Skip to main content

Comparison of Pectinase Activity in the Flavedo and Albedo of Citrus and Thaumatococcus daniellii Fruits

  • Chapter
  • First Online:
Bioenergy and Biochemical Processing Technologies

Part of the book series: Green Energy and Technology ((GREEN))

  • 319 Accesses

Abstract

This study evaluated the pectin content and pectinase activity in both the flavedo and albedo of Citrus sinensis and the comparison of pectinase activities from the albedos of Citrus sinensis (sweet orange), Citrus aurantifolia (lemon), and Thaumatococcus danielli (sweet prayer plant). The pectinase was produced from Aspergillus niger in solid-state fermentation with the substrates. The pectin content and pectinase activity were assessed using standard methods. Both the pectin content and pectinase activity of Citrus sinensis albedo were notably higher (p < 0.05) than those of the flavedo. In comparison with the other plants (Citrus aurantifolia and Thaumatococcus danielli), Citrus sinensis albedo exhibited the highest pectinase activity, followed by Citrus aurantifolia and Thaumatococcus daniellii. The implication of the findings showed the albedos of fruit wastes as superior substrates for pectinase production than flavedos. Thus, albedos from Citrus aurantifolia and Thaumatococcus daniellii could be exploited as supplement substrates for the local production of pectinases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboul-Fotouh GE, El-Garhy GM, Azzaz HH et al (2016) Fungal cellulase production optimization and its utilization in goatʼs rations degradation. Asian J Anim Vet Adv 11: 824-831.

    Article  Google Scholar 

  • Aina V, Barau MM, Mamman O et al (2012) Extraction and characterization of pectin from peels of lemon (citrus limon), grape fruit (Citrus paradisi), and sweet orange (Citrus sinensis) British J Pharmacol Toxicol 3(6):259–262.

    Google Scholar 

  • Ajayi AA, Salubi AE, Lawal B et al (2018) Optimization of pectinase production by Aspergillus niger using central composite design. African J Clin Exp Microbiol 19(4): 314–319.

    Article  Google Scholar 

  • Akhter M, Morshed MA, Uddin A et al (2011) Production of pectinase by Aspergillus niger cultured in solid-state media. Int J Biosci (IJB) 1(1): 33-42.

    Google Scholar 

  • Almulaiky YQ, Albishri AA, Khalil NM et al (2020) Polygalactutonase by Aspergillus niger using seaweed waste under submerged fermentation: production, purification, and characterization. Biomed J Sci Tech Res 25(4): 19416-19422.

    Google Scholar 

  • Ametefe GD, Dzogbefia VP, Apprey C et al (2017) Optimal conditions for pectinase production by Saccharomyces cerevisiae (ATCC 52712) in solid-state fermentation and its efficacy in orange juice extraction. IOSR-JBB 3(6): 78-86.

    Google Scholar 

  • Azzaz HH, Murad HA, Kholif AM et al (2013) Pectinase production optimization and its application in banana fiber degradation. Egypt J Nutr Feeds 16(2): 117-125.

    Google Scholar 

  • Ben-Shalom M, Levi A, Pinto R (1986) Pectolytic enzyme studies for peeling of grapefruit segment membrane. J Food Sci 51: 421-423.

    Article  Google Scholar 

  • Bruemmer JH, Griffin AW, Onayami O (1978) Sectionizing grapefruit by enzyme digestion. Proceeding of the Florida State Horticultural Society 91: 112-114

    Google Scholar 

  • Canteri-Schemin MH, Fertonani HCR, Waszczynskyj N, Wosiacki G (2005) Extraction of pectin from apple pomace. Braz Arch Biol Technol 48:259–266.

    Article  Google Scholar 

  • Chinedu SN, Eni AO, Adeniyi AO et al (2010) Assessment of growth and cellulase production of wild-type microfungi isolated from Ota, Nigeria. Asian J Plant Sci 9: 118-125.

    Article  Google Scholar 

  • Chinedu SN, Dayo-Odukoya OP, Iheagwam FN (2017) Partial purification and kinetic properties of polygalacturonase from Solanum macrocarpum L. fruit. Biotechnol 16(1): 27-33.

    Article  Google Scholar 

  • Cherekar MN, Pathak AP (2020) Production and characterization of a holoalkaline pectinase from Halomonas pantellerinsis strain SSL8 isolated from Sambhar Lake, Rajasthan. Curr Trends Biotechnol Pharm 14(3): 319-326.

    Article  Google Scholar 

  • Dominiak M, Søndergaard KM, Wichmann J et al (2014) Application of enzymes for efficient extraction, modification, and development of functional properties of lime pectin. Food Hydrocoll 40: 273-282.

    Article  Google Scholar 

  • El Enshasy HA, Elsayed EA, Suhaimi N et al (2018) Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system. BMC Biotechnol 18: 17.

    Article  Google Scholar 

  • Georgiev Y, Ognyanov M, Yanakieva I et al (2012) Isolation, characterization and modification of citrus pectins. J Biosci Biotechnol 1(3): 223-233.

    Google Scholar 

  • Iwashita K (2002) Recent studies of protein secretion by filamentous fungi. J Biosci Bioeng 94(6): 530–535.

    Article  Google Scholar 

  • Kanmani P, Dhivya E, Aravind J et al (2014) Extraction and analysis of pectin from citrus peels: augmenting the yield from Citrus limon using statistical experimental design. IJEE 5(3): 303-312.

    Article  Google Scholar 

  • Khattab SMR, Abdel-Hadi AM, Abo-Dahab NF et al (2016) Isolation, characterization, and identification of yeasts associated with foods from Assiut city, Egypt. Br Microbiol Res J 13(1): 1-10.

    Article  Google Scholar 

  • Khattab MSA, Azzaz HH, Abd-El-Tawab AM et al (2019) Production optimization of fungal cellulase and its impact on ruminal degradability and fermentation of diet. Int J Dairy Sci 14: 61-68.

    Article  Google Scholar 

  • Khule RN, Nitin BM, Dipak SS et al (2012) Extraction of pectin from citrus fruit peel and use as natural binder in paracetamol tablet. Der Pharm Lett 4(2): 558-564.

    Google Scholar 

  • Liu Y, Shi J, Langrish TAG (2006) Water-based extraction of pectin from flavedo and albedo of orange peels. Chem Eng J 120(3): 203-209.

    Article  Google Scholar 

  • Mahmoodi M, Najafpour GD, Mohammadi M (2017) Production of pectinases for quality apple juice through fermentation of orange pomace. J Food Sci Technol 54(12): 4123–4128.

    Article  Google Scholar 

  • Manan MA, Webb C (2017a) Modern microbial solid-state fermentation technology for future biorefineries for the production of added-value products. Biofuel Res J 4(4): 730–740.

    Article  Google Scholar 

  • Manan MA, Webb C (2017b) Design aspects of solid-state fermentation as applied to microbial bioprocessing. JABB 4(1): 91.

    Google Scholar 

  • Martos MA, Zubreski ER, Garro OA et al (2013) Production of pectinolytic enzymes by the yeast Wickerhanomyces anomalus isolated from citrus fruits peels. Biotechnol Res Int Article ID 435154. https://doi.org/10.1155/2013/435154

  • Miller GL (1959) Modified DNS method for reducing sugars. Anal Chem 31(3): 426-428.

    Article  Google Scholar 

  • Multari S, Licciardello C, Caruso M et al (2021) Flavedo and albedo of five citrus fruits from Southern Italy: physicochemical characteristics and enzyme-assisted extraction of phenolic compounds. Food Measure 15: 1754–1762.

    Article  Google Scholar 

  • Murad HA, Azzaz HH (2011) Microbial pectinases and ruminant nutrition. Res J Microbiol 6(3): 246-269.

    Article  Google Scholar 

  • Okafor UA, Okochi VI, Chinedu SN et al (2010) Pectinolytic activity of wild-type filamentous fungi fermented on agro-wastes. Afr J Microbiol Res 4(24): 2729-2734.

    Google Scholar 

  • Okonji RE, Itakorode BO, Ovumedia JO et al (2019) Purification and biochemical characterization of pectinase produced by Aspergillus fumigatus isolated from soil of decomposing plant materials. J Appl Biol Biotechnol 7(3): 1-8.

    Article  Google Scholar 

  • Oumer OJ, Abate D (2018) Comparative studies of pectinase production by Bacillus subtilis strain Btk 27 in submerged and solid-state fermentation. Biomed Res Int Article ID 1514795, doi:https://doi.org/10.1155/2018/1514795.

  • Pretel MT, Lozano P, Riquelme F et al (1997) Pectic enzymes in fresh fruit processing: optimization of enzymic peeling of oranges. Process Biochem 32(1): 43-49

    Article  Google Scholar 

  • Pretel MT, Amorós A, Botella MA et al (2005) Study of albedo and carpelar membrane degradation for further application in enzymatic peeling of citrus fruits. J Sci Food Agric 84(1): 86-90.

    Article  Google Scholar 

  • Pretel MT, Sanchez-Bel P, Egea I et al (2008) Enzymatic peeling of citrus fruits: factors affecting degradation of the albedo. TFSB 2(1): 52-59.

    Google Scholar 

  • Raji Z, Khodaiyan F, Rezaei K et al (2017) Extraction optimization and physicochemical properties of pectin from melon peel. Int J Biol Macromol 98:709–716.

    Article  Google Scholar 

  • Rangarajan V, Rajasekeran M, Ravichandran R et al (2010) Pectinase production from orange peel extract and dried orange peel solid as substrates using Aspergillus niger. Int J Biotechnol Biochem 6(3): 445-453.

    Google Scholar 

  • Rouhana A, Mannheim CH (1994) Optimization of enzymatic peeling of grapefruit. LWT – Food Sci Technol 27(2): 103-107.

    Article  Google Scholar 

  • Ruiz HA, Rodriguez-Jasso RM, Rodriguez R et al (2012) Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochem Eng J 65: 90-95.

    Article  Google Scholar 

  • Sharma A, Shrivastava A, Sharma S et al (2013) Biotechnology for environmental management and resource recovery. Berlin: Springer pp. 107–124.

    Book  Google Scholar 

  • Soffer T, Mannheim CH (1994) Optimization of enzymatic peeling of oranges and pomelo. LWT – Food Sci Technol 27(3): 245-248.

    Article  Google Scholar 

  • Soccol CR, da-Costa ESF, Letti LAJ et al (2017) Recent developments and innovations in solid-state fermentation. Biotechnology Res Innov 1(1): 52-71.

    Article  Google Scholar 

  • Subramaniyam R, Vimala R (2012) Solid-state and submerged fermentation for the production of bioactive substances: A comparative study. Review article. Int J Sci Nat (IJSN) 3(3): 480-486.

    Google Scholar 

  • Sudeep K C, Upadhyaya J, Joshi DR et al (2020) Production, characterization and industrial application of pectinase enzyme isolated from fungal strains. Ferment 6(2): 59.

    Article  Google Scholar 

  • Udenwobele DI, Nsude CA, Ezugwu AL et al (2014) Extraction, partial purification, and characterization of pectinases isolated from Aspergillus species cultured on mango (Mangifera indica) peels. Afr J Biotechnol 13(24): 2445–2454.

    Article  Google Scholar 

  • Wartu JR, Whong CMZ, Abdullahi IO et al (2017) Phylogenetics of aflatoxigenic moulds and prevalence of aflatoxin from in-process wheat and flour from selected major stores within northern Nigeria. Sci World J 12(4): 83-87.

    Google Scholar 

  • Widowati E, Utami R, Mahadjoeno E et al (2017) Effect of temperature and pH on polygalacturonase production by pectinolytic bacteria Bacillus licheniformis strain GD2a in submerged medium from Raja Nangka (Musa paradisiaca var. formatypica) banana peel waste. IOP Conf Ser: Mater Sci Eng 193: 012018.

    Google Scholar 

  • Zanella K, Taranto OP (2015) Influence of the drying operating conditions on the chemical characteristics of the citric acid extracted pectins from ‘pera’ sweet orange (Citrus sinensis L. Osbeck) albedo and flavedo. J Food Eng 166: 111–118.

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank the Covenant University Centre for Research, Innovation, and Discovery (CUCRID), Ota, Nigeria, for being responsible for financing this manuscript. The authors also thank the Department of Biotechnology, Federal Institute of Industrial Research, Oshodi, Nigeria, for allowing the use of their laboratory.

Funding

There was no aid from any funding agency for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Ametefe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ametefe, G.D., Iheagwam, F.N., Fashola, F., Ibidapo, O.I., Iweala, E.E.J., Chinedu, S.N. (2022). Comparison of Pectinase Activity in the Flavedo and Albedo of Citrus and Thaumatococcus daniellii Fruits. In: Ayeni, A.O., Sanni, S.E., Oranusi, S.U. (eds) Bioenergy and Biochemical Processing Technologies. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-96721-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96721-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96720-8

  • Online ISBN: 978-3-030-96721-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics