Skip to main content

Towards the Development of a Digital Twin for Endoscopic Medical Device Testing

  • Chapter
  • First Online:
Digital Twins for Digital Transformation: Innovation in Industry

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 423))

Abstract

Endoscopic medical devices enable minimally invasive visual screening and medical interventions in the human body. The development of such devices typically requires evaluation stages involving time- and resource-demanding in vivo animal studies and clinical trials, associated with ethical and safety considerations. The computational modeling of biological tissues and processes, medical devices, and their interactions can provide cost-effective solutions to accelerate the evaluation of endoscopic devices while minimizing the risks. This chapter describes the state-of-the-art methodology for constructing a human gastrointestinal tract (GIT) digital twin, enabling the study of device-tissue interactions. The GIT is a complex structure in terms of anatomical characteristics and processes. Current endoscopic devices include flexible and capsule endoscopes; however, both have disadvantages limiting their diagnostic or therapeutic capabilities. A digital twin of the GIT is expected to contribute to the evaluation and optimization of currently researched and future endoscopic devices, such as robotic capsule endoscopes with enhanced capabilities. The digital twin development includes reconstructing the complex intestinal geometry from medical images and constructing a multiphysics model that can replicate the in vivo physical processes. A model implementation paradigm indicates the feasibility, potentials, challenges, and impacts of the proposed concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WorsØe, J., Fynne, L., Gregersen, T., Schlageter, V., Christensen, L.A., Dahlerup, J.F., et al.: Gastric transit and small intestinal transit time and motility assessed by a magnet tracking system. BMC Gastroenterol. 11, (2011). https://doi.org/10.1186/1471-230X-11-145

  2. Vasilakakis, M., Koulaouzidis, A., Yung, D.E., Plevris, J.N., Toth, E., Iakovidis, D.K.: Follow-up on: optimizing lesion detection in small bowel capsule endoscopy and beyond: from present problems to future solutions. Expert Rev. Gastroenterol. Hepatol. 13(2), 129–141 (2019)

    Article  Google Scholar 

  3. Vasilakakis, M., Koulaouzidis, A., Marlicz, W., Iakovidis, D.: The future of capsule endoscopy in clinical practice: from diagnostic to therapeutic experimental prototype capsules. Gastroenterol. Rev./Przegląd Gastroenterol. 14(1), (2019)

    Google Scholar 

  4. Carniel, E.L., Toniolo, I., Fontanella, C.G.: Computational biomechanics: in-silico tools for the investigation of surgical procedures and devices. Bioengineering (Basel). 7(2), 48 (2020). https://doi.org/10.3390/bioengineering7020048

  5. Carniel, E.L., Albanese, A., Fontanella, C.G., Pavan, P.G., Prevedello, L., Salmaso, C., Todros, S., Toniolo, I., Foletto, M.: Biomechanics of stomach tissues and structure in patients with obesity. J. Mech. Behav. Biomed. Mater. (2020). Accepted

    Google Scholar 

  6. Liao, D.H., Zhao, J.B., Gregersen, H.: Gastrointestinal tract modelling in health and disease. World J. Gastroenterol. 15(2), 169–176 (2009). https://doi.org/10.3748/wjg.15.169

    Article  Google Scholar 

  7. Du, P., Paskaranandavadivel, N., Angeli, T.R., Cheng, L.K., O’Grady, G.: The virtual intestine: in silico modeling of small intestinal electrophysiology and motility and the applications. Wiley Interdiscip. Rev. Syst. Biol. Med. 8(1), 69–85 (2016)

    Article  Google Scholar 

  8. Liao, D., Zhao, J., Gregersen, H.: Esophagus. Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling, pp 147–167 (2017). https://doi.org/10.1016/B978-0-12-804009-6.00007-9

  9. Gregersen, H., Liao, D., Brasseur, J.G.: The Esophagiome: concept, status, and future perspectives. Ann. N. Y. Acad. Sci. 1380(1), 6–18 (2016). https://doi.org/10.1111/nyas.13200

    Article  Google Scholar 

  10. Du, P., O’Grady, G., Gao, J., Sathar, S., Cheng, L.K.: Toward the virtual stomach: progress in multiscale modeling of gastric electrophysiology and motility. Wiley Interdiscip. Rev. Syst. Biol. Med. 5(4), 481–493 (2013)

    Article  Google Scholar 

  11. Du, P., Yassi, R., Gregersen, H., Windsor, J.A., Hunter, P.J.: The virtual esophagus: investigating esophageal functions in silico. Ann. N. Y. Acad. Sci. 1380(1), 19–26 (2016)

    Article  Google Scholar 

  12. Fontanella, C.G., Salmaso, C., Toniolo, I., de Cesare, N., Rubini, A., De Benedictis, G.M., Carniel, E.L.: Computational models for the mechanical investigation of stomach tissues and structure. Ann. Biomed. Eng. 47(5), 1237–1249 (2019)

    Article  Google Scholar 

  13. Siri, S., Zhao, Y., Maier, F., Pierce, D.M., Feng, B.: The macro-and micro-mechanics of the colon and rectum I: experimental evidence. Bioengineering 7(4), 1–16 (2020). https://doi.org/10.3390/bioengineering7040130

    Article  Google Scholar 

  14. Zhao, Y., Siri, S., Feng, B., Pierce, D.M.: The macro-and micro-mechanics of the colon and rectum II: theoretical and computational methods. Bioengineering 7(4), 1–15 (2020). https://doi.org/10.3390/bioengineering7040152

    Article  Google Scholar 

  15. Alber, M., Tepole, A. B., Cannon, W. R., De, S., Dura-Bernal, S., Garikipati, K., et al.: Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digit. Med. 2(1), 1–11 (2019)

    Google Scholar 

  16. Zhang, Y.: Challenges and advances in image-based geometric modeling and mesh generation. In: Image-Based Geometric Modeling and Mesh Generation, pp. 1–10. Springer, Dordrecht (2013)

    Google Scholar 

  17. Farmaga, I., Shmigelskyi, P., Spiewak, P., Ciupinski, L.: Evaluation of computational complexity of finite element analysis. In: 2011 11th International Conference the Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), pp. 213–214. IEEE (2011)

    Google Scholar 

  18. Arbia, G., Corsini, C., Esmaily Moghadam, M., Marsden, A.L., Migliavacca, F., Pennati, G., et al.: Numerical blood flow simulation in surgical corrections: what do we need for an accurate analysis? J. Surg. Res. 186(1), 44–55 (2014). https://doi.org/10.1016/j.jss.2013.07.037

    Article  Google Scholar 

  19. Carniel, E.L., Gramigna, V., Fontanella, C.G., Frigo, A., Stefanini, C., Rubini, A., Natali, A.N.: Characterization of the anisotropic mechanical behavior of colonic tissues: experimental activity and constitu-tive formulation. Exp. Physiol. 99(5), 759–771 (2014)

    Article  Google Scholar 

  20. Todros, S., de Cesare, N., Concheri, G., Natali, A.N., Pavan, P. G.: Numerical modelling of abdominal wall mechanics: the role of muscular contraction and intra-abdominal pressure. J. Mech. Behav. Biomed. Mater. 103, 103578 (2020)

    Google Scholar 

  21. Kalozoumis, P.: Patient-specific FSI computational modelling of the left heart. Ph.D. Thesis, Hannover Medical School, Germany (2018). https://find.bibliothek.tu-ilmenau.de/Record/1666916471

  22. Bianchi, D., Monaldo, E., Gizzi, A., Marino, M., Filippi, S., Vairo, G.: A FSI computational framework for vascular physiopathology: a novel flow-tissue multiscale strategy. Med. Eng. Phys. 47, 25–37 (2017)

    Article  Google Scholar 

  23. Bianchi, D., Marino, M., Vairo, G.: An integrated computational approach for aortic mechanics including geometric, histological and chemico-physical data. J. Biomech. 49(12), 2331–2340 (2016)

    Article  Google Scholar 

  24. Carniel, E.L., Frigo, A., Fontanella, C.G., De Benedictis, G.M., Rubini, A., Barp, L., et al.: A biomechanical approach to the analysis of methods and procedures of bariatric surgery. J. Biomech. 56, 32–41 (2017). https://doi.org/10.1016/j.jbiomech.2017.02.029

    Article  Google Scholar 

  25. Salmaso, C., Toniolo, I., Fontanella, C.G., Da Roit, P., Albanese, A., Polese, L., Stefanini, C., Foletto, M., Carniel, E.L.: Computational tools for the reliability assessment and the engineering design of procedures and devices in bariatric surgery. Ann. Biomed. Eng. 48(10), 2466–2483 (2020). https://doi.org/10.1007/s10439-020-02542-9

    Article  Google Scholar 

  26. Wang, Y., Brasseur, J.G., Banco, G.G., Webb, A.G., Ailiani, A.C., Neuberger, T.: A multiscale lattice Boltzmann model of macro-to micro-scale transport, with applications to gut function. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 368(1921), 2863–2880 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Astorino, M., Chouly, F., Quarteroni, A.: Multiscale coupling of finite element and lattice Boltzmann methods for time dependent problems. In: ICCS 2004, 4th International Conference, Kraków, Poland, June 6–9, 2004, Proceedings, Part IV (2012)

    Google Scholar 

  28. Zhao, J., Liao, D., Gregersen, H.: Tension and stress in the rat and rabbit stomach are location- and direction-dependent. Neurogastroenterol. Motil. 17(3), 388–398 (2005)

    Article  Google Scholar 

  29. Carniel, E.L., Gramigna, V., Fontanella, C.G., Stefanini, C., Natali, A.N.: Constitutive formulations for the mechanical investigation of colonic tissues. J. Biomed. Mater. Res. A 102(5), 1243–1254 (2014)

    Article  Google Scholar 

  30. Carniel, E.L., Mencattelli, M., Bonsignori, G., Fontanella, C.G., Frigo, A., Rubini, A., et al.: Analysis of the structural behaviour of colonic segments by inflation tests: experimental activity and physio-mechanical model. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 229(11), 794–803 (2015). https://doi.org/10.1177/0954411915606484

    Article  Google Scholar 

  31. Bellini, C., Glass, P., Sitti, M., & Di Martino, E. S. (2011). Biaxial mechanical modeling of the small intestine. Journal of the mechanical behavior of biomedical materials, 4(8), 1727-1740.

    Article  Google Scholar 

  32. Egorov, V.I., Schastlivtsev, I.V., Prut, E.V., Baranov, A.O., Turusov, R.A.: Mechanical properties of the human gastrointestinal tract. J. Biomech. 35(10), 1417–1425 (2002). https://doi.org/10.1016/S0021-9290(02)00084-2

    Article  Google Scholar 

  33. Saraf, H., Ramesh, K.T., Lennon, A.M., Merkle, A.C., Roberts, J.C.: Mechanical properties of soft human tissues under dynamic loading. J. Biomech. 40(9), 1960–1967 (2007)

    Article  Google Scholar 

  34. Christensen, M.B., Oberg, K., Wolchok, J.C.: Tensile properties of the rectal and sigmoid colon: a comparative analysis of human and porcine tissue. Springerplus 4(1), (2015). https://doi.org/10.1186/s40064-015-0922-x

  35. Terry, B.S., Wang, X., Schoen, J.A., Rentschler, M.E.: A preconditioning protocol and biaxial mechanical measurement of the small intestine. Int. J. Exp. Comput. Biomech. 2(4), 293 (2014). https://doi.org/10.1504/ijecb.2014.066081

    Article  Google Scholar 

  36. Hansen, M. B. (2002). Small intestinal manometry. Physiological Research, 51(6), 541-556.

    Google Scholar 

  37. Haskins, G., Kruger, U., Yan, P.: Deep learning in medical image registration: a survey. Mach. Vis. Appl. 31(1), 8 (2020)

    Article  Google Scholar 

  38. Carvalho, L.E., Sobieranski, A.C., von Wangenheim, A.: 3D segmentation algorithms for computerized tomographic imaging: a systematic literature review. J. Digit. Imaging 31(6), 799–850 (2018)

    Article  Google Scholar 

  39. Chen, X., Pan, L.: A survey of graph cuts/graph search based medical image segmentation. IEEE Rev. Biomed. Eng. 11, 112–124 (2018)

    Article  Google Scholar 

  40. Iakovidis, D.K., Savelonas, M.A., Karkanis, S.A., Maroulis, D.E.: A genetically optimized level set approach to segmentation of thyroid ultrasound images. Appl. Intell. 27(3), 193–203 (2007)

    Article  Google Scholar 

  41. Savelonas, M.A., Iakovidis, D.K., Maroulis, D.: LBP-guided active contours. Pattern Recognit. Lett. 29(9), 1404–1415 (2008)

    Article  Google Scholar 

  42. Oda, H., Nishio, K., Kitasaka, T., Villard, B., Amano, H., Chiba, K., et al.: Spaciousness filters for non-contrast CT volume segmentation of the intestine region for emergency ileus diagnosis. In: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures, pp. 104–114. Springer, Cham (2019)

    Google Scholar 

  43. Barr, K., Laframboise, J., Ungi, T., Hookey, L., Fichtinger, G.: Automated segmentation of computed tomography colonography images using a 3D U-Net. In: Medical Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 11315, p. 113152G. International Society for Optics and Photonics, Bellingham (2020)

    Google Scholar 

  44. Gibson, E., Giganti, F., Hu, Y., Bonmati, E., Bandula, S., Gurusamy, K., et al.: Automatic multi-organ segmentation on abdominal CT with dense v-networks. IEEE Trans. Med. Imaging 37(8), 1822–1834 (2018)

    Article  Google Scholar 

  45. Lenchik, L., Heacock, L., Weaver, A.A., Boutin, R.D., Cook, T.S., Itri, J., et al.: Automated segmentation of tissues using CT and MRI: a systematic review. Acad. Radiol. 26(12), 1695–1706 (2019)

    Article  Google Scholar 

  46. Falcon, N.O., Ranjbar, S., Cisneros, E., Vu, B., Schoppe, A., Sanchez, P., et al.: Innovative computer vision approach to 3D bladder model reconstruction from flexible cystoscopy. In: Therapeutics and Diagnostics in Urology 2019, vol. 10852, p. 1085207. International Society for Optics and Photonics, Bellingham (2019)

    Google Scholar 

  47. Soper, T.D., Porter, M.P., Seibel, E.J.: Surface mosaics of the bladder reconstructed from endoscopic video for automated surveillance. IEEE Trans. Biomed. Eng. 59(6), 1670–1680 (2012)

    Article  Google Scholar 

  48. Ailiani, A.C., Neuberger, T., Brasseur, J.G., Banco, G., Wang, Y., Smith, N.B., Webb, A.G.: Quantitative analysis of peristaltic and segmental motion in vivo in the rat small intestine using dynamic MRI. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 62(1), 116–126 (2009)

    Article  Google Scholar 

  49. Marino, M.: Constitutive modeling of soft tissues. In: Narayan, R. (ed.) Encyclopedia of Biomedical Engineering, vol. 2, pp. 81–110. Elsevier, Amsterdam (2019). ISBN 978012804829028048290

    Google Scholar 

  50. Bellini, C., Glass, P., Di Martino, E.S.: Constitutive modeling of the small intestine. In: Biomechanics of Living Organs, pp. 287–305. Academic Press, Cambridge (2017)

    Google Scholar 

  51. Carniel, E.L., Rubini, A., Frigo, A., Natali, A.N.: Analysis of the biomechanical behaviour of gastrointestinal regions adopting an experimental and computational approach. Comput. Methods Programs Biomed. 113(1), 338–345 (2014)

    Article  Google Scholar 

  52. Zohdi, T.I., Wriggers, P.: Computational micro-macro material testing. Arch. Comput. Methods Eng. 8, 131–228 (2001). https://doi.org/10.1007/BF02897871

    Article  MATH  Google Scholar 

  53. Gautieri, A., Vesentini, S., Redaelli, A., Buehler, MJ.: Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11(2), 757–766 (2011)

    Google Scholar 

  54. Chevalier, J., Morelle, X.P., Bailly, C., Camanho, P.P., Pardoen, T., Lani, F.: Micro-mechanics based pressure dependent failure model for highly cross-linked epoxy resins. Eng. Fract. Mech. 158, 1–12 (2016)

    Article  Google Scholar 

  55. Eskandari, S., Andrade Pires, F.M., Camanho, P.P., Marques, A.T.: Damage analysis of out of plane undulated fiber composites. Compos. Struct. 152, 464–476 (2016)

    Article  Google Scholar 

  56. Tavares, R.P., Melro, A.R., Bessa, M.A., Turon, A., Liu, W.K., Camanho, P.P.: Mechanics of hybrid polymer composites: analytical and computational study. Comput. Mech. 57, 405–421 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Comninou, M., Yannas, I.V.: Dependance of stress-strain nonlinearity of connective tissues on the geometry of collagen fibers. J. Biomech. 9, 427–433 (1976)

    Article  Google Scholar 

  58. Lanir, Y.: A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J. Biomech. 12, 423–436 (1979)

    Article  Google Scholar 

  59. Freed, A.D., Doehring, T.C.: Elastic model for crimped collagen fibrils. J. Biomech. Eng. 127, 587–593 (2005)

    Article  Google Scholar 

  60. Maceri, F., Marino, M., Vairo, G.: A unified multiscale mechanical model for soft collagenous tissues with regular fiber arrangement. J. Biomech. 43, 355–363 (2010)

    Article  Google Scholar 

  61. Maceri, F., Marino, M., Vairo, G.: Age-dependent arterial mechanics via a multiscale elastic approach. Int. J. Comput. Methods Eng. Sci. Mech. 14, 141–151 (2013)

    Article  MathSciNet  Google Scholar 

  62. Marino, M, Vairo, G.: Multiscale elastic models of collagen bio-structures: from cross-linked molecules to soft tissues. In: Gefen, A. (ed.) Multiscale Computer Modelling in Biomechanics and Biomedical Engineering, Stud Mechanobiol Tissue Eng Biomater. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/8415-2012-154

  63. Marino, M., Vairo, G.: Stress and strain localization in stretched collagenous tissues via a multiscale modelling approach. Comput. Methods Biomech. Biomed. Eng. 17, 11–30 (2014)

    Article  Google Scholar 

  64. Marino, M., Vairo, G.: Computational multiscale modelling of soft tissues mechanics: application to tendons and ligaments. In: Jin, Z., Li, J., Chen, Z. (eds.) Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System, 2nd edn, Ch. 7, pp. 121–153. Woodhead Publishing, Sawston (2021)

    Google Scholar 

  65. Marino, M., Wriggers, P.: Finite strain response of crimped fibers under uniaxial traction: an analytical approach applied to collagen. J. Mech. Phys. Solids 98, 429–453 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  66. Marino, M., Wriggers, P.: Micro-macro constitutive modeling and finite element analytical-based formulations for fibrous materials: a multiscale structural approach for crimped fibers. Comput. Methods Appl. Mech. Eng. 344, 938–969 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  67. Marino, M., Pontrelli, G., Vairo, G., Wriggers, P.: A chemo-mechano-biological formulation for the effects of biochemical alterations on arterial mechanics: the role of molecular transport and multiscale tissue remodelling. J. R. Soc. Interface 14, 20170615 (2017)

    Article  Google Scholar 

  68. Huizinga, J.D., Lammers, W.J.: Gut peristalsis is governed by a multitude of cooperating mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G1–G8 (2009)

    Article  Google Scholar 

  69. Sanders, K.M., Koh, S.D., Ward, S.M.: Interstitial cells of Cajal as pacemakers in the gastrointestinal tract. Annu. Rev. Physiol. 68, 307–343 (2006)

    Article  Google Scholar 

  70. Bertschi, M., Virag, N., Schlageter, V., Kucera, P., Givel, J.C., Vesin, J.M.: Analysis of cluster evolution in a model of intestine electrical activity. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), vol. 3, pp. 2683–2686. IEEE (2003)

    Google Scholar 

  71. Aliev, R.R., Richards, W., Wikswo, J.P.: A simple nonlinear model of electrical activity in the intestine. J. Theor. Biol. 204(1), 21–28 (2000)

    Article  Google Scholar 

  72. Gizzi, A., Cherubini, C., Migliori, S., Alloni, R., Portuesi, R., Filippi, S.: On the electrical intestine turbulence induced by temperature changes. Phys. Biol. 7, 016011 (12pp) (2010)

    Google Scholar 

  73. Lees-Green, R., Gibbons, S.J., Farrugia, G., Sneyd, J., Cheng, L.K.: Computational modeling of anoctamin 1 calcium-activated chloride channels as pacemaker channels in interstitial cells of Cajal. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G711–G727 (2014)

    Article  Google Scholar 

  74. Parsons, S.P., Huizinga, J.D.: A myogenic motor pattern in mice lacking myenteric interstitial cells of Cajal explained by a second coupled oscillator network. Am. J. Physiol. Gastrointest. Liver Physiol. 318, G225–G243 (2020)

    Article  Google Scholar 

  75. Du, P., O’Grady, G., Gibbons, S.J., Yassi, R., Lees-Green, R., Farrugia, G., Cheng, L.K., Pullan, A.J.: Tissue-specific mathematical models of slow wave entrainment in wild-type and 5-HT2B knockout mice with altered interstitial cells of Cajal networks. Biophys. J. 98, 1772–1781 (2010)

    Article  Google Scholar 

  76. Göktepe, S., Menzel, A., Kuhl, E.: Micro-structurally based kinematic approaches to electromechanics of the heart. In: Computer Models in Biomechanics, pp. 175–187. Springer, Netherlands (2013)

    Chapter  Google Scholar 

  77. Odegard, G.M., Haut Donahue, T.L., Morrow, D.A., Kaufman, K.R.: Constitutive modelling of skeletal muscle tissue with an explicit strain-energy function. J. Biomech. Eng. 130, 061017 (2008)

    Google Scholar 

  78. Ambrosi, D., Arioli, G., Nobile, F., Quarteroni, A.: Electromechanical coupling in cardiac dynamics: the active strain approach. J. SIAM Appl. Math. 71(2), 605–621 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  79. Gizzi, A., Cherubini, C., Filippi, S., Pandolfi, A.: Theoretical and numerical modeling of nonlinear electromechanics with applications to biological active media. Commun. Comput. Phys. 17(1), 93–126 (2015)

    Article  Google Scholar 

  80. Du, P., Poh, Y.C., Lim, J.L., Gajendiran, V., O’Grady, G., Buist, M.L., Pullan, A.J., Cheng, L.K.: A preliminary model of gastrointestinal electromechanical coupling. IEEE Trans. Biomed. Eng. 58, 3491–3495 (2011)

    Article  Google Scholar 

  81. Du, P., Lim, J.L., Cheng, L.K.: A model of electromechanical coupling in the small intestine. In: Tissue Engineering and Biomaterials, Studies in Mechanobiology, pp. 179–207. Springer-Verlag, Berlin (2012)

    Google Scholar 

  82. Ogden, R.V., Steigman, D.: Mechanics and Electrodynamics of Magneto- and Electro-elastic Materials. CISM International Centre for Mechanical Sciences, Springer, Udine (2011)

    Google Scholar 

  83. Lentle, R.G., De Loubens, C., Hulls, C., Janssen, P.W.M., Golding, M.D., Chambers, J.P.: A comparison of the organization of longitudinal and circular contractions during pendular and segmental activity in the duodenum of the rat and guinea pig. Neurogastroenterol. Motil. 24(7), 686-e298 (2012)

    Article  Google Scholar 

  84. Cleary, P.W., Sinnott, M.D., Hari, B., Bakalis, S., Harrison, S.M.: Modelling food digestion. In: Fryer, S.B.K.J. (ed.) Modeling Food Processing Operations, Woodhead Publishing Series in Food Science, Technology and Nutrition, pp. 255–305. Woodhead Publishing, Sawston (2015)

    Google Scholar 

  85. Lentle, R.G., Janssen, P.W.: The Physical Processes of Digestion. Springer Science & Business Media, Berlin (2011)

    Google Scholar 

  86. Brasseur, J.G., Nicosia, M.A., Pal, A., Miller, L.S.: Function of longitudinal vs circular muscle fibers in esophageal peristalsis, deduced with mathematical modeling. World J. Gastroenterol. (WJG) 13(9), 1335 (2007)

    Article  Google Scholar 

  87. Kou, X.M., Xu, M., Gu, Y.Z.: Determination of trace heavy metal elements in cortex Phellodendron chinense by ICP-MS after microwave-assisted digestion. Guang pu xue yu guang pu fen xi= Guang pu 27(6), 1197–1200 (2007)

    Google Scholar 

  88. Lentle, R.G., Janssen, P.W.M., DeLoubens, C., Lim, Y.F., Hulls, C., Chambers, P.: Mucosal microfolds augment mixing at the wall of the distal ileum of the brushtail possum. Neurogastroenterol. Motil. 25(11), 881-e700 (2013)

    Article  Google Scholar 

  89. Lim, Y.F., de Loubens, C., Love, R.J., Lentle, R.G., Janssen, P.W.M.: Flow and mixing by small intestine villi. Food Funct. 6(6), 1787–1795 (2015)

    Article  Google Scholar 

  90. Moxon, T.E., Gouseti, O., Bakalis, S.: In silico modelling of mass transfer and absorption in the human gut. J. Food Eng. 176, 110–120 (2016)

    Article  Google Scholar 

  91. Moxon, T.E., Nimmegeers, P., Telen, D., Fryer, P.J., Van Impe, J., Bakalisa, S., et al.: Effect of chyme viscosity and nutrient feedback mechanism on gastric emptying. Chem. Eng. Sci. 171, 318–330 (2017)

    Article  Google Scholar 

  92. Hari, B., Bakalis, S., Fryer, P.: Computational modelling and simulation of the human duodenum. In: Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan (2012)

    Google Scholar 

  93. Love, R.J., Lentle, R.G., Asvarujanon, P., Hemar, Y., Stafford, K.J.: An expanded finite element model of the intestinal mixing of digesta. Food Dig. 4(1), 26–35 (2013)

    Article  Google Scholar 

  94. Trusov, P.V., Zaitseva, N.V., Kamaltdinov, M.R.: A multiphase flow in the antroduodenal portion of the gastrointestinal tract: a mathematical model. Comput. Math. Methods Med. (2016)

    Google Scholar 

  95. Toniolo, I., Fontanella, C.G., Foletto, M., Carniel, E.L.: Biomechanical investigation of the stomach following different bariatric surgery approaches. Bioengineering (Basel) 7(4), 159 (2020). https://doi.org/10.3390/bioengineering7040159

    Article  Google Scholar 

  96. Gopirajah, R., Anandharamakrishnan, C.: Advancement of imaging and modeling techniques for understanding gastric physical forces on food. Food Eng. Rev. 8(3), 323–335 (2016)

    Article  Google Scholar 

  97. Liu, D., Yan, G.: A multi-layer finite element model based on anisotropic hyperelastic fiber reinforcements within intestinal walls. Nano Biomed. Eng. 9, 291–297 (2017)

    Google Scholar 

  98. Thompson, T.B., Riviere, B.M., Knepley, M.G.: An implicit discontinuous Galerkin method for modeling acute edema and resuscitation in the small intestine. Math. Med. Biol.: J. IMA 36(4), 513–548 (2019). https://doi.org/10.1093/imammb/dqz001

    Article  MathSciNet  Google Scholar 

  99. Civit, J., de la Portilla, F., Sevillano, J. L., & Civit, A. Modelling side to side intestinal anastomosis. Biomed. Eng. Lett. 7(3), 267–271 (2017). https://doi.org/10.1007/s13534-017-0032-5

  100. Welch, C.R.: Design of Medical Devices for Diagnostics in the Gastrointestinal System (2016)

    Google Scholar 

  101. Cheng, W.B., Moser, M.A.J., Kanagaratnam, S., Zhang, W.J.: Analysis of and mathematical model insight into loop formation in colonoscopy. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 226(11), 858–867 (2012). https://doi.org/10.1177/0954411912453263

    Article  Google Scholar 

  102. Husebye, E.: The patterns of small bowel motility: physiology and implications in organic disease and functional disorders. Neurogastroenterol. Motil. 11(3), 141–161 (1999). https://doi.org/10.1046/j.1365-2982.1999.00147.x

    Article  Google Scholar 

  103. Emmanuel, A., Raeburn, A.: Small intestine and colon motility. Medicine 39(4), 218–223 (2011). https://doi.org/10.1016/j.mpmed.2011.01.002

    Article  Google Scholar 

  104. Zha, J., Zou, S., Hao, J., Liu, X., Delaplace, G., Jeantet, R., et al.: The role of circular folds in mixing intensification in the small intestine: a numerical study. Chem. Eng. Sci. 229, 116079 (2021). https://doi.org/10.1016/j.ces.2020.116079

    Article  Google Scholar 

  105. Fullard, L.A., Lammers, W.J., Ferrua, M.J.: Advective mixing due to longitudinal and segmental contractions in the ileum of the rabbit. J. Food Eng. 160, 1–10 (2015). https://doi.org/10.1016/j.jfoodeng.2015.03.017

    Article  Google Scholar 

  106. Pirhan, Y., Gök, K., Gök, A.: Comparison of two different bowel anastomosis types using finite volume method. Comput. Methods Biomech. Biomed. Eng. 23(8), 323–331 (2020). https://doi.org/10.1080/10255842.2020.1722809

    Article  Google Scholar 

  107. Tankaria, H., Jackson, X.J., Borwankar, R., Srichandhru, G.N.K., Le Tran, A., Yanamadala, J., et al.: VHP-female full-body human CAD model for cross-platform FEM simulations—recent development and validations. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2016, October, pp. 2232–2235. IEEE (2016). https://doi.org/10.1109/EMBC.2016.7591173

  108. Sinnott, M.D., Cleary, P.W., Harrison, S.M.: Peristaltic transport of a particulate suspension in the small intestine. Appl. Math. Model. 44, 143–159 (2017)

    Article  MATH  Google Scholar 

  109. Sinnott, M.D., Cleary, P.W., Arkwright, J.W., Dinning, P.G.: Investigating the relationships between peristaltic contraction and fluid transport in the human colon using smoothed particle hydrodynamics. Comput. Biol. Med. 42(4), 492–503 (2012)

    Article  Google Scholar 

  110. Acharya, S., Kou, W., Kahrilas, P.J., Pandolfino, J. E., Patankar, N.A.: Modeling of digestive processes in the stomach as a Fluid-Structure Interaction (FSI) phenomenon. In: APS Division of Fluid Dynamics Meeting Abstracts (2017)

    Google Scholar 

  111. Acharya, S., Kou, W., Pandolfino, J., Kahrilas, P., Patankar, N.: A multiphasic, fluid-structure interaction-based model of peristalsis in the Upper Gastrointestinal tract. Bull. Am. Phys. Soc. 63, (2018)

    Google Scholar 

  112. Wen, W.: Two case studies of SPH modelling in biological system: large intestine and Deep vein valves. University of Birmingham (2018)

    Google Scholar 

  113. Li, X., & Yu, J. (2018). Study on driving mechanical model of microcapsules based on fluid-structure interaction in intestinal tract. Bulgarian Chemical Communications, 246.

    Google Scholar 

  114. Wang, Y., Brasseur, J.G.: Three-dimensional mechanisms of macro-to-micro-scale transport and absorption enhancement by gut villi motions. Phys. Rev. E 95(6), 062412 (2017)

    Google Scholar 

  115. Abrahamsson, B., Pal, A., Sjöberg, M., Carlsson, M., Laurell, E., & Brasseur, J. G. (2005). A novel in vitro and numerical analysis of shear-induced drug release from extended-release tablets in the fed stomach. Pharmaceutical Research, 22(8), 1215-1226.

    Article  Google Scholar 

  116. Morrison, T.M., Pathmanathan, P., Adwan, M., Margerrison, E.: Advancing regulatory science with computational modeling for medical devices at the FDA’s office of science and engineering laboratories. Front. Med. 5, 1–11 (2018). https://doi.org/10.3389/fmed.2018.00241

  117. Guachi, R., Bini, F., Bici, M., Campana, F., Marinozzi, F.: Finite element model set-up of colorectal tissue for analyzing surgical scenarios. In: European Congress on Computational Methods in Applied Sciences and Engineering, pp. 599–609. Springer, Cham (2017)

    Google Scholar 

  118. Xie, W., Terry, B.S.: A finite element method simulation of the interaction of intestinal tissue and tissue attachment mechanism. J. Med. Devices Trans. ASME 10(3), 2016–2018 (2016). https://doi.org/10.1115/1.4033846

    Article  Google Scholar 

  119. Sliker, L.J., Ciuti, G., Rentschler, M.E., Menciassi, A.: Frictional resistance model for tissue-capsule endoscope sliding contact in the gastrointestinal tract. Tribol. Int. 102, 472–484 (2016)

    Article  Google Scholar 

  120. Zhang, C., Liu, H.: Analytical friction model of the capsule robot in the small intestine. Tribol. Lett. 64(3), 39 (2016)

    Article  Google Scholar 

  121. Datta, P., Vyas, V., Dhara, S., Chowdhury, A.R., Barui, A.: Anisotropy properties of tissues: a basis for fabrication of biomimetic anisotropic scaffolds for tissue engineering. J. Bionic Eng. 16(5), 842–868 (2019)

    Article  Google Scholar 

  122. Terry, B.S., Passernig, A.C., Hill, M.L., Schoen, J.A., Rentschler, M.E.: Small intestine mucosal adhesivity to in vivo capsule robot materials. J. Mech. Behav. Biomed. Mater. 15, 24–32 (2012). https://doi.org/10.1016/j.jmbbm.2012.06.018

    Article  Google Scholar 

  123. Terry, B.S., Schoen, J.A., Rentschler, M.E.: Measurements of the contact force from myenteric contractions on a solid bolus. J. Robot. Surg. 7(1), 53–57 (2013). https://doi.org/10.1007/s11701-012-0346-3

    Article  Google Scholar 

  124. Lyle, A.B., Terry, B.S., Schoen, J.A., Rentschler, M.E.: Preliminary friction force measurements on small bowel lumen when eliminating sled edge effects. Tribol. Lett. 51(3), 377–383 (2013). https://doi.org/10.1007/s11249-013-0167-1

    Article  Google Scholar 

  125. Pan, X., Ma, T., Li, P., Jiang, X., Song, S., Max, M.Q.H.: A novel intestinal microcapsule endoscope robot with biopsy function. In: 2018 IEEE International Conference on Cyborg and Bionic Systems, CBS 2018, pp. 308–312 (2019). https://doi.org/10.1109/CBS.2018.8612210

  126. Guo, B., Ley, E., Tian, J., Zhang, J., Liu, Y., Prasad, S.: Experimental and numerical studies of intestinal frictions for propulsive force optimisation of a vibro-impact capsule system. Nonlinear Dyn. 101(1), 65–83 (2020). https://doi.org/10.1007/s11071-020-05767-4

    Article  Google Scholar 

  127. He, X., Bai, J., Zhou, D.: Numerical evaluation of the performance efficiency of small-caliber colonoscopes in reducing patient pain during a colonoscopy: influence of gender. Int. J. Pharma Med. Biol. Sci. 8(2), 28–33 (2019). https://doi.org/10.18178/ijpmbs.8.2.28-33

  128. Delingette, H., Ayache, N.: Soft tissue modeling for surgery simulation. In: Handbook of Numerical Analysis, pp. 453–550 (2004). https://doi.org/10.1016/S1570-8659(03)12005-4

  129. Peirlinck, M., Debusschere, N., Iannaccone, F., Siersema, P.D., Verhegghe, B., Segers, P., De Beule, M.: An in silico biomechanical analysis of the stent–esophagus interaction. Biomech. Model. Mechanobiol. 17(1), 111–131 (2018). https://doi.org/10.1007/s10237-017-0948-9

    Article  Google Scholar 

  130. Puértolas, S., Bajador, E., Puértolas, J. A., López, E., Ibarz, E., Gracia, L., & Herrera, A. Study of the behavior of a bell-shaped colonic self-expandable NiTi stent under peristaltic movements. Biomed. Res. Int. (2013). https://doi.org/10.1155/2013/370582

  131. Rau, A., Frecker, M., Mathew, A., Pauli, E.: Design of a multifunctional forceps for use in endoscopic surgery. J. Med. Devices Trans. ASME 4(2), 1–1 (2010). https://doi.org/10.1115/1.3442789

    Article  Google Scholar 

  132. Guachi, R., Bini, F., Bici, M., Campana, F., Marinozzi, F., Guachi, L.: Finite element analysis in colorectal surgery: non-linear effects induced by material model and geometry. Comput. Methods Biomech. Biomed. Eng.: Imaging Vis. 8(2), 219–230 (2020)

    Google Scholar 

  133. Barauskas, R., Gulbinas, A., Barauskas, G.: Investigation of radiofrequency ablation process in liver tissue by finite element modeling and experiment. Medicina (Kaunas, Lithuania) 43(4), 310–325 (2007). https://doi.org/10.3390/medicina43040039

  134. Horsfield, M., Sarkar, R., Reffsin, S., & Seog, W. J. A Computer Model for Evaluating the Efficiency of Cryosurgery for Prostate Cancer. (2016)

    Google Scholar 

  135. Khademi, R., Mohebbi-Kalhori, D., Razminia, A.: Thermal analysis of a tumorous vascular tissue during pulsed-cryosurgery and nano-hyperthermia therapy: finite element approach. Int. J. Heat Mass Transf. (Elsevier Ltd) 137, 1001–1013 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.123

    Article  Google Scholar 

  136. Kumar, A., Kumar, S., Katiyar, V. K., & Telles, S. Phase change heat transfer during cryosurgery of lung cancer using hyperbolic heat conduction model. Comput. Biol. Med. 84, 20–29 (2017). https://doi.org/10.1016/j.compbiomed.2017.03.009

  137. Viceconti, M., Juárez, M.A., Curreli, C., Pennisi, M., Russo, G., Pappalardo, F.: Credibility of in silico trial technologies—a theoretical framing. IEEE J. Biomed. Health Inform. 24(1), 4–13 (2019)

    Article  Google Scholar 

  138. Chase, J.G., Preiser, J.C., Dickson, J.L., Pironet, A., Chiew, Y.S., Pretty, C.G., et al.: Next-generation, personalised, model-based critical care medicine: a state-of-the art review of in silico virtual patient models, methods, and cohorts, and how to validation them. Biomed. Eng. Online 17(1), 24 (2018)

    Article  Google Scholar 

  139. Bhattacharya, P., Viceconti, M.: Multiscale modeling methods in biomechanics. Wiley Interdiscip. Rev.: Syst. Biol. Med. 9(3), e1375 (2017)

    Google Scholar 

  140. Geier, A., Kebbach, M., Soodmand, E., Woernle, C., Kluess, D., Bader, R.: Neuro-musculoskeletal flexible multibody simulation yields a framework for efficient bone failure risk assessment. Sci. Rep. 9(1), 1–15 (2019)

    Article  Google Scholar 

  141. Zelinkova, Z., Der Woude, C.J.: Gender and inflammatory bowel disease. J. Clin. Cell. Immunol. 5(4), 245–250 (2014)

    Article  Google Scholar 

  142. Nandhra, G.K., Mark, E.B., Di Tanna, G.L., Haase, A.M., Poulsen, J., Christodoulides, S., et al.: Normative values for region‐specific colonic and gastrointestinal transit times in 111 healthy volunteers using the 3D‐transit electromagnet tracking system: influence of age, gender, and body mass index. Neurogastroenterol. Motil. 32(2), e13734 (2020)

    Google Scholar 

  143. Mori, H., Suzuki, H., Matsuzaki, J., Taniguchi, K., Shimizu, T., Yamane, T., et al.: Gender difference of gastric emptying in healthy volunteers and patients with functional dyspepsia. Digestion 95(1), 72–78 (2017)

    Article  Google Scholar 

  144. Marazziti, D., Baroni, S., Picchetti, M., Piccinni, A., Carlini, M., Vatteroni, E., et al.: Pharmacokinetics and pharmacodinamics of psychotropic drugs: effect of sex. CNS Spectr. 18(3), 118–127 (2013). https://doi.org/10.1017/S1092852912001010

    Article  Google Scholar 

  145. Saunders, B.P., Fukumoto, M., Halligan, S., Jobling, C., Moussa, M.E., Bartram, C.I., Williams, C.B.: Why is colonoscopy more difficult in women? Gastrointest. Endosc. 43(2 PART 1), 124–126 (1996). https://doi.org/10.1016/S0016-5107(06)80113-6

  146. Hounnou, G., Destrieux, C., Desmé, J., Bertrand, P., Velut, S.: Anatomical study of the length of the human intestine. Surg. Radiol. Anat. 24(5), 290–294 (2002). https://doi.org/10.1007/s00276-002-0057-y

    Article  Google Scholar 

  147. Mitchell, E.L., Davis, A.T., Brass, K., Dendinger, M., Barner, R., Gharaibeh, R., et al.: Reduced intestinal motility, mucosal barrier function, and inflammation in aged monkeys. J. Nutr. Health Aging 21(4), 354–361 (2017)

    Article  Google Scholar 

  148. Mandic, P., Lestarevic, S., Filipovic, T., Savic, S., Stevic, S., Kostic, M.: Age-related changes in the myenteric plexus of the human jejunum. Folia Morphologica (Poland) 75(2), 188–195 (2016). https://doi.org/10.5603/FM.a2015.0097

    Article  Google Scholar 

  149. Merchant, H.A., Liu, F., Gul, M.O., Basit, A.W.: Age-mediated changes in the gastrointestinal tract. Int. J. Pharm. 512(2), 382–395 (2016)

    Article  Google Scholar 

  150. An, R., Wilms, E., Masclee, A.A., Smidt, H., Zoetendal, E.G., Jonkers, D.: Age-dependent changes in GI physiology and microbiota: time to reconsider? Gut 67(12), 2213–2222 (2018)

    Article  Google Scholar 

  151. Feakins, R.M.: Obesity and metabolic syndrome: pathological effects on the gastrointestinal tract. Histopathology 68(5), 630–640 (2016)

    Article  Google Scholar 

  152. Magallanes, L., Lorier, M., Ibarra, M., Guevara, N., Vázquez, M., Fagiolino, P.: Sex and food influence on intestinal absorption of ketoprofen gastroresistant formulation. Clin. Pharmacol. Drug Dev. 5(3), 196–200 (2016)

    Article  Google Scholar 

  153. Knudsen, K., Haase, A.M., Fedorova, T.D., Bekker, A.C., Ostergaard, K., Krogh, K., Borghammer, P.: Gastrointestinal transit time in Parkinson’s disease using a magnetic tracking system. J. Parkinson’s Dis. 7(3), 471–479 (2017). https://doi.org/10.3233/JPD-171131

    Article  Google Scholar 

  154. Takagi, T., Naito, Y., Inoue, R., Kashiwagi, S., Uchiyama, K., Mizushima, K., et al.: Correction to: differences in gut microbiota associated with age, sex, and stool consistency in healthy Japanese subjects. J. Gastroenterol. 54(1), 96–98 (2019)

    Article  Google Scholar 

  155. Takagi, T., Naito, Y., Inoue, R., Kashiwagi, S., Uchiyama, K., Mizushima, K., et al.: Differences in gut microbiota associated with age, sex, and stool consistency in healthy Japanese subjects. J. Gastroenterol. 54(1), 53–63 (2019). https://doi.org/10.1007/s00535-018-1488-5

    Article  Google Scholar 

  156. Ge, X., Ding, C., Zhao, W., Xu, L., Tian, H., Gong, J., et al.: Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J. Transl. Med. 15(1), 13 (2017)

    Article  Google Scholar 

  157. Kashyap, P.C., Marcobal, A., Ursell, L.K., Larauche, M., Duboc, H., Earle, K.A., et al.: Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology 144(5), 967–977 (2013)

    Article  Google Scholar 

  158. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013). https://doi.org/10.1007/s10278-013-9622-7

    Article  Google Scholar 

  159. Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006). https://doi.org/10.1016/j.neuroimage.2006.01.015

    Article  Google Scholar 

  160. Liao, Z., Gao, R., Xu, C., Li, Z.S.: Indications and detection, completion, and retention rates of small-bowel capsule endoscopy: a systematic review. Gastrointest. Endosc. 71(2), 280–286 (2010)

    Article  Google Scholar 

  161. Rocha, I., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. J. Comput. Phys. X 9, 100083 (2021)

    Google Scholar 

  162. Balzani, D., Brands, D., Klawonn, A., Rheinbach, O., Schröder, J.: On the mechanical modeling of anisotropic biological soft tissue and iterative parallel solution strategies. Arch. Appl. Mech. 80, 479–488 (2010). https://doi.org/10.1007/s00419-009-0379-x

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris K. Iakovidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalozoumis, P.G., Marino, M., Carniel, E.L., Iakovidis, D.K. (2022). Towards the Development of a Digital Twin for Endoscopic Medical Device Testing. In: Hassanien, A.E., Darwish, A., Snasel, V. (eds) Digital Twins for Digital Transformation: Innovation in Industry. Studies in Systems, Decision and Control, vol 423. Springer, Cham. https://doi.org/10.1007/978-3-030-96802-1_7

Download citation

Publish with us

Policies and ethics