Skip to main content

Trace-to-Trace Translation for SCA

  • Conference paper
  • First Online:
Smart Card Research and Advanced Applications (CARDIS 2021)

Abstract

Neural Networks (NN) have been built to solve universal function approximation problems. Some architectures as Convolutional Neural Networks (CNN) are dedicated to classification in the context of image distortion. They have naturally been considered in the community to perform side-channel attacks showing good results on traces exposing time misalignment. However, even where these timing distortions are not present, NN have produced better results than legacy attacks.

Recently in TCHES 2020, auto-encoders have been used as preprocessing for noise reduction. The main idea is to train an auto-encoder using as inputs noisy traces and less noisy traces so that the auto-encoder is able to remove part of the noise in the attack dataset.

We propose to extend this idea of using NN for pre-processing by not only considering the noise-reduction but to translate data between two side-channel domains. In a nutshell, clean (or less noisy) traces may not be available to an attacker, but similar traces that are easier to attack may be obtainable. Availability of such traces can be leveraged to learn how to translate difficult traces to easy ones to increase attackability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://rtfm.newae.com/Targets/UFO%20Targets/CW308T-STM32F.html.

  2. 2.

    We do not claim that the setup, nor the position of the EM probe on the device is chosen optimally.

  3. 3.

    Collection of GANs from several domains: https://github.com/hindupuravinash/the-gan-zoo.

References

  1. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  2. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

    Chapter  Google Scholar 

  3. Fei, Y., Luo, Q., Ding, A.A.: A statistical model for DPA with novel algorithmic confusion analysis. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 233–250. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_14

    Chapter  Google Scholar 

  4. Goodfellow, I.J., et al.: Generative adversarial networks (2014)

    Google Scholar 

  5. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  6. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks (2018)

    Google Scholar 

  7. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks (2019)

    Google Scholar 

  8. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. Unleashing the power of convolutional neural networks for profiled side-channel analysis. In: TCHES 2019, no. 3, pp. 148–179, May 2019

    Google Scholar 

  9. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  10. Kubota, T., Yoshida, K., Shiozaki, M., Fujino, T.: Deep learning side-channel attack against hardware implementations of AES. In: 2019 22nd Euromicro Conference on Digital System Design (DSD), pp. 261–268, August 2019

    Google Scholar 

  11. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1

    Chapter  Google Scholar 

  12. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for side-channel analysis. In: TCHES 2020, no. 1, pp. 348–375 (2019)

    Google Scholar 

  13. Pascual, S., Bonafonte, A., Serrà, J.: SEGAN: Speech enhancement generative adversarial network (2017)

    Google Scholar 

  14. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning techniques for side-channel analysis and introduction to ASCAD database. Cryptology ePrint Archive, Report 2018/053 (2018). https://eprint.iacr.org/2018/053

  15. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556

  17. Wang, P., et al.: Enhancing the performance of practical profiling side-channel attacks using conditional generative adversarial networks (2020)

    Google Scholar 

  18. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a methodology for efficient CNN architectures in profiling attacks. In: TCHES 2020, no. 3, pp. 147–168 (2020)

    Google Scholar 

  19. Wu, L., Picek, S.: Remove some noise: On pre-processing of side-channel measurements with autoencoders. In: TCHES 2020, no. 4, pp. 389–415 (2020)

    Google Scholar 

  20. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN architectures in profiling attacks. In: TCHES 2020, no. 1, pp. 1–36 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annelie Heuser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Genevey-Metat, C., Heuser, A., Gérard, B. (2022). Trace-to-Trace Translation for SCA. In: Grosso, V., Pöppelmann, T. (eds) Smart Card Research and Advanced Applications. CARDIS 2021. Lecture Notes in Computer Science(), vol 13173. Springer, Cham. https://doi.org/10.1007/978-3-030-97348-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97348-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97347-6

  • Online ISBN: 978-3-030-97348-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics