Skip to main content

Resilient Observer Design for Cyber-Physical Systems with Data-Driven Measurement Pruning

  • Chapter
  • First Online:
Security and Resilience in Cyber-Physical Systems

Abstract

Resilient observer design for Cyber-Physical Systems (CPS) in the presence of adversarial false data injection attacks (FDIA) is an active area of research. The existing state-of-the-art algorithms tend to break down as more and more knowledge of the system is built into the attack model; also as the percentage of attacked nodes increases. From the view of optimization theory, the problem is often cast as a classical error correction problem for which a theoretical limit of \(50\%\) has been established as the maximum percentage attacked nodes for which state recovery is guaranteed. Beyond this limit, the performance of \(\ell _1\)-minimization based schemes, for instance, deteriorates rapidly. Similar performance degradation occurs for other types of resilient observers beyond certain percentages of attacked nodes. In order to increase the corresponding percentage of attacked nodes for which state recoveries can be guaranteed, researchers have begun to incorporate prior information into the underlying resilient observer design framework. For the most pragmatic cases, this prior information is often obtained through a data-driven machine learning process. Existing results have shown a strong positive correlation between the maximum attacked percentages that can be tolerated and the accuracy of the data-driven model. Motivated by these results, this chapter examines the case for pruning algorithms designed to improve the Positive Prediction Value (PPV) of the resulting prior information, given stochastic uncertainty characteristics of the underlying machine learning model. Theoretical quantification of the achievable improvement is given. Simulation results show that the pruning algorithm significantly increases the maximum correctable percentage of attacked nodes, even for machine learning model whose prediction power is comparable to the random flip of a coin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    0: safe, 1: unsafe.

References

  • M. Abbaszadeh, L.K. Mestha, C. Bushey, D.F. Holzhauer, Automated attack localization and detection. U.S. Patent No. 10,417,415 (2019)

    Google Scholar 

  • O.M. Anubi, C. Konstantinou, R. Roberts, Resilient optimal estimation using measurement prior (2019). arXiv: 1907.13102

  • O.M. Anubi, C. Konstantinou, C.A. Wong, S. Vedula, Multi-model resilient observer under false data injection attacks, in 2020 IEEE Conference on Control Technology and Applications (CCTA) (IEEE, 2020), pp. 1–8

    Google Scholar 

  • O.M. Anubi, L. Mestha, H. Achanta, Robust resilient signal reconstruction under adversarial attacks (2018). arXiv:1807.08004

  • O.M. Anubi, C. Konstantinou, Enhanced resilient state estimation using data-driven auxiliary models. IEEE Trans. Ind. Inf. 16(1), 639–647 (2019)

    Article  Google Scholar 

  • M. Bishop, What is computer security? IEEE Sec. Priv. 1(1), 67–69 (2003)

    Article  Google Scholar 

  • A. Burg, A. Chattopadhyay, K.Y. Lam, Wireless communication and security issues for cyber-physical systems and the Internet-of-Things. Proc. IEEE 106(1), 38–60 (2017)

    Article  Google Scholar 

  • E.J. Candes, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  Google Scholar 

  • E. Candes, T. Tao, The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35(6), 2313–2351 (2007)

    MathSciNet  MATH  Google Scholar 

  • E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  • T.M. Chen, S. Abu-Nimeh, Lessons from stuxnet. Computer 44(4), 91–93 (2011)

    Article  Google Scholar 

  • M.S. Chong, M. Wakaiki, J.P. Hespanha, Observability of linear systems under adversarial attacks, in 2015 American Control Conference (ACC). (IEEE, 2015), pp. 2439–2444

    Google Scholar 

  • A.O. de Sá, L.F.R. da Costa Carmo, R.C. Machado, Covert attacks in cyber-physical control systems. IEEE Trans. Ind. Inf. 13(4), 1641–1651 (2017)

    Article  Google Scholar 

  • Y. Deldjoo, T.D. Noia, F.A. Merra, A survey on adversarial recommender systems: from attack/defense strategies to generative adversarial networks. ACM Comput. Surv. (CSUR) 54(2), 1–38 (2021)

    Article  Google Scholar 

  • P. Derler, E.A. Lee, A.S. Vincentelli, Modeling cyber-physical systems. Proc. IEEE 100(1), 13–28 (2011)

    Article  Google Scholar 

  • R. Dhaouadi, A.A. Hatab, Dynamic modelling of differential-drive mobile robots using lagrange and newton-euler methodologies: A unified framework. Advances in Robotics & Automation 2(2), 1–7 (2013)

    Google Scholar 

  • D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  • M. Esmalifalak, L. Liu, N. Nguyen, R. Zheng, Z. Han, Detecting stealthy false data injection using machine learning in smart grid. IEEE Syst. J. 11(3), 1644–1652 (2014)

    Article  Google Scholar 

  • C. Fang, Y. Qi, P. Cheng, W.X. Zheng, Optimal periodic watermarking schedule for replay attack detection in cyber-physical systems. Automatica 112, 108698 (2020)

    Google Scholar 

  • T. Fawcett, An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  • H. Fawzi, P. Tabuada, S. Diggavi, Secure estimation and control for cyber-physical systems under adversarial attacks. IEEE Trans. Autom. Control 59(6), 1454–1467 (2014)

    Article  MathSciNet  Google Scholar 

  • Manuel Fernández, Stuart Williams, Closed-form expression for the poisson-binomial probability density function. IEEE Trans. Aerosp. Electron. Syst. 46(2), 803–817 (2010)

    Article  Google Scholar 

  • M. Fornasier, H. Rauhut, Compressive Sensing. Handbook of Math. Methods Imaging 1, 187–229 (2015)

    MATH  Google Scholar 

  • M.P. Friedlander, H. Mansour, R. Saab, Ö. Yilmaz, Recovering compressively sampled signals using partial support information. IEEE Trans. Inf. Theory 58(2), 1122–1134 (2011)

    Article  MathSciNet  Google Scholar 

  • Z. Guo, D. Shi, K.H. Johansson, L. Shi, Optimal linear cyber-attack on remote state estimation. IEEE Trans. Control Netw. Syst. 4(1), 4–13 (2016)

    Article  MathSciNet  Google Scholar 

  • Y. He, G.J. Mendis, J. Wei, Real-time detection of false data injection attacks in smart grid: a deep learning-based intelligent mechanism. IEEE Trans. Smart Grid 8(5), 2505–2516 (2017)

    Article  Google Scholar 

  • Y. Huang, J. Tang, Y. Cheng, H. Li, K.A. Campbell, Z. Han, Real-time detection of false data injection in smart grid networks: an adaptive CUSUM method and analysis. IEEE Syst. J. 10(2), 532–543 (2014)

    Article  Google Scholar 

  • S.K. Khaitan, J.D. McCalley, Design techniques and applications of cyber physical systems: a survey. IEEE Syst. J. 9(2), 350–365 (2014)

    Article  Google Scholar 

  • E.A. Lee, CPS foundations, in Design Automation Conference (IEEE, 2010), pp. 737–742

    Google Scholar 

  • C. Lee, H. Shim, Y. Eun, Secure and robust state estimation under sensor attacks, measurement noises, and process disturbances: Observer-based combinatorial approach, in 2015 European Control Conference (ECC), (IEEE, 2015), pp. 1872–1877

    Google Scholar 

  • R.M. Lee, M.J. Assante, T. Conway, German steel mill cyber attack. Ind. Control Syst. 30, 62 (2014)

    Google Scholar 

  • Y. Liu, P. Ning, M.K. Reiter, False data injection attacks against state estimation in electric power grids. ACM Trans. Inf. Syst. Sec. (TISSEC) 14(1), 1–33 (2011)

    Article  Google Scholar 

  • M. Liu, G. Chowdhary, B.C. Da Silva, S.Y. Liu, J.P. How, Gaussian processes for learning and control: a tutorial with examples. IEEE Control Syst. Mag. 38(5), 53–86 (2018)

    Article  MathSciNet  Google Scholar 

  • H. Liu, Y. Mo, J. Yan, L. Xie, K.H. Johansson, An online approach to physical watermark design. IEEE Trans. Autom. Control 65(9), 3895–3902 (2020)

    Article  MathSciNet  Google Scholar 

  • Y. Mo, B. Sinopoli, False data injection attacks in control systems, in Preprints of the 1st workshop on Secure Control Systems (2010), pp. 1–6

    Google Scholar 

  • Y. Mo, B. Sinopoli, On the performance degradation of cyber-physical systems under stealthy integrity attacks. IEEE Trans. Autom. Control 61(9), 2618–2624 (2015)

    Article  MathSciNet  Google Scholar 

  • Y. Nakahira, Y. Mo, Attack-Resilient \(\mathscr{H}_2, \mathscr{H}_{\infty }, \,\text{and} \,\ell _1\) state estimator. IEEE Trans. Autom. Control 63(12), 4353–4360 (2018)

    Article  Google Scholar 

  • New York control area load zone map. [Online]. https://www.nyiso.com/documents/20142/1397960/nyca_zonemaps.pdf

  • N. Y. I. S. Operator, "Load Data," [Online]. https://www.nyiso.com/load-data

  • M. Ozay, I. Esnaola, F.T.Y. Vural, S.R. Kulkarni, H.V. Poor, Machine learning methods for attack detection in the smart grid. IEEE Trans. Neural Netw. Learn. Syst. 27(8), 1773–1786 (2015)

    Article  MathSciNet  Google Scholar 

  • M., Pajic, P. Tabuada, I. Lee, G.J. Pappas, Attack-resilient state estimation in the presence of noise, in 2015 54th IEEE Conference on Decision and Control (CDC) (IEEE, 2015), pp. 5827–5832

    Google Scholar 

  • F. Pasqualetti, F. Dörfler, F. Bullo, Attack detection and identification in cyber-physical systems. IEEE Trans. Autom. Control 58(11), 2715–2729 (2013)

    Article  MathSciNet  Google Scholar 

  • K. Pelechrinis, M. Iliofotou, S.V. Krishnamurthy, Denial of service attacks in wireless networks: the case of jammers. IEEE Commun. Surv. Tutor. 13(2), 245–257 (2010)

    Article  Google Scholar 

  • Power System Test Case Archive, 14 bus power flow test case. [Online]. http://labs.ece.uw.edu/pstca/pf14/pg_tca14bus.htm

  • C.E. Rasmussen, Gaussian processes in machine learning, in Summer school on machine learning (Springer, Berlin, Heidelberg, 2003), pp. 63–71

    Google Scholar 

  • Scholtz, E. (2004). Observer-based monitors and distributed wave controllers for electromechanical disturbances in power systems (Doctoral dissertation, Massachusetts Institute of Technology)

    Google Scholar 

  • T. Shinohara, T. Namerikawa, Z. Qu, Resilient reinforcement in secure state estimation against sensor attacks with a priori information. IEEE Trans. Autom. Control 64(12), 5024–5038 (2019)

    Article  MathSciNet  Google Scholar 

  • Y. Shoukry, P. Tabuada, Event-triggered state observers for sparse sensor noise/attacks. IEEE Trans. Autom. Control 61(8), 2079–2091 (2015)

    Article  MathSciNet  Google Scholar 

  • Y. Shoukry, P. Nuzzo, A. Puggelli, A.L. Sangiovanni-Vincentelli, S.A. Seshia, P. Tabuada, Secure state estimation for cyber-physical systems under sensor attacks: a satisfiability modulo theory approach. IEEE Trans. Autom. Control 62(10), 4917–4932 (2017)

    Article  MathSciNet  Google Scholar 

  • J. Slay, M. Miller, Lessons learned from the maroochy water breach, in International Conference on Critical Infrastructure Protection. (Springer, Boston, MA, 2007), pp. 73–82

    Google Scholar 

  • T. Sui, Y. Mo, D. Marelli, X.M. Sun, M. Fu, The Vulnerability of Cyber-Physical System under Stealthy Attacks. IEEE Trans. Autom. Control (2020)

    Google Scholar 

  • R. Urtasun, T. Darrell, Sparse probabilistic regression for activity-independent human pose inference, in 2008 IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2008), pp. 1–8

    Google Scholar 

  • S. Weerakkody, B. Sinopoli, Detecting integrity attacks on control systems using a moving target approach, in 2015 54th IEEE Conference on Decision and Control (CDC) (IEEE, 2015), pp. 5820–5826

    Google Scholar 

  • J. Yang, C. Zhou, Y.C. Tian, C. An, A Zoning-Based Secure Control Approach Against Actuator Attacks in Industrial Cyber-Physical Systems. IEEE Trans. Industr. Electron. 68(3), 2637–2647 (2020)

    Article  Google Scholar 

  • K. Zetter, A cyber attack has caused confirmed physical damage for the second time ever (2015)

    Google Scholar 

  • Y. Zheng, O.M. Anubi, Attack-resilient observer pruning for path-tracking control of wheeled mobile robot, in 2020 ASME Dynamic Systems and Control(DSC) Conference, ASME (2020), pp. 1–9

    Google Scholar 

  • Y. Zheng, O.M. Anubi, Attack-resilient weighted \(\ell _1\) observer with prior pruning, in 2021 American Control Conference (ACC) (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olugbenga Moses Anubi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, Y., Anubi, O.M. (2022). Resilient Observer Design for Cyber-Physical Systems with Data-Driven Measurement Pruning. In: Abbaszadeh, M., Zemouche, A. (eds) Security and Resilience in Cyber-Physical Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-97166-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97166-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97165-6

  • Online ISBN: 978-3-030-97166-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics