Skip to main content

Piezoelectric Energy Harvesting from a Non-ideal Portal Frame System Including Shape Memory Alloy Effect

  • Chapter
  • First Online:
Nonlinear Vibrations Excited by Limited Power Sources

Abstract

In this work, the investigation of energy harvesting for a U-frame-type (portal frame) structure is presented. The structure is considered as a composite made out of a Shape Memory Alloy (SMA), accounting for a non-ideal DC motor of limited power supply attached to its rigid body. The energy harvesting is carried out using a piezoelectric material (PZT), accounting for a nonlinear electromechanical coupling model. For the behavior of the SMA, a polynomial constitutive model is adopted, which relates the voltage variation to the temperature. Numerical results demonstrate that both PZT and SMA material has a significant influence on energy harvesting. In addition, it is highlighted that the use of SMA makes controlling the vibrations of the structure possible, increasing the harvested energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iliuk, I., Brasil, M.R.L.F., Balthazar, J.M., Tusset, A.M., Piqueira, J.R.C.: Potential application in energy harvesting of intermodal energy exchange in a frame: FEM analysis. Int. J. Struct. Stab. Dyn., 1440027 (2014)

    Google Scholar 

  2. Lenz, W.B., Ribeiro, M.A., Rocha, R.T., Balthazar, J.M., Tusset, A.M.: Numerical simulations and control of offshore energy harvesting using piezoelectric materials in a portal frame structure. Shock Vib. 2021, 1–11 (2021)

    Google Scholar 

  3. Ribeiro, M.A., Tusset, A.M.L, Wagner, B., Balthazar, J.M.: Dynamic analysis of the nonlinear behavior of an ocean buoy for energy harvesting. Eur. Phys. J. Spec. Top. 1, 1–10 (2021)

    Google Scholar 

  4. Balthazar, J.M., Tusset, A.M., Brasil, R.M.L.R.F., Felix, J.L.P., Rocha, R.T., Janzen, F.C., Nabarrete, A., Oliveira, C.: An overview on the appearance of the Sommerfeld effect and saturation phenomenon in non-ideal vibrating systems (NIS) in macro and MEMS scales. Nonlinear Dyn. 93, 19–40 (2018)

    Article  Google Scholar 

  5. Iliuk, I., Balthazar, J.M., Tusset, A.M., Felix, J.L.P., Pontes, B.R., Jr.: On non-ideal and chaotic energy harvester behavior. Differ. Equ. Dyn. Syst. 21, 93–104 (2013)

    Article  MathSciNet  Google Scholar 

  6. Iliuk, I., Balthazar, J.M., Tusset, A.M., Piqueira, J.R.C., Pontes, B.R., Jr., Felix, J.L.P., Bueno, A.M.: A non-ideal portal frame energy harvester controlled using a pendulum. Eur. Phys. J. Spec. Top. 222, 1575–1586 (2013)

    Article  Google Scholar 

  7. Iliuk, I., Balthazar, J.M., Tusset, A.M., Piqueira, J.R.C., Pontes, B.R., Jr., Felix, J.L.P., Bueno, A.M.: Application of passive control to energy harvester efficiency using a non-ideal portal frame structural support system. J. Intell. Mater. Syst. Struct. 25, 417–429 (2014)

    Article  Google Scholar 

  8. Rocha, R.T., Balthazar, J.M., Tusset, A.M., Piccirillo, V., Felix, J.L.P.: Comments on energy harvesting on a 2:1 internal resonance portal frame support structure, using a nonlinear-energy sink as a passive controller. Int. Rev. Mech. Eng. 10, 147–156 (2016)

    Google Scholar 

  9. Rocha, R.T., Balthazar, J.M., Tusset, A.M., Piccirillo, V.: Using passive control by a pendulum in a portal frame platform with piezoelectric energy harvesting. J. Vib. Control 1, 107754631770938-1 (2017)

    Google Scholar 

  10. Rocha, R.T., Tusset, A.M., Ribeiro, M.A., Lenz, W.B., Balthazar, J.M.: Remarks on energy harvesting of nonlinear charge and voltage piezoelectric models in a two-degrees-of-freedom nonlinear portal frame model. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1, 095440622093999–095440622093999 (2020)

    Google Scholar 

  11. Rocha, R.T., Tusset, A.M., Ribeiro, M.A., Haura, R., Jr., Jarzebowska, E., Balthazar, J.M.: On the positioning of a piezoelectric material in the energy harvesting from a non-ideally excited portal frame. J. Comput. Nonlinear Dyn. 15, 121002–121012 (2020)

    Article  Google Scholar 

  12. Rocha, R.T., Balthazar, J.M., Tusset, A.M., Piccirillo, V., Felix, J.L.P.: Nonlinear piezoelectric vibration energy harvesting from a portal frame with two-to-one internal resonance. Meccanica 52, 2583–2602 (2017)

    Article  MathSciNet  Google Scholar 

  13. Varanis, M.V., Tusset, A.M., Balthazar, J.M., Litak, G., Oliveira, C., Rocha, R.T., Nabarrete, A., Piccirillo, V.: Dynamics and control of periodic and non-periodic behavior of Duffing vibrating system with fractional damping and excited by a non-ideal motor. J. Frankl. Inst. Eng. Appl. Math. 357, 2067–2082 (2020)

    Article  Google Scholar 

  14. Varanis, M., Norenberg, J.P.C.V., Rocha, R.T., Oliveira, C., Balthazar, J.M., Tusset, A.M.: A Comparison of time-frequency methods for nonlinear dynamics and chaos analysis in an energy harvesting model. Braz. J. Phys. 50, 235–244 (2020)

    Article  Google Scholar 

  15. Felix, J.L.P., Balthazar, J.M., Rocha, R.T., Tusset, A.M., Janzen, F.C.: On vibration mitigation and energy harvesting of a non-ideal system with autoparametric vibration absorber system. Meccanica 53, 3177–3188 (2018)

    Article  MathSciNet  Google Scholar 

  16. Triplett, A., Quinn, D.D.: The effect of nonlinear piezoelectric coupling on vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 20, 1959–1967 (2009)

    Article  Google Scholar 

  17. Savi, M.A., Pacheco, P.M.C.L., Braga, A.M.B.: Chaos in a shape memory two-bars truss. Int. J. Nonlinear Mech. 37, 1387–1395 (2002)

    Article  Google Scholar 

  18. Piccirillo, V., Balthazar, J.M., Pontes Jr. B.R., Felix, J.L.P.: Chaos control of a nonlinear oscillator with shape memory alloy using an optimal linear control. Part II: non-ideal energy source. Nonlinear Dyn. 56(3), 243–253 (2009)

    Google Scholar 

  19. Janzen, F.C., Tusset, A.M., Piccirillo, V., Balthazar, J.M., Brasil, M.R.L.F.: Motion and vibration control of a slewing flexible structure by SMA actuators and parameter sensitivity analysis. Eur. Phys. J. Spec. Top. 224, 3041–3054 (2015)

    Article  Google Scholar 

  20. Lima, J.J., Tusset, A.M., Janzen, F.C., Piccirillo, V., Nascimento, C.B., Balthazar, J.M., Brasil, M.R.L.F.: SDRE applied to position and vibration control of a robot manipulator with a flexible link. J. Theor. Appl. Mech. 54, 1067–1078 (2016)

    Article  Google Scholar 

  21. Piccirillo, V., Balthazar, J.M., Tusset, A.M., Bernardini, D., Rega, G.: Nonlinear dynamics of a thermomechanical pseudoelastic oscillator excited by non-ideal energy sources. Int. J. Nonlinear Mech. 77, 12–27 (2015)

    Article  Google Scholar 

  22. Piccirillo, V., Balthazar, J.M., Tusset, A.M., Bernardini, D., Rega, G.: Application of a shape memory absorber in vibration suppression. Appl. Mech. Mater. 849, 27–35 (2016)

    Article  Google Scholar 

  23. Piccirillo, V., Balthazar, J.M., Tusset, A.M., Bernardini, D., Rega, G.: Characterizing the nonlinear behavior of a pseudoelastic oscillator via the wavelet transform. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 230, 120–132 (2016)

    Article  Google Scholar 

  24. Bernardini, D., Pence, T.J.: Uniaxial modeling of multivariant shape-memory materials with in-ternal sublooping using dissipation functions. Meccanica 40, 339–364 (2005)

    Article  MathSciNet  Google Scholar 

  25. Bernardini, D., Rega, G.: Chaos robustness and strength in thermomechanical shape memory oscillators. Part I: a predictive theoretical framework for the pseudoelastic behavior. Int. J. Bifurc. Chaos 21, 2769–2782 (2011)

    Google Scholar 

  26. Bernardini, D., Rega, G.: Chaos robustness and strength in thermomechanical shape memory oscillators. Part II: numerical and theoretical evaluation. Int. J. Bifurc. Chaos 21, 2783–2800 (2011)

    Google Scholar 

  27. Bernardini, D., Rega, G.: Evaluation of different SMA models performances in the nonlinear dynamics of pseudoelastic oscillators via a comprehensive modeling framework. Int. J. Mech. Sci. 130, 458–475 (2017)

    Article  Google Scholar 

  28. Litak, G., Bernardini, D., Syta, A., Rega, G., Rysak, A.: Analysis of chaotic non-isothermal solutions of thermomechanical shape memory oscillators. Eur. Phys. J. Spec. Top. 222, 1637–1647 (2013)

    Article  Google Scholar 

  29. Tusset, A.M., Balthazar, J.M., Ribeiro, M.A., Lenz, W.B., Rocha, R.T.: Chaos control of an atomic force microscopy model in fractional-order. Eur. Phys. J. Spec. Top. 1, 1–12 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendix

The 0-1 Test Method

The 0-1 test consists of estimating a single parameter \(\kappa\) by [28]:

$$\kappa = \frac{{{\text{cov}} \left( {Y,M\left( {\overline{c}} \right)} \right)}}{{\sqrt {{\text{var}} (Y){\text{var}} (M\left( {\overline{c}} \right))} }}$$
(10)

where: \(\overline{c} \in \left( {0,\pi } \right)\), \(M\left( {\overline{c}} \right) = \left[ {M\left( {1,\overline{c}} \right), M\left( {2,\overline{c}} \right), \ldots ,M\left( {n_{max} \overline{c}} \right)} \right]\) and \(Y = \left[ {1,2, \ldots ,n_{max} } \right]\).

If \(\kappa\) is close to 0 the system is periodic. On the other hand, if \(\kappa\) is close to 1 the system is chaotic. The test utilizes a system variable \(x(j)\), where two new coordinates (p, q) are defined as follows [29]:

$$p\left( {n,\overline{c}} \right) = \sum\limits_{j = 0}^{n} {x(j)\cos \left( {j\overline{c}} \right)}$$
(11)
$$q\left( {n,\overline{c}} \right) = \sum\limits_{j = 0}^{n} {x(j)\sin \left( {j\overline{c}} \right)}$$
(12)

The mean square displacement of the new variables \(p\left( {n,\overline{c}} \right)\) and \(q\left( {n,\overline{c}} \right)\) is given by [29]:

$$M(n,c) = \mathop {\lim }\limits_{n \to \infty } \frac{1}{N}\sum\limits_{j = 1}^{N} {\left[ {\left( {p(j + n,\overline{c}) - p(j,\overline{c})} \right)^{2} \ldots + \left( {q(j + n,\overline{c}) - q(j,\overline{c})} \right)^{2} } \right]}$$
(13)

where \(n = 1,2, \ldots ,N\).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tusset, A.M. et al. (2022). Piezoelectric Energy Harvesting from a Non-ideal Portal Frame System Including Shape Memory Alloy Effect. In: Balthazar, J.M. (eds) Nonlinear Vibrations Excited by Limited Power Sources. Mechanisms and Machine Science, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-030-96603-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96603-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96602-7

  • Online ISBN: 978-3-030-96603-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics