synth. Met. 280, 0–2 (2021)

    Google Scholar 

  17. Ghanashyam, G., Kyung, H.: Plasma treated carbon nanofiber for flexible supercapacitors. J. Energy Storage 40, 102806 (2021)

    Google Scholar 

  18. Chen, W., Wang, H., Lan, W., Li, D., Zhang, A., Liu, C.: Industrial crops & products construction of sugarcane bagasse-derived porous and flexible carbon nanofibers by electrospinning for supercapacitors. Ind. Crop. Prod. 170, 113700 (2021)

    Google Scholar 

  19. Wang, T., He, X., Gong, W, Sun, K., Lu, W., Yao, Y., Chen, Z.: Flexible carbon nano fi bers for high-performance free-standing supercapacitor electrodes derived from Powder River Basin coal. Fuel 278, 117985 (2020)

    Google Scholar 

  20. Dai, P., Zhang, S., Liu, H., Yan, L., Gu, X., Li, L., Liu, D., Zhao, X.: Electrochimica acta cotton fabrics-derived flexible nitrogen-dope d activate d carbon cloth for high-performance supercapacitors in organic electrolyte. Electrochim Acta 354,136717 (2020)

    Google Scholar 

  21. Song, P, He, X., Tao, J., Shen, X., Yan, Z., Ji, Z., Yuan, A., Zhu, G., Kong, L.: H2SO4-assisted tandem carbonization synthesis of PANI @ carbon @ textile flexible electrode for high-performance wearable energy storage. Appl. Surf. Sci. 535, 147755 (2021)

    Google Scholar 

  22. Flores-Larrea, L., Rivera-Mayorga, J.A., Kshetri, Y.K., Rodriguez-Gonzalez, V., Garcia, C.R., Lee, S.W., Oliva, J.: Highly efficient textile supercapacitors fabricated with graphene/NiO:Yb electrodes printed on cotton fabric. J. Alloys Compd. 886, 161219 (2021)

    Google Scholar 

  23. Na, R., Lu, N., Zhang, S., Huo, G., Yang, Y., Zhang, C., Mu, Y., Luo, Y., Wang, G.: Facile synthesis of a high-performance, fire-retardant organic gel polymer electrolyte for fl exible solid-state supercapacitors. Electrochim Acta 290, 262–272 (2018)

    Article  CAS  Google Scholar 

  24. Ensafi, A.A., Heydari-Soureshjani, E., Taghipour-Jahromi, A.R., Rezaei, B.: Bimetallic metal organic framework-derived for both battery-like supercapacitor (electrolyte study) and hydrogen evolution reaction. Electrochim Acta 395, 139192 (2021)

    Google Scholar 

  25. Li, X., Tang, Y., Song, J., Yang, W., Wang, M., Zhu, C., Zhao, W., Zheng, J., Lin, Y.: Self-supporting activated carbon/carbon nanotube/reduced graphene oxide fl exible electrode for high performance supercapacitor. Carbon N Y 129, 236–244 (2018)

    Article  CAS  Google Scholar 

  26. Jeon, H., Jeong, J.-M., Hong, S.B., Yang, M., Park, J., Kim, D.H., Hwang, S.Y., Choi, B.G.: Facile and fast microwave-assisted fabrication of activated and porous carbon cloth composites with graphene and MnO2 for flexible asymmetric supercapacitors. Electrochim Acta 280, 9–16 (2018)

    Article  CAS  Google Scholar 

  27. Zhu, Z., Zhang, Z., Zhuang, Q., Gao, F., Liu, Q., Zhu, X., Fu, M.: Growth of MnCo2O4 hollow nano-spheres on activated carbon cloth for flexible asymmetric supercapacitors. J. Power Sources 492, 229669 (2021)

    Google Scholar 

  28. Liu, T., Li, C., Liu, H., Zhang, S., Yang, J., Zhou, J, Yu, J., Ji, M., Zhu, C., Xu, J.: Tear resistant Tyvek/Ag/poly (3,4-ethylenedioxythiophene): Polystyrene sulfonate (PEDOT:PSS)/carbon nanotubes electrodes for flexible high-performance supercapacitors. Chem. Eng. J. 420, 127665 (2021)

    Google Scholar 

  29. Yang, K., Luo, M., Zhang, D., Liu, C., Li, Z, Wang, L., Chen, W., Zhou, X.: Ti3C2Tx/carbon nanotube/porous carbon film for flexible supercapacitor. Chem. Eng. J. 427, 132002 (2022)

    Google Scholar 

  30. Hamra, A.A.B., Lim, H.N., Huang, N.M., Gowthaman, N.S.K., Nakajima, H., Rahman, M.M.: Microwave exfoliated graphene-based materials for flexible solid-state supercapacitor. J. Mol. Struct. 1220, 128710 (2020)

    Google Scholar 

  31. Yang, C., Yang, J., Liang, C., Zang, L., Zhao, Z., Li, H., Bai, L.: Flexible supercapacitors with tunable capacitance based on reduced graphene oxide/tannin composite for wearable electronics. J. Electroanal. Chem. 894, 115354 (2021)

    Google Scholar 

  32. Liu, P., Niu, J., Wang, D. (2021). Honeycomb-like mesoporous all-carbon graphene-based fiber for flexible supercapacitor application: effect of spacers. Colloids Surf. A Physicochem. Eng. Asp. 616, 126291

    Google Scholar 

  33. Guo, Q, Xu, F., Shen, L., Wang, Z., Wang, J., He, H., Yao, X.: Poly(ethylene glycol) brush on Li6.4La3Zr1.4Ta0.6O12 towards intimate interfacial compatibility in composite polymer electrolyte for flexible all-solid-state lithium metal batteries. J. Power Sources 498, 229934 (2021)

    Google Scholar 

  34. Ye, X., Xiong, W., Huang, T., Li, X., Lei, Y., Li, Y., Ren, X., Liang, J., Ouyang, X., Zhang, Q., Liu, J.: A blended gel polymer electrolyte for dendrite-free lithium metal batteries. Appl. Surf. Sci. 569, 150899 (2021)

    Google Scholar 

  35. Pandurangan, S., Kaliyappan, K., Ramaswamy, A. P., Ramaswamy, M.: Polymer-garnet composite electrolyte based on comb-like structured polymer for lithium-metal batteries. Mater. Today Energy 21, 100836 (2021)

    Google Scholar 

  36. Yang, J., Shan, X., Guo, Z, Duan, L., Zhang, X., Lü, W.: A facile synthetic strategy of free-standing holey graphene paper as sulfur host for high-performance flexible lithium sulfur batteries. J. Electroanal. Chem. 876, 114728 (2020)

    Google Scholar 

  37. Hao, X., Chen, W., Jiang, Z., Tian, X., Hao, X., Maiyalagan, T., Jiang, Z. J.: Conversion of maize straw into nitrogen-doped porous graphitized carbon with ultra-high surface area as excellent oxygen reduction electrocatalyst for flexible zinc–air batteries. Electrochim Acta 362, 137143 (2020)

    Google Scholar 

  38. Lopez-medina, M., Hernandez-navarro, F., Mtz-enriquez, A.I., Oliva, A.I.: Enhancing the capacity and discharge times of flexible graphene batteries by decorating their anodes with magnetic alloys NiMnM x ( M x = Ga , In , Sn ). 256 (2020)

    Google Scholar 

  39. Li, C., Liu, X., He, Z., Tao, W., Zhang, Y., Zhang, Y., Jia, Y., Yu, H., Zeng, Q., Wang, D., Xin, J.H., Duan, C., Huang, F.: Low-cost carbonyl polymer design for high-performance lithium-organic battery cathodes. J. Power Sources 511, 230464 (2021)

    Google Scholar 

  40. Fang, L., Zhou, L., Cui, L., Jiao, P., An, Q., Zhang, K.: Sulfur-linked carbonyl polymer as a robust organic cathode for rapid and durable aluminum batteries. J. Energy Chem. (2021)

    Google Scholar 

  41. Yuan, C., Wu, Q., Shao, Q., Li, Q., Gao, B., Duan, Q.: Free-standing and flexible organic cathode based on aromatic carbonyl compound/carbon nanotube composite for lithium and sodium organic batteries. J. Colloid Interface Sci. (2018)

    Google Scholar 

  42. Sun, Y., Wang, X., Yang, A., Huang, Y., Jia, W., Jia, D.: Functional separator with a lightweight carbon-coating for stable, high-capacity organic lithium batteries. 418, 1–9 (2021)

    Google Scholar 

  43. Huang, L., Zang, W., Ma, Y., Zhu, C., Cai, D., Chen, H., Zhang, J., Yu, H., Zou, Q., Wu, L., Guan, C.: In-situ formation of isolated iron sites coordinated on nitrogen-doped carbon coated carbon cloth as self-supporting electrode for flexible aluminum-air battery. Chem. Eng. J. 421, 129973

    Google Scholar 

  44. Wei, L., Deng, N., Wang, X., Zhao, H., Yan, J., Yang, Q., Kang, W., Cheng, B.: Flexible ordered MnS@CNC/carbon nanofibers membrane based on microfluidic spinning technique as interlayer for stable lithium-metal battery. J. Memb. Sci. 637, 119615 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mensah-Darkwa, K., Ampong, D.N., Yeboah, D., Tsiwah, E.A., Gupta, R.K. (2022). Organic Electrodes for Flexible Energy Storage Devices. In: Gupta, R.K. (eds) Organic Electrodes. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-98021-4_19

Download citation

Publish with us

Policies and ethics