Skip to main content

The Use of the Homogenization Method in the Analysis of Anisotropic Creep in Metal-Matrix Composites

  • Chapter
  • First Online:
Material Modeling and Structural Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 161))

Abstract

The primary purpose of this study is tumerical homogenization of the nonlinear creep properties of unidirectionally reinforced fiber composites. The constitutive relations for a homogeneous material, equivalent to composite, are based on the hypothesis of the existence of a potential for the strain rates of steady-state creep. The generalization of the power-law dependence of the strain rate on stresses for the case of a complex stress state is achieved by introduction of an equivalent stress using a 4th rank tensor. The structure of this tensor allows to take into account the required symmetry class for a particular form of fiber packing. The homogenization procedure is based on micromechanical analysis of a representative composite volume. A technique for the numerical simulation of physical experiments necessary for the identification of the material parameters of the theoretical model is proposed. A series of numerical calculations by the finite element method in the ANSYS software for a boron-aluminum composite has been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenbach H, Naumenko K, L’vov G, Pilipenko S (2003) Numerical estimation of the elastic properties of thin-walled structures manufactured from short-fiber-reinforced thermoplastics. Mechanics of Composite Materials 39(3):221–234, https://doi.org/10.1023/A:1024566026411

  • Altenbach H, Altenbach J, Kissing W (2018) Mechanics of Composite Structural Elements, 2nd edn. Springer, Singapore, https://doi.org/10.1007/978-981-10-8935-0

  • Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift für Physikalische Chemie 4U(1):226–248, https://doi.org/10.1515/zpch-1889-0416

  • Asyraf MRM, Ishak MR, Sapuan SM, Yidris N, Ilyas RA (2020) Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. Journal of Materials Research and Technology 9(3):6759–6776, https://doi.org/10.1016/j.jmrt.2020.01.013

  • Chen M, Liu B, Li L, Cao L, Huang Y, Wang S, Zhao P, Lu L, Cheng X (2020) Rheological parameters, thixotropy and creep of 3D-printed calcium sulfoaluminate cement composites modified by bentonite. Composites Part B: Engineering 186:107,821, https://doi.org/10.1016/j.compositesb.2020.107821

  • Darya Zadeh S, L’vov GI (2015) Numerical procedure of determining the effective mechanical characteristics of an aligned fiber composite. Strength of Materials 47(4):536–543, https://doi.org/10.1007/s11223-015-9687-2

  • Fliegener S, Hohe J (2020) An anisotropic creep model for continuously and discontinuously fiber reinforced thermoplastics. Composites Science and Technology 194:108,168, https://doi.org/10.1016/j.compscitech.2020.108168

  • Fliegener S, Rausch J, Hohe J (2019) Loading points for industrial scale sandwich structures – a numerical and experimental design study. Composite Structures 226:111,278, https://doi.org/10.1016/j.compstruct.2019.111278

  • Gong D, Jiang L, Guan J, Liu K, Yu Z, Wu G (2020) Stable second phase: The key to hightemperature creep performance of particle reinforced aluminum matrix composite. Materials Science and Engineering: A 770:138,551, https://doi.org/10.1016/j.msea.2019.138551

  • Hao X, Zhou H, Mu B, Chen L, Guo Q, Yi X, Sun L, Wang Q, Ou R (2020) Effects of fiber geometry and orientation distribution on the anisotropy of mechanical properties, creep behavior, and thermal expansion of natural fiber/hdpe composites. Composites Part B: Engineering 185:107,778, https://doi.org/10.1016/j.compositesb.2020.107778

  • Jafaripour M, Taheri-Behrooz F (2020) Creep behavior modeling of polymeric composites using schapery model based on micro-macromechanical approaches. European Journal of Mechanics - A/Solids 81:103,963, https://doi.org/10.1016/j.euromechsol.2020.103963

  • Jia Y, Fiedler B (2020) Tensile creep behaviour of unidirectional flax fibre reinforced bio-based epoxy composites. Composites Communications 18:5–12, https://doi.org/10.1016/j.coco.2019.12.010

  • Karthik D, Baheti V, Novotná J, Samková A, Pulíˇcek R, Venkataraman M, Srb P, Voleská K,Wang Y, Militký J (2020) Effect of particulate fillers on creep behaviour of epoxy composites. Materials Today: Proceedings 31:S217–S220, https://doi.org/10.1016/j.matpr.2019.11.064, 4th International Conference on Natural Fibers – Smart Sustainable Materials, ICNF 2019

  • Khatkar V, Behera BK (2021) Experimental investigation of textile structure reinforced composite leaf spring for their cyclic flexural and creep behaviour. Composite Structures 258:113,439, https://doi.org/10.1016/j.compstruct.2020.113439

  • Lv J, Xiao Y, Zhou Y, Xie Y (2020) Characterization and modeling of the creep behavior of fiber composites with tension and compression asymmetry. International Journal of Mechanical Sciences 170:105,340, https://doi.org/10.1016/j.ijmecsci.2019.105340

  • Morachkovskii OK, Zolochevskii AA (1980) Effect of initial orthotropy of a material on the creep of structures made of shells. Soviet Applied Mechanics 16(6):487–482, https://doi.org/10.1007/BF00883895

  • Naumenko K, Altenbach H (2005) A phenomenological model for anisotropic creep in a multipass weld metal. Archive of Applied Mechanics 74(11):808–819, https://doi.org/10.1007/s00419-005-0409-2

  • Naumenko K, Altenbach H (2016) Modeling High Temperature Materials Behavior for Structural Analysis, Advanced Structured Materials, vol 28. Springer, Cham, https://doi.org/10.1007/978-3-319-31629-1

  • Naumenko K, Gariboldi E (2014) A phase mixture model for anisotropic creep of forged Al–Cu–Mg–Si alloy. Materials Science and Engineering: A 618:368–376, https://doi.org/10.1016/j.msea.2014.09.012

  • Nguyen SN, Lee J, Han JW, Cho M (2020) A coupled hygrothermo-mechanical viscoelastic analysis of multilayered composite plates for long-term creep behaviors. Composite Structures 242:112,030, https://doi.org/10.1016/j.compstruct.2020.112030

  • Ornaghi Jr HL, Almeida JHS, Monticeli FM, Neves RM (2020a) Stress relaxation, creep, and recovery of carbon fiber non-crimp fabric composites. Composites Part C: Open Access 3:100,051, https://doi.org/10.1016/j.jcomc.2020.100051

  • Ornaghi Jr HL, Monticeli FM, Neves RM, Zattera AJ, Cioffi MOH, Voorwald HJC (2020b) Effect of stacking sequence and porosity on creep behavior of glass/epoxy and carbon/ epoxy hybrid laminate composites. Composites Communications 19:210–219, https://doi.org/10.1016/j.coco.2020.04.006

  • Palmov V (1998) Vibrations of Elasto-Plastic Bodies, 2nd edn. Foundations of Engineering Mechanics, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-69636-0

  • Rafiee R, Ghorbanhosseini A (2020) Developing a micro-macromechanical approach for evaluating long-term creep in composite cylinders. Thin-Walled Structures 151:106,714, https://doi.org/10.1016/j.tws.2020.106714

  • Reiner M (1969) Deformation, Strain and Flow: an Elementary Introduction to Rheology, 3rd edn. H. K. Lewis, London

    Google Scholar 

  • Sala B, Gabrion X, Trivaudey F, Guicheret-Retel V, Placet V (2021) Influence of the stress level and hygrothermal conditions on the creep/recovery behaviour of high-grade flax and hemp fibre reinforced greenpoxy matrix composites. Composites Part A: Applied Science and Manufacturing 141:106,204, https://doi.org/10.1016/j.compositesa.2020.106204

  • Samareh-Mousavi SS, Taheri-Behrooz F (2020) A novel creep-fatigue stiffness degradation model for composite materials. Composite Structures 237:111,955, https://doi.org/10.1016/j.compstruct.2020.111955

  • Sun T, Yu C, Yang W, Zhong J, Xu Q (2020) Experimental and numerical research on the nonlinear creep response of polymeric composites under humid environments. Composite Structures 251:112,673, https://doi.org/10.1016/j.compstruct.2020.112673

  • Xie Y, Xiao Y, Lv J, Zhang Z, Zhou Y, Xue Y (2020) Influence of creep on preload relaxation of bolted composite joints: Modeling and numerical simulation. Composite Structures 245:112,332, https://doi.org/10.1016/j.compstruct.2020.112332

  • Yang H, Gavras S, Dieringa H (2021) Creep characteristics of metal matrix composites. In: Brabazon D (ed) Encyclopedia of Materials: Composites, Elsevier, Oxford, pp 375–388, https://doi.org/10.1016/B978-0-12-803581-8.11822-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holm Altenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Altenbach, H., Lvov, G., Lvov, I., Morachkovsky, O. (2022). The Use of the Homogenization Method in the Analysis of Anisotropic Creep in Metal-Matrix Composites. In: Altenbach, H., Beitelschmidt, M., Kästner, M., Naumenko, K., Wallmersperger, T. (eds) Material Modeling and Structural Mechanics . Advanced Structured Materials, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-030-97675-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97675-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97674-3

  • Online ISBN: 978-3-030-97675-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics