Skip to main content

From Hyperbolic Dehn Filling to Surgeries in Representation Varieties

  • Chapter
  • First Online:
In the Tradition of Thurston II
  • 611 Accesses

Abstract

Hyperbolic Dehn surgery and the bending procedure provide two ways which can be used to describe hyperbolic deformations of a complete hyperbolic structure on a 3-manifold. Moreover, one can obtain examples of non-Haken manifolds without the use of Thurston’s Uniformization Theorem. We review these gluing techniques and present a logical continuity between these ideas and gluing methods for Higgs bundles. We demonstrate how one can construct certain model objects in representation varieties \(\text{Hom} \left ( \pi _{1} \left ( \Sigma \right ), G \right ) \) for a topological surface Σ and a semisimple Lie group G. Explicit examples are produced in the case of Θ-positive representations lying in the smooth connected components of the \(\text{SO} \left (p,p+1 \right )\) representation variety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Alessandrini, O. Guichard, E. Rogozinnikov, A. Wienhard, Noncommutative coordinates for symplectic representations. arXiv: 1911.08014 (2019)

    Google Scholar 

  2. B.N. Apanasov, Non-triviality of Teichmüller space for Kleinian groups in space, in Riemann Surfaces and Related Topics, Proceedings of the 1978 Stony Brook Conference (Princeton University Press, 1980), pp. 21–31

    Google Scholar 

  3. B.N. Apanasov, A.V. Tetenov, On the existence of non-trivial quasi-conformal deformations of Kleinian groups in space. Soviet Math. Dokl. 19, 242–245 (1978)

    Google Scholar 

  4. M. Aparicio Arroyo, The geometry of SO(p, q)-Higgs bundles. Ph.D. thesis, Universidad de Salamanca, Consejo Superior de Investigaciones Científicas, 2009

    Google Scholar 

  5. M. Aparicio-Arroyo, S. Bradlow, B. Collier, O. García-Prada, P.B. Gothen, A. Oliveira, \(\text{SO}\left ( p,q \right )\)-Higgs bundles and higher Teichmüller components. Invent. Math. 218(1), 197–299 (2019)

    Google Scholar 

  6. L. Bers, F. Gadiner, Fricke spaces. Adv. Math. 62(3), 249–284 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Bessières, G. Besson, M. Boileau, S. Maillot, J. Porti, Geometrization of 3-manifolds, in EMS Tracts in Mathematics 13 (European Mathematical Society, Zürich, 2010), x+237 pp.

    Google Scholar 

  8. J. Beyrer, B. Pozzetti, A collar lemma for partially hyperconvex surface group representations. Trans. Amer. Math. Soc. 374(10), 6927–6961 (2021)

    MathSciNet  MATH  Google Scholar 

  9. J. Beyrer, B. Pozzetti, Positive surface group representations in PO(p, q). arXiv: 2106.14725 (2021)

    Google Scholar 

  10. O. Biquard, P. Boalch, Wild non-abelian Hodge theory on curves. Compos. Math. 140(1), 179–204 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. O. Biquard, O. García-Prada, I. Mundet i Riera, Parabolic Higgs bundles and representations of the fundamental group of a punctured surface into a real group. Adv. Math. 372, 107305 (2020)

    Google Scholar 

  12. I. Biswas, P. Arés-Gastesi, S. Govindarajan, Parabolic Higgs bundles and Teichmüller spaces for punctured surfaces. Trans. Amer. Math. Soc. 349(4), 1551–1560 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Boileau, J. Porti, Geometrization of 3-orbifolds of cyclic type. Astérisque No. 272, 208 pp. (2001)

    Google Scholar 

  14. S. Boyer, Dehn surgery on knots, in Handbook of Geometric Topology, ed. by R.J. Daverman, R.B. Sher (North-Holland, 2002), pp. 165–218

    Google Scholar 

  15. S. Bradlow, B. Collier, O. García-Prada, P. Gothen, A. Oliveira, A general Cayley correspondence and higher Teichmüller spaces, arXiv: 2101.09377 (2021)

    Google Scholar 

  16. M. Bridgeman, Average bending of convex pleated planes in hyperbolic three-space. Invent. Math. 132, 381–391 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Bridgeman, Bounds on the average bending of the convex hull of a Kleinian group. Mich. Math. J. 51, 363–378 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Bridgeman, R. Canary, F. Labourie, A. Sambarino, The pressure metric for Anosov representations. Geom. Funct. Anal. 25(4), 1089–1179 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Bridgeman, R. Canary, A. Sambarino, An introduction to pressure metrics for higher Teichmüller spaces. Ergodic Theory Dyn. Syst. 38(6), 2001–2035 (2018)

    Article  MATH  Google Scholar 

  20. M. Burger, A. Iozzi, F. Labourie, A. Wienhard, Maximal representations of surface groups: Symplectic Anosov structures. Pure Appl. Math. Q. 1(3), Special issue In memory of Armand Borel. Part 2, 543–590 (2005)

    Google Scholar 

  21. M. Burger, A. Iozzi, A. Wienhard, Surface group representations with maximal Toledo invariant. Ann. of Math. (2) 172(1), 517–566 (2010)

    Google Scholar 

  22. M. Burger, M.B. Pozzetti, Maximal representations, non-Archimedean Siegel spaces, and buildings. Geom. Topol. 21(6), 3539–3599 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Cappell, R. Lee, E. Miller, Self-adjoint elliptic operators and manifold decompositions. Part I: Low eigenmodes and stretching. Commun. Pure Appl. Math. 49, 825–866 (1996)

    MATH  Google Scholar 

  24. B. Collier, \(\text{SO}\left ( n,n+1 \right )\)-surface group representations and their Higgs bundles. Ann. Sci. Éc. Norm. Supér. (4) 63(6), 1561–1616 (2020)

    Google Scholar 

  25. K. Corlette, Flat G-bundles with canonical metrics. J. Diff. Geom. 28, 361–382 (1988)

    MathSciNet  MATH  Google Scholar 

  26. H.P. de Saint-Gervais, Uniformisation des surfaces de Riemann, ENS Editions (Lyon, 2010), 544 pp.

    Google Scholar 

  27. M. Dehn, Über die Topologie des dreidimensionales Raumes. Math. Ann. 69, 137–168 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  28. S.K. Donaldson, Twisted harmonic maps and the self-duality equations. Proc. London Math. Soc. (3) 55, 127–131 (1987)

    Google Scholar 

  29. S. Donaldson, P. Kronheimer, The Geometry of Four-manifolds. Oxford Math. Monographs (Oxford Science Publications, 1990)

    MATH  Google Scholar 

  30. W.D. Dunbar, R.G. Meyerhoff, Volumes of hyperbolic 3-orbifolds. Indiana Univ. Math. J. 43, 611–637 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. D.B.A. Epstein, A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, in Analytical and Geometric Aspects of Hyperbolic Space, ed. by D.B.A. Epstein, Warwick and Durham 1984, London Mathematical Society Lecture Note Series 111 (Cambridge University Press, 1987), pp. 113–253

    Google Scholar 

  32. F. Fanoni, B. Pozzetti, Basmajian-type inequalities for maximal representations. J. Differential Geom. 116, 405–458 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. V.V. Fock, A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci. 103, 1–211 (2006)

    Article  MATH  Google Scholar 

  34. L. Foscolo, A gluing construction for periodic monopoles. Int. Math. Res. Not. IMRN, no. 24, 7504–7550 (2017)

    Google Scholar 

  35. R. Fricke, F. Klein, Vorlesungen über die Theorie der automorphen Funktionen, Vols. 1,2 (Teubner, Stuttgart, 1986, 1912)

    Google Scholar 

  36. O. García-Prada, Higgs bundles and higher Teichmüller spaces, in Handbook of Teichmúller Theory. Vol. VII, ed. by A. Papadopoulos. IRMA Lectures in Mathematics and Theoretical Physics, vol. 30 (2020), pp. 239–285

    Google Scholar 

  37. O. García-Prada, P.B. Gothen, I. Mundet i Riera, The Hitchin-Kobayashi correspondence, Higgs pairs and surface group representations. arXiv:0909.4487 (2009)

    Google Scholar 

  38. W.M. Goldman, The symplectic nature of fundamental groups of surfaces. Adv. Math. 54(2), 200–225 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  39. W.M. Goldman, Topological components of spaces of representations. Invent. Math. 93(3), 557–607 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  40. C.McA. Gordon, Dehn surgery on knots, in Proceedings of the International Congress of Mathematicians, Kyoto 1990 (Springer, Tokyo, 1991), pp. 631–642

    Google Scholar 

  41. C.McA. Gordon, Dehn filling: A survey, in Proceedings of the Mini Semester in Knot Theory, Banach Center, Warsaw 1995. Banach Center Publications, vol. 42 (Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1998), pp. 129–144

    Google Scholar 

  42. P.B. Gothen, Components of spaces of representations and stable triples. Topology 40(4), 823–850 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. O. Guichard, Composantes de Hitchin et répresentations hyperconvexes de groupes de surface. J. Differential Geom. 80(3), 391–431 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. O. Guichard, A. Wienhard, Anosov representations: domains of discontinuity and applications. Invent. Math. 190(2), 357–438 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. O. Guichard, A. Wienhard, Positivity and higher Teichmüller theory, in Proceedings of the 7th European Congress of Mathematics (2016)

    Google Scholar 

  46. O. Guichard, A. Wienhard, Topological invariants of Anosov representations. J. Topol. 3(3), 578–642 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. O. Guichard, F. Labourie, A. Wienhard, Positivity and representations of surface groups. arXiv: 2106.14584 (2021)

    Google Scholar 

  48. W. Haken, Theorie der Normalflächen. Ein Isotopiekriterium fúr den Kreisknoten. Acta Math. 105, 245–375 (1961)

    MATH  Google Scholar 

  49. W. Haken, Über das Homöomorphieproblem der 3-Mannigfaltigkeiten. I. Math. Z. 80, 89–120 (1962)

    Article  MATH  Google Scholar 

  50. S. He, A gluing theorem for the Kapustin-Witten equations with a Nahm pole. J. Topol. 12(3), 855–915 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. N.J. Hitchin, The self-duality equations on a Riemann surface. Proc. London Math. Soc. (3) 55, 59–126 (1987)

    Google Scholar 

  52. N.J. Hitchin, Lie groups and Teichmüller space. Topology 31(3), 449–473 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  53. C.D. Hodgson, S.P. Kerckhoff, Universal bounds for hyperbolic Dehn surgery. Ann. of Math. (2) 162(1), 367–421 (2005)

    Google Scholar 

  54. Y. Huang, Z. Sun, McShane identities for higher Teichmüller theory and the Goncharov-Shen potential. arXiv: 1901.02032 (2019)

    Google Scholar 

  55. J.H. Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics, vol. 1, Matrix Editions (Ithaca, NY 2006)

    Google Scholar 

  56. W. Jaco, U. Oertel, An algorithm to decide if a 3-manifold is a Haken manifold. Topology 23(2), 195–209 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  57. D. Johnson, J.J. Millson, Deformation spaces associated to compact hyperbolic manifolds, in Discrete Groups in Geometry and Analysis (New Haven, CT 1984), Progr. Math., vol. 67 (Birkhäuser, Boston, 1987), pp. 48–106

    Google Scholar 

  58. J. Jost, Compact Riemann Surfaces. An Introduction to Contemporary Mathematics, 2nd edn. (Springer, Berlin, 2002), xvi+278 pp.

    Google Scholar 

  59. R. Kirby, A calculus for framed links. Invent. Math. 45, 35–56 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  60. H. Konno, Construction of the moduli space of stable parabolic Higgs bundles on a Riemann surface. J. Math. Soc. Japan 45(2), 253–276 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  61. B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Amer. J. Math. 81, 973–1032 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  62. C. Kourouniotis, Deformations of hyperbolic structures. Math. Proc. Cambridge Philos. Soc. 98(2), 247–261 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  63. C. Kourouniotis, Bending in the space of quasi-Fuchsian structures. Glasgow Math. J. 33(1), 41–49 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  64. C. Kourouniotis, The geometry of bending quasi-Fuchsian groups, in Discrete Groups and Geometry, (Birmingham, 1991), London Math. Soc. Lecture Note Ser. 173 (Cambridge University Press, Cambridge, 1992), pp. 148–164

    Google Scholar 

  65. G. Kydonakis, Gluing constructions for Higgs bundles over a complex connected sum. Ph.D. thesis, University of Illinois at Urbana-Champaign, 2018

    Google Scholar 

  66. G. Kydonakis, Model Higgs bundles in exceptional components of the \(\text{Sp(4}\text{,}\mathbb {R}\text{)}\)-character variety. Int. J. Math. 32(9), Paper No. 2150067, 50 pp. (2021)

    Google Scholar 

  67. G. Kydonakis, H. Sun, L. Zhao, Topological invariants of parabolic G-Higgs bundles. Math. Z. 297(1–2), 585–632 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  68. F. Labourie, Anosov flows, surface groups and curves in projective space. Invent. Math. 165(1), 51–114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  69. F. Labourie, Cross ratios, surface groups, \(\text{PSL} \left (n, \mathbb {R} \right )\) and diffeomorphisms of the circle. Publ. Math. Inst. Hautes Études Sci. 106, 139–213 (2007)

    Google Scholar 

  70. F. Labourie, G. McShane, Cross ratios and identities for higher Teichmüller-Thurston theory. Duke Math. J. 149(2), 279–345 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  71. M. Lackenby, R. Meyerhoff, The maximal number of exceptional Dehn surgeries. Invent Math. 191(2), 341–382 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  72. I. Le, Higher laminations and affine building. Geom. Topol. 20(3), 1673–1735 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  73. G.-S. Lee, T. Zhang, Collar lemma for Hitchin representations. Geom. Topol. 21(4), 2243–2280 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  74. W.B.R. Lickorish, A representation of orientable combinatorial 3-manifolds. Ann. Math. 76, 531–540 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  75. J. Luecke, Dehn surgery on knots in the 3-sphere, in Proceedings of the International Congress of Mathematicians, Zürich 1994 (Birkhäuser, 1995), pp. 585–594

    Google Scholar 

  76. G. Lusztig, Total positivity in reductive groups, in Lie Theory and Geometry, Progr. Math., vol. 123 (Birkhäuser, Boston, 1994), pp. 531–568

    Google Scholar 

  77. R. Mazzeo, J. Swoboda, H. Weiss, F. Witt, Ends of the moduli space of Higgs bundles. Duke Math. J. 165(12), 2227–2271 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  78. V.B. Mehta, C.S. Seshadri, Moduli of vector bundles on curves with parabolic structures. Math. Ann. 248(3), 205–239 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  79. J.J. Millson, On the first Betti number of a constant negatively curved manifold. Ann. Math. 104, 235–247 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  80. G. Mondello, Topology of representation spaces of surface groups in \(\text{PSL} \left (2, \mathbb {R} \right )\) with assigned boundary monodromy and nonzero Euler number. Pure Appl. Math. Q. 12(3), 399–462 (2016)

    Google Scholar 

  81. J.W. Morgan, On Thurston’s uniformization theorem for three-dimensional manifolds, in The Smith Conjecture, ed. by J.W. Morgan, H. Bass (New York, 1979), Pure Appl. Math., vol. 112 (Academic Press, Orlando, 1984), pp. 37–125

    Google Scholar 

  82. J. Morgan, G. Tian, The geometrization conjecture, in Clay Mathematics Monographs 5. American Mathematical Society, Providence, RI (Clay Mathematics Institute, Cambridge, MA, 2014), x+291 pp.

    Google Scholar 

  83. L. Nicolaescu, On the Cappell-Lee-Miller gluing theorem. Pac. J. Math. 206(1), 159–185 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  84. G. Perelman, Ricci flow with surgery on three-manifolds. arXiv: math/0303109 (2003)

    Google Scholar 

  85. R. Potrie, A. Sambarino, Eigenvalues and entropy of a Hitchin representation. Invent. Math. 209(3), 885–925 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  86. M.B. Pozzetti, Higher rank Teichmüller theories. Astérisque 422, 327–354 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  87. M.S. Raghunathan, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68 (Springer, New York-Heidelberg, 1972)

    Book  Google Scholar 

  88. J.G. Ratcliffe, Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics, 2nd edn., vol. 149 (Springer, New York, 2006)

    Google Scholar 

  89. A.W. Reid, A non-Haken hyperbolic 3-manifold covered by a surface bundle. Pacific J. Math. 167(1), 163–182 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  90. D. Rolfsen, Rational surgery calculus. Extension of Kirby’s theorem. Pacific J. Math. 110, 377–386 (1984)

    Article  MATH  Google Scholar 

  91. P. Safari, A gluing theorem for Seiberg-Witten moduli spaces. Ph. D. Thesis, Columbia University, 2000

    Google Scholar 

  92. A.H.W. Schmitt, Moduli for decorated tuples of sheaves and representation spaces for quivers. Proc. Indian Acad. Sci. Math. Sci. 115(1), 15–49 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  93. A.H.W. Schmitt, Geometric Invariant Theory and Decorated Principal Bundles. Zürich Lectures in Advanced Mathematics (European Mathematical Society, 2008)

    Google Scholar 

  94. H. Seifert, Komplexe mit Seitenzuordnung. Nachr. Akad. Wiss. Göttingen Math.Phys. Kl. II 6, 49–80 (1975)

    MathSciNet  MATH  Google Scholar 

  95. C.S. Seshadri, Moduli of vector bundles on curves with parabolic structures. Bull. AMS 83(1), 124–126 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  96. C.T. Simpson, Constructing variations of Hodge structures using Yang-Mills theory and applications to uniformization. J. Amer. Math. Soc. 1, 867–918 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  97. C.T. Simpson, Harmonic bundles on noncompact curves. J. Amer. Math. Soc. 3(3), 713–770 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  98. C.T. Simpson, Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75, 5–95 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  99. J. Swoboda, Moduli spaces of Higgs bundles on degenerating Riemann surfaces. Adv. Math. 322, 637–681 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  100. C.H. Taubes, Self-dual Yang-Mills connections over non self-dual 4-manifolds. J. Differential Geom. 17, 139–170 (1982)

    Article  MATH  Google Scholar 

  101. W.P. Thurston, The Geometry and Topology of Three-Manifolds. Princeton University Mathematics Department Lecture Notes (Princeton University Press, Princeton, 1979)

    Google Scholar 

  102. N.G. Vlamis, A. Yarmola, Basmajian’s identity in higher Teichmüller-Thurston theory. J. Topol. 10(3), 744–764 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  103. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large. Ann. Math. (Second Series) 87 (1), 56–88 (1968)

    Google Scholar 

  104. C.T.C. Wall, On the work of W. Thurston, in Proceedings of the International Congress of Mathematicians, Warsaw 1983 (Warszawa PWN, 1984), pp. 11–14

    Google Scholar 

  105. A.H. Wallace, Modifications and cobounding manifolds. Can. J. Math. 12, 503–528 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  106. A. Weil, On discrete subgroups of Lie groups. Ann. Math. (2) 72, 369–384 (1960)

    Google Scholar 

  107. A. Wienhard, An invitation to higher Teichmüller theory, in Proceedings of the International Congress of Mathematicians, Rio de Janeiro 2018, vol. II. Invited Lectures (World Scientific Publishing, Hackensack, 2018), pp. 1013–1039

    Google Scholar 

  108. M. Wolf, The Teichmüller theory of harmonic maps. J. Differential Geom. 29(2), 449–479 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  109. M. Wolf, Infinite energy harmonic maps and degeneration of hyperbolic surfaces in moduli space. J. Diff. Geom. 33, 487–539 (1991)

    MathSciNet  MATH  Google Scholar 

  110. S. Wolpert, The Fenchel-Nielsen deformation. Ann. Math. 115, 501–528 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  111. Q. Zhou, The moduli space of hyperbolic cone structures. J. Differential Geom. 51(3), 517–550 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to warmly thank the editors Ken’ichi Ohshika and Athanase Papadopoulos for their kind invitation to contribute to this collective volume. The work included in Sect. 6.7 was supported by the Labex IRMIA of the Université de Strasbourg and was undertaken in collaboration with Olivier Guichard. I acknowledge the Max-Planck-Institut für Mathematik in Bonn for its hospitality and support during the production of this chapter. I am also grateful to an anonymous referee as well as the editors for their careful reading of the manuscript and a number of useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Kydonakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kydonakis, G. (2022). From Hyperbolic Dehn Filling to Surgeries in Representation Varieties. In: Ohshika, K., Papadopoulos, A. (eds) In the Tradition of Thurston II. Springer, Cham. https://doi.org/10.1007/978-3-030-97560-9_6

Download citation

Publish with us

Policies and ethics