Skip to main content

Planetary Exploration of Mercury With BepiColombo and Prospects of Studying Venus During Its Cruise Phase

  • Chapter
  • First Online:
Handbook of Space Resources
  • 1166 Accesses

Abstract

Mercury and Venus are key planets for the understanding of the evolution of our solar system and therefore also for the question of how the Earth and life formed. In the case of Mercury, it is mainly because of its position among the planets. It is the planet closest to the Sun and experiences the harsh environment of the Sun the most. Venus is more Earth-like in respect of its size and the existence of an atmosphere which could indicate the possibility of having been habitable in the past. BepiColombo is a planetary mission devoted to the thorough exploration of Mercury and its environment. The mission will be carried out as a joint project between ESA and JAXA. The mission consists of two spacecraft, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MIO), carrying a comprehensive suite of instruments which will carry out scientific measurements. BepiColombo, launched on 20 October 2018 from the European spaceport in Kourou, French Guiana, is now en route to Mercury. Its route requires a 7.2-year-long cruise phase, with one Earth flyby, two Venus flybys and six Mercury flybys before arriving at Mercury at the end of 2025. After a weak gravity capture maneuver, both spacecraft will be placed into their dedicated polar orbits of 590 x 11,640 km (MIO) and 480 x 1500 km (MPO), respectively. As part of the cruise phase, BepiColombo will also fly past Venus twice. The two flybys at Venus will give scientists good opportunities to study the atmosphere and ionosphere of Venus in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, D.J., G. Colombo, P.B. Esposito, E.L. Lau, and G.B. Trager. 1987. The mass, gravity field, and ephemeris of Mercury. Icarus 71:337–349. https://doi.org/10.1016/0019-1035(87)90033-9.

  • Baumjohann W., A. Matsuoka, Y. Narita, W. Magnes, D. Heyner, K.-H. Glassmeier, R. Nakamura, D. Fischer, F. Plaschke, M. Volwerk, T.L. Zhang, H.-U. Auster, I. Richter, A. Balogh, C. Carr, M. Dougherty, T.S. Horbury, H. Tsunakawa, M. Matsushima, M. Shinohara, H. Shibuya, T. Nakagawa, M. Hoshino, Y. Tanaka, B.J. Anderson, C.T. Russell, U. Motschmann, F. Takahashi, and A. Fujimoto. 2020. The BepiColombo–mio magnetometer en route to mercury. Space Science Reviews 216.

    Google Scholar 

  • Benkhoff, Johannes, van Casteren, Jan, Hayakawa, Hajime, Fujimoto, Masaki, Laakso, Harri, Novara, Mauro, Ferri, Paolo, Middleton, Helen R. and Ziethe, Ruth. 2010. BepiColombo—Comprehensive exploration of Mercury: Mission overview and science goals.

    Google Scholar 

  • Benkhoff, J., G. Murakami, W. Baumjohann, S. Besse, E. Bunce, M. Casale, G. Cremosese, K.-H. Glassmeier, H. Hayakawa, D. Heyner, H. Hiesinger, J. Huovelin, H. Hussmann, V. Iafolla, L. Iess, Y. Kasaba, M. Kobayashi, A. Milillo, I.G. Mitrofanov, E. Montagnon, M. Novara, S. Orsini, E. Quemerais, U. Reininghaus, Y. Saito, F. Santoli, D. Stramaccioni, O. Sutherland, N. Thomas, I. Yoshikawa, J. Zender. 2021. BepiColombo–mission overview and science goals. Space Science Reviews 217. doi:10.1007/s11214-021-00861-4

    Google Scholar 

  • Blewett, D.T., et al. 2011. Hollows on mercury: Evidence for geologically recent volatile-related activity. Science 333:1856–1859. https://doi.org/10.1126/science.1211681.

  • Blewett, D.T., et al. 2016. Analysis of MESSENGER high-resolution images of Mercury's hollows and implications for hollow formation. Journal of Geophysical Research Planets 121:1798–1813. https://doi.org/10.1002/2016JE005070.

  • Bunce, Emma J., Adrian Martindale, Simon Lindsay, Karri Muinonen, David A. Rothery, Jim Pearson, Ivor McDonnell, Chris Thomas, et al. 2020. The BepiColombo mercury Imaging X-ray spectrometer: science goals, instrument performance and operations. Space Science Reviews 216.

    Google Scholar 

  • Chabot, N.L., C.M. Ernst, B.W. Denevi, H. Nair, A.N. Deutsch, D.T. Blewett, S.L. Murchie, A.N. Deutsch, J.W. Head, S.S. Solomon. 2016. Imaging Mercury's polar deposits during MESSENGER's low-altitude campaign. Geophysical Research Letters 43(18):9461‒9468.

    Google Scholar 

  • Chabot, N.L., E.E. Shread, and Harmon, J.K., Investigating Mercury’s south polar deposits: Arecibo radar observations and high-resolution determination of illumination conditions. Journal of Geophysical Research Planets 123:666–681. https://doi.org/10.1002/2017JE005500.

  • Cremonese, G., F. Capaccioni, M.T. Capria, A. Doressoundiram, P. Palumbo, M. Vincendon, M. Massironi, S. Debei, et al. 2020. SIMBIO-SYS: cameras and spectrometer for the BepiColombo mission. Space Science Reviews 216.

    Google Scholar 

  • Ferrero, A., D. Battaglia, T. Malosti, D. Stramaccioni, J. Schilke. 2016. The challenges of the thermal design of BepiColombo mercury planet orbiter. In ICES-2016–212, 46th International Conference on Environmental Systems, Vienna.

    Google Scholar 

  • Genova, Antonio, Hauke Hussmann, Tim Van Hoolst, Daniel Heyner, Luciano Iess, Francesco Santoli, Nicolas Thomas, Patrick Kolhey, Benoit Langlais, Johannes Z. D. Mieth, Joana S. Oliveira, Alexander Stark, Nicola Tosi, Johannes Wicht, and Johannes Benkhoff, Geodesy. 2021. Geophysics and fundamental physics investigations of the BepiColombo mission. Space Science Reviews 216.

    Google Scholar 

  • Harmon, J.-K., and M.-A. Slade. 1992. Radar mapping of mercury: Full-disk images and polar anomalies. Science 258: 640–643.

    Article  Google Scholar 

  • Harmon, J.K., M.A. Slade, R.A. Vélez, A. Crespo, M.J. Dryer, and J.M. Johnson. 1994. Radar mapping of Mercury’s polar anomalies. Nature 369: 213–215.

    Article  Google Scholar 

  • Heyner, D., et al. 2021. The fluxgate magnetometer of the BepiColombo mercury planetary orbiter. Space Science Reviews 217. 10.1007/s11214-021-00822-x.

    Google Scholar 

  • Hiesinger, H., J. Helbert, G. Alemano, K.E. Bauch, M. D’Amore, A. Maturilli, A. Morlok, M.P. Reitze, C. Stangarone, A.N. Stojic, I. Varatharajan, I. Weber and the MERTIS Co-I Team. 2020. Studying the composition and mineralogy of the Hermean surface with the mercury radiometer and thermal infrared spectrometer (MERTIS) for the BepiColombo mission: an update. Space Science Reviews 216.

    Google Scholar 

  • https://ui.adsabs.harvard.edu/link_gateway/2021AA...656A..11V/ https://doi.org/10.1051/0004-6361/202140910

  • Huovelin, J., R. Vainio, E. Kilpua, A. Lehtolainen, S. Korpela, E. Esko, K. Muinonen, E. Bunce, A. Martindale, M. Grande, H. Andersson, S. Nenonen, J. Lehti, W. Schmidt, M. Genzer, T. Vihavainen, J. Saari, J. Peltonen, E. Valtonen, M. Talvioja, P. Portin, S. Narendranath, R. Jarvinen, T. Okada, A. Milillo, M. Laurenza, E. Heino, P. Oleynik. 2020. Solar intensity X-ray and particle spectrometer SIXS: instrument design and first results. Space Science Reviews 216.

    Google Scholar 

  • Iess, L., et al. 2021. Space Sci. Rev.

    Google Scholar 

  • Jarvinen, Stavro Lambrov Ivanowski, Ákos Madár, Géza Erdós, Christina Plainaki, Tommaso Alberti, Sae Aizawa, Johannes Benkhoff, Go Murakami, Eric Quemerais, Harald Hiesinger, Igor G. Mitrofanov, Luciano Iess, Francesco Santoli, Stefano Orsini, Herbert Lichtenegger, Gunther Laky, Stas Barabash, Richard Moissl, Juhani Huovelin, Yasumasa Kasaba, Yoshifumi Saito, Masanori Kobayashi, and Wolfgang Baumjohann. 2021. BepiColombo science investigations during cruise and flybys at the Earth, Venus and Mercury. Space Science Reviews 216.

    Google Scholar 

  • Kasaba, Yasumasa; Hirotsugu Kojima, Michel Moncuquet, Jan-Erik Wahlund, Satoshi Yagitani, Fouad Sahraoui, Pierre Henri, Tomas Karlsson, Yoshiya Kasahara, Atsushi Kumamoto, Keigo Ishisaka, Karine Issautier, Gaetan Wattieaux, Tomohiko Imachi, Shoya Matsuda, Janos Lichtenberger, and Hideyuki Usui. 2020. Plasma Wave Investigation (PWI) aboard BepiColombo Mio on the trip to the first measurement of electric fields, electromagnetic waves, and radio waves around Mercury. Space Science Reviews 216.

    Google Scholar 

  • Kempkens, K., F. Striedter, H. Gray, S. Clark, K. Chan, and N. Wallace. 2019. BepiColombo—The mercury transfer module. In 36th International Electric Propulsion Conference, Sept 15–20, University of Vienna, Austria.

    Google Scholar 

  • Kobaiashi, M., K. Nogami, M. Fujii, H. Ohashi, T. Miyachi, S. Sasaki, S. Hasegawa, H. Yano, H. Shibata, T. Iwai, S. Minami, S. Takechi, E. Grun, R. Srama. 2020. Development of the mercury dust monitor (MDM) on board BepiColombo mission. Space Science Reviews 216.

    Google Scholar 

  • Mangano, V., Valeria Mangano, Melinda Dósa, Markus Fraenz, Anna Milillo, Joana S. Oliveira, Yeon Joo Lee, Susan McKenna-Lawlor, et al. 2004. An international program for Mercury exploration: synergy of MESSENGER and BepiColombo. Advance in Space Research 33:2126‒2132.

    Google Scholar 

  • McNutt Jr, Ralph L., Sean C. Solomon, Réjean Grard, Mauro Novara, and Toshifumi Mukai. 2004. An international program for Mercury exploration: synergy of MESSENGER and BepiColombo. Advances in Space Research 33 (12): 2126–2132 S0273117703004393. https://doi.org/10.1016/S0273-1177(03)00439-3.

  • McNutt, R. L., S.C. Jr., Solomon, R.E. Gold, J.C. Leary and the MESSENGER Team. 2006. The MESSENGER mission to Mercury: Development history and early mission status. Advance Space Research 38:564–571. https://doi.org/10.1016/j.asr.2005.05.044.

  • Milillo, A., M. Fujimoto, G. Murakami, J. Benkhoff, J. Zender, S. Aizawa, M. Dósa, L. Griton, et al. 2020. Investigating Mercury’s environment with the two-spacecraft BepiColombo mission. Space Science Reviews 216.

    Google Scholar 

  • Mitrofanov, I.G., A.S. Kozyrev, D.I. Lisov, M.L. Litvak, A.A. Malakhov, M.I. Mokrousov, J. Benkhoff, A. Owens, R. Schulz, and F. Quarati. 2021. Mercury gamma-ray and neutron spectrometer MGNS for planetary orbiter of BepiColombo mission: updates of design and the first measurements in space. Space Science Reviews 216.

    Google Scholar 

  • Montagnon, E., F. Budnik, M. Casale, S. de la Fuente, S. Martinez, G. Murakami, M. Ogawa, C. Steiger and M. Yamashita 2021. BepiColombo ground segment and mission operations. Space Science Reviews 216.

    Google Scholar 

  • Murakami, G., Hajime Hayakawa, Hiroyuki Ogawa, Shoya Matsuda, Taeko Seki, Yasumasa Kasaba, Yoshifumi Saito, Ichiro Yoshikawa, Masanori Kobayashi, Wolfgang Baumjohann, Ayako Matsuoka, Hirotsugu Kojima, Satoshi Yagitani, Michelle Moncuquet, Jan-Erik Wahlund, Dominique Delcourt, Masafumi Hirahara, Stas Barabash, Oleg Korablev, and Masaki Fujimoto. 2020. Mio–First comprehensive exploration of Mercury’s space environment: mission overview. Space Science Reviews 216.

    Google Scholar 

  • Murakami, G., I. Yoshikawa, S. Kameda, O. Korablev, V. Kottsov, M. Kuwabara, T. Sato, Y. Suzuki, K. Yoshioka, and A. Tavrov. 2021. Mercury sodium atmosphere spectral imager (MSASI) onboard the BepiColombo/Mio spacecraft: overviews, calibrated performances, and observation plans, The Mercury Sodium Atmospheric Spectral Imager for the MMO Spacecraft of BepiColombo. Space Science Reviews 216.

    Google Scholar 

  • Nandy, D. 2021. Progress in solar cycle predictions: Sunspot cycles 24–25 in perspective. Solar Physics 296. https://doi.org/10.1007/s11207-021-01797-2.

  • Orsini, S, S. Livi, H. Lichtenegger, S. Barabash, A. Milillo, E. De Angelis, M. Phillips, G. Laky, et al. 2020. SERENA: particle instrument suite for Sun-Mercury interaction insights on-board BepiColombo. Space Science Reviews 216.

    Google Scholar 

  • Persson, M., S. Aizawa, N. André, S. Barabash, Y. Saito, Y. Harada, D. Heyner, S., Orsini, A., Fedorov, C. Mazelle, Y. Futaana, L.Z. Hadid, M. Volwerk, G. Collinson, B. Sanchez-Cano, A. Barthe, E. Penou, S. Yokota, V. Génot, J.A. Sauvaud, D. Delcourt, M. Fraenz, R. Modolo, A. Milillo, H.-U. Auster, I. Richter, J.Z.D. Mieth, P. Louarn, C.J. Owen, T.S. Horbury, K. Asamura, S. Matsuda, H. Nilsson, M. Wieser, T. Alberti, A. Varsani, V. Mangano, A. Mura, H. Lichtenegger, G. Laky, H. Jeszenszky, K. Masunaga, C. Signoles, M. Rojo, and G. Murakami. 2022. BepiColombo mission confirms stagnation region of Venus and reveals its large extent. Nature Communications 13(1): 7743. https://doi.org/10.1038/s41467-022-35061-3.

  • Quemerais, Eric, Jean-Yves Chaufray, Dimitra Koutroumpa, Francois Leblanc, Aurélie Reberac, Benjamin Lustrement, Christophe Montaron, Jean-Francois Mariscal, Nicolas Rouanet, Ichiro Yoshikawa, Go Murakami, Kazuo Yoshioka, Oleg Korablev, Denis Belyaev, Maria G. Pelizzo, Alan J. Corso, and Paola Zuppella, PHEBUS on Bepi-Colombo: Post-launch Update and Instrument Performance. Space Science Reviews 216 (2020).

    Google Scholar 

  • Rothery, Dave A., Matteo Massironi, Giulia Alemanno, Océane Barraud, Sebastien Besse, Nicolas Bott, Rosario Brunetto, Emma Bunce, et al. 2020. Rationale for BepiColombo studies of Mercury’s surface and composition. Space Science Reviews 216.

    Google Scholar 

  • Saito, Y., J.A. Sauvaud, M. Hirahara, S. Barabash, D. Delcourt, T. Takashima, K. Asamura and the BepiColombo MMO/MPPE Team. 2021. Scientific objectives and instrumentation of Mercury Plasma Particle Experiment (MPPE) onboard MMO. Space Science Reviews 216.

    Google Scholar 

  • Santoli, F., E. Fiorenza, C. Lefevre, D.M. Lucchesi, M. Lucente, C. Magnafico, A. Morbidini, R. Peron, V. Iafolla. 2020. ISA, a high sensitivity accelerometer in the interplanetary space Updates after the Near-Earth Commissioning Phase of Italian Spring Accelerometer/ISA Space. Space Science Reviews 216.

    Google Scholar 

  • Solomon, S.C., and B.J. Anderson 2018. The MESSENGER Mission: Science and implementation overview. In Mercury-The View after MESSENGER, eds., Solomon S.C., L.R. Nittler, B.J. Anderson, 1‒29. Cambridge, Cambridge University Press.

    Google Scholar 

  • Solomon, S.C., R.L. Jr. McNutt, R.E. Gold, D.L. Domingue. 2007. MESSENGER mission overview. Space Science Review 131:3‒39. https://doi.org/10.1007/s11214-007-9247-6.

  • Solomon S.C., L.R. Nittler, B.J. Anderson (eds.). 2018. Mercury-the view after MESSENGER, 581 p., Cambridge University Press, Cambridge, https://doi.org/10.1017/9781316650684.

  • Strom, R.G., and A.L. Sprague. 2003. Exploring mercury: The iron planet. New York, Springer Verlag Heiderberg, ISBN 1852337311.

    Google Scholar 

  • Sutherland O., D. Stramaccioni, J. Benkhoff, N. Wallace, A. Rocchi, R. Jehn. 2019. BepiColombo: ESA’s Interplanetary Electric Propulsion Mission to Mercury. In 36th international electric propulsion conference, Sept 15–20, Austria, University of Vienna.

    Google Scholar 

  • Thomas N., H. Hussmann, T. Spohn, L.M. Lara, U. Christensen, M. Affolter, T. Bandy, T. Beck, et al. 2021. The BepiColombo laser altimeter. Space Science Reviews 216.

    Google Scholar 

  • Tuttle, S., G. Cavallo. 2009. Thermal design of the mercury transfer module. In 39th International conference on environmental Systems, Savannah, Georgia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Benkhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benkhoff, J., Zender, J. (2023). Planetary Exploration of Mercury With BepiColombo and Prospects of Studying Venus During Its Cruise Phase. In: Badescu, V., Zacny, K., Bar-Cohen, Y. (eds) Handbook of Space Resources. Springer, Cham. https://doi.org/10.1007/978-3-030-97913-3_8

Download citation

Publish with us

Policies and ethics