Skip to main content

Nuclear Oncology

  • Chapter
  • First Online:
The Pathophysiologic Basis of Nuclear Medicine

Abstract

Nuclear medicine has a major role in the management of malignant tumors. With the developments toward molecular imaging and the technological advancement of scanners providing a fusion of both physiologic and anatomic imaging, it has even become a more integral part of management protocols. This role includes detection of malignant tumors, staging and restaging of the disease, early detection of recurrence, evaluation of the response to therapy, and prediction of the prognosis. Radionuclide diagnosis and therapy for tumors depend on the characteristics of tumors including increased vascularization, increased blood flow, newly proliferated capillaries with more permeable walls, increased metabolic activity of cells, increased energy demand, high density of some common antigens or several specific antigens, and several specific receptors as discussed in the previous chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Survey of PET/CT Operations and Oncology Imaging (2010) Academy of molecular imaging. http://www.ami-maging.org/index.php?option=com_content&task=view&id=181. Accessed 19 Sept 2012

  2. Schuetze SM, Rubin BP, Vernon C, Hawkins DS, Bruckner JD, Conrad EU, Eary JF (2005) Use of positron emission tomography in localized extremity soft tissue sarcoma treated with neoadjuvant chemotherapy. Cancer 103:339–334

    Article  PubMed  Google Scholar 

  3. Yeung H, Sanches A, Squire O, Macapinlac H, Larson S, Erdi Y (2002) Standardized uptake value in pediatric patients: an investigation to determine the optimum measurement parameter. J Nucl Med 43:61–66

    Article  CAS  Google Scholar 

  4. Hawkins DS, Rajendran JG, Conrad EU III, Bruckner JD, Eary JF (2002) Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer 94:3277–3284

    Article  CAS  PubMed  Google Scholar 

  5. Kumar V, Abbas A, Aster JC (2014) Robbins and Cotzan, pathologic basis of disease, 9th edn. Saunders, Philadelphia

    Google Scholar 

  6. Rosai J, Sobin LH (1998) Atlas of tumor pathology, vol 3. Armed Forces Institute of Pathology American Registry of Pathology, Washington, DC

    Google Scholar 

  7. World Health Organization (1967) International classification of tumors, 2nd edn. WHO, Geneva

    Google Scholar 

  8. Lei X, Bandyopadhyay A, Le T, Sun L (2002) Autocrine TGFbeta supports growth and survival of human breast cancer MDA-MB-231 cells. Oncogene 21:7514–7523

    Article  CAS  PubMed  Google Scholar 

  9. Markowitz SD, Roberts AB (1996) Tumor suppressor activity of the TGF-beta pathway in human cancers. Cytokine Growth Factor Rev 7:93–102

    Article  CAS  PubMed  Google Scholar 

  10. Ebos JM, Lee CR, Cruz-Munoz W et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–18

    Article  CAS  PubMed  Google Scholar 

  12. Herbst RS, Onn A, Sandler A (2005) Angiogenesis and lung cancer: prognostic and therapeutic implications. J Clin Oncol 23:3243–3256

    Article  CAS  PubMed  Google Scholar 

  13. Loges S, Mazzone M, Hohensinner P, Carmeliet P (2009) Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 15:167–170

    Article  CAS  PubMed  Google Scholar 

  14. Rak J, Mitsuhashi Y, Bayko L et al (1995) Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 55:4575–4580

    CAS  PubMed  Google Scholar 

  15. Foulds L (1969) Neoplastic development, vol 2. Academic, London

    Google Scholar 

  16. Abercrombie M, Heaysman JE (1954) Observations on the social behaviour of cells in tissue culture. II. Monolayering of fibroblasts. Exp Cell Res 6:293–306

    Article  CAS  PubMed  Google Scholar 

  17. Todaro GJ, Green H (1963) Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol 17:299–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jakowlew SB (2006) Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev 25:435–457

    Article  CAS  PubMed  Google Scholar 

  19. Kirsch DG, Kastan MB (1998) Tumor-suppressor p53: implications for tumor development and prognosis. J Clin Oncol 16:3158–3168

    Article  CAS  PubMed  Google Scholar 

  20. Ben-Porath I, Weinberg RA (2004) When cells get stressed: an integrative view of cellular senescence. J Clin Invest 113:8–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lleonart ME, Artero-Castro A, Kondoh H (2009) Senescence induction; a possible cancer therapy. Mol Cancer 8:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Israel O, Mekel M, Bar-Shalom R et al (2002) Bone lymphoma: 67Ga scintigraphy and CT for prediction of outcome after treatment. J Nucl Med 43:1295–1303

    PubMed  Google Scholar 

  23. Larson SM, Rasey JS, Allen DR, Nelson NJ (1979) A transferrin-mediated uptake of gallium-67 by EMT-6 sarcoma. I. Studies in tissue culture. J Nucl Med 20:837–842

    CAS  PubMed  Google Scholar 

  24. Berry JP, Escaig F, Poupon MF, Galle P (1983) Localization of gallium in tumor cells. Electron microscopy, electron probe microanalysis and analytical ion microscopy. Int J Nucl Med Biol 10:199–204

    Article  CAS  PubMed  Google Scholar 

  25. Ziessman H, O’Malley J, Thrall J (2006) Nuclear medicine: the requisites in radiology. Mosby, Philadelphia

    Book  Google Scholar 

  26. Gehring PJ, Hammond PB (1967) The interrelationship between thallium-201 chloride and potassium in animals. J Pharmacol Exp Ther 155:187–201

    CAS  PubMed  Google Scholar 

  27. Britten JS, Blank M (1968) Thallium-201 chloride-201 chloride activation of the (Na + K +) activated ATPase of rabbit kidney. Biochim Biophys Acta 159:160–166

    Article  CAS  PubMed  Google Scholar 

  28. Sessler MJ, Geck P, Maul FD, Hor G, Munz DL (1986) New aspects of cellular thallium-201 chloride-201 chloride uptake: Tl+-Na+-2Cl-cotransport is the central mechanism of ion uptake. Nucl Med 23:24–27

    Google Scholar 

  29. Abdel-Dayem HM et al (1994) Role of Tl-201 chloride and Tc-99m-sestamibi in tumor imaging. Nucl Med Annu 1994:181–234

    Google Scholar 

  30. Piwnica-Worms D, Holman BL (1990) Noncardiac applications of hexakis-(alkylisonitrile) technetium-99m complexes. J Nucl Med 31:1166–1167

    CAS  PubMed  Google Scholar 

  31. Piwnica-Worms D, Chiu ML, Budding M, Kronauge JF, Kramer RA, Croop JM (1993) Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res 53:977–984

    CAS  PubMed  Google Scholar 

  32. Ballinger JR, Sheldon KM, Boxen I, Erlichman C, Ling V (1995) Differences between accumulation of 99mTc-MIBI and 201Tl-thallous chloride in tumour cells: role of P-glycoprotein. Q J Nucl Med 39:122–128

    CAS  PubMed  Google Scholar 

  33. Henze M, Mohammed A, Schlemmer HP et al (2004) PET and SPECT for detection of tumor progression in irradiated low-grade astrocytoma: a receiver-operating-characteristics analysis. J Nucl Med 45:579–586

    PubMed  Google Scholar 

  34. Taillefer R (1999) The role of 99mTc-sestamibi and other conventional radiopharmaceuticals in breast cancer diagnosis. Semin Nucl Med 29:16–40

    Article  CAS  PubMed  Google Scholar 

  35. Kwekkeboom D, Krenning EP, de Jong M (2000) Peptide receptor imaging and therapy. J Nucl Med 41(10):1704–1713

    CAS  PubMed  Google Scholar 

  36. Freitas JE (1995) Adrenal cortical and medullary imaging. Semin Nucl Med 25:235–250

    Article  CAS  PubMed  Google Scholar 

  37. Wiseman GA, Pacak K, O’Dorisio MS et al (2009) Usefulness of 123I-MIBG scintigraphy in the evaluation of patients with known or suspected primary or metastatic pheochromocytoma or paraganglioma: results from a prospective multicenter trial. J Nucl Med 50:1448–1454

    Article  CAS  PubMed  Google Scholar 

  38. Shulkin BL, Shapiro B (1998) Current concepts on the diagnostic use of MIBG in children. J Nucl Med 39:679–688

    CAS  PubMed  Google Scholar 

  39. Czernin J, Phelps ME (2002) Positron emission tomography scanning: current and future applications. Annu Rev Med 53:89–112

    Article  CAS  PubMed  Google Scholar 

  40. Delbeke D (1999) Oncological applications of FDG PET imaging: brain tumors, colorectal cancer, lymphoma and melanoma. J Nucl Med 40:591–603

    CAS  PubMed  Google Scholar 

  41. Ak I, Stokkel MP, Pauwels EK (2000) Positron emission tomography with 2-[18F]fluoro-2-deoxy-D-glucose in oncology. Part II. The clinical value in detecting and staging primary tumours. J Cancer Res Clin Oncol 126:560–574

    Article  CAS  PubMed  Google Scholar 

  42. Lowe VJ, Naunheim KS (1998) Current role of positron emission tomography in thoracic oncology. Thorax 53:703–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shankar LK, Hoffman JM, Bacharach S et al (2006) Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in national cancer institute trials. J Nucl Med 47:1059–1066

    CAS  PubMed  Google Scholar 

  44. Coleman RE (1999) PET in lung cancer. J Nucl Med 40:814–820

    CAS  PubMed  Google Scholar 

  45. Jadvar H, Alavi A, Mavi A et al (2005) PET in pediatric diseases. Radiol Clin N Am 43:135–152

    Article  PubMed  Google Scholar 

  46. Osman MM, Chaar BT, Muzaffar R et al (2010) 18F-FDG PET/CT of patients with cancer: comparison of whole-body and limited whole-body technique. AJR Am J Roentgenol 195:1397–1403

    Article  PubMed  Google Scholar 

  47. Sodium Fluoride F18 injection investigator’s brochure. http://imaging.cancer.gov/images/documents/Generic-NaF_IB_Edition1_10-2009.pdf

  48. Even-Sapir E, Metser U, Flusser G et al (2004) Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18Ffluoride PET and 18F-fluoride PET/CT. J Nucl Med 45:272–278

    PubMed  Google Scholar 

  49. Lin FI, Rao JE, Mittra ES et al (2012) Prospective comparison of combined 18F-FDG and 18F-NaF PET/CT vs. 18F-FDG PET/CT imaging for detection of malignancy. Eur J Nucl Med Mol Imaging 39:262–270

    Article  CAS  PubMed  Google Scholar 

  50. Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL (2002) Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 43:1210–1217

    CAS  PubMed  Google Scholar 

  51. Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I et al (2003) Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 44:1426–1431

    CAS  PubMed  Google Scholar 

  52. Van Waarde A, Cobben DC, Suurmeijer AJ, Maas B, Vaalburg W et al (2004) Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med 45:695–700

    PubMed  Google Scholar 

  53. Cobben DC, Jager PL, Elsinga PH, Maas B, Suurmeijer AJ et al (2003) 3′-(18)F-fluoro-3′-deoxy-L-thymidine: a new tracer for staging metastatic melanoma? J Nucl Med 44:1927–1932

    CAS  PubMed  Google Scholar 

  54. Everitt S, Hicks RJ, Ball D, Kron T, Schneider-Kolsky M et al (2009) Imaging cellular proliferation during chemo-radiotherapy: a pilot study of serial 18F-FLT positron emission tomography/computed tomography imaging for non–small-cell lung cancer. Int J Radiat Oncol Biol Phys 75:1098–1104

    Article  PubMed  Google Scholar 

  55. Minamimoto R, Toyohara J, Seike A, Ito H, Endo H et al (2012) 4′-[Methyl-11C]-thiothymidine PET/CT for proliferation imaging in non-small cell lung cancer. J Nucl Med 53:199–206

    Article  CAS  PubMed  Google Scholar 

  56. Pieterman RM, Que TH, Elsinga PH, Pruim J, van Putten JW et al (2002) Comparison of (11)C-choline and (18)F-FDG PET in primary diagnosis and staging of patients with thoracic cancer. J Nucl Med 43:167–172

    PubMed  Google Scholar 

  57. Hara T, Inagaki K, Kosaka N, Morita T (2000) Sensitive detection of mediastinal lymph node metastasis of lung cancer with 11C-choline PET. J Nucl Med 41:1507–1513

    CAS  PubMed  Google Scholar 

  58. Torizuka T, Kanno T, Futatsubashi M, Okada H, Yoshikawa E et al (2003) Imaging gynecologic tumors: comparison of 11C-choline PET with 18F-FDG PET. J Nucl Med 44:1051–1056

    CAS  PubMed  Google Scholar 

  59. Kostakoglu L, Goldsmith SJ (2004) PET in the assessment of therapy response in patients with carcinoma of the head and neck and of the esophagus. J Nucl Med 45:56–68

    PubMed  Google Scholar 

  60. Bradley JD, Perez CA, Dehdashti F, Siegel BA (2004) Implementing biologic target volumes in radiation treatment planning for non-small cell lung cancer. J Nucl Med 45(Suppl 1):96S–101S

    PubMed  Google Scholar 

  61. Huang T, Civelek A, Zheng H et al (2013) F-18 misonidazole PET imaging of hypoxia in micrometastases and macroscopic xenografts of human non-small cell lung cancer: a correlation with autoradiography and histopathological findings. Am J Nucl Med Mol Biol 3:142–153

    CAS  Google Scholar 

  62. Richin D, Hicks RJ, Fisher R et al (2006) Prognostic significance of F-18 misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned chemo-radiation with or without tirapazamine:a substudy of tasman radiation oncology group 98.2. J Clin Oncol 24:2098–2104

    Article  Google Scholar 

  63. Poeppel TD, Binse I, Petersenn S et al (2011) 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med 52:1864–1870

    Article  CAS  PubMed  Google Scholar 

  64. Yang J, Kan Y, Ge BH et al (2013) Diagnostic role of Gallium-68 DOTATOC and Gallium-68 DOTATATEPET in patients with neuroendocrine tumors: a meta-analysis. Acta Radiol 55:389–398

    Article  PubMed  Google Scholar 

  65. Sandström M, Velikyan I, Garske-Román U et al (2013) Comparative biodistribution and radiation dosimetry of 68Ga-DOTATOC and 68Ga-DOTATATE in patients with neuroendocrine tumors. J Nucl Med 54:1755–1759

    Article  PubMed  CAS  Google Scholar 

  66. Gabriel M, Decristoforo C, Kendler D et al (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518

    Article  CAS  PubMed  Google Scholar 

  67. Delpassand ES, Ranganathan D, Wagh N, Shafie A, Gaber A et al (2020) 64Cu-DOTATATE PET/CT for imaging patients with known or suspected somatostatin receptor–positive neuroendocrine tumors: results of the first U.S. prospective, reader-masked clinical trial. J Nucl Med 61:890–896

    Article  CAS  PubMed  Google Scholar 

  68. Fowler AM, Linden HM (2017) Functional estrogen receptor imaging before neoadjuvant therapy for primary breast cancer. J Nucl Med 58:560–562

    Article  CAS  PubMed  Google Scholar 

  69. Bensch F, Brouwers AH, Lub-de Hooge MN et al (2018) 89Zr-trastuzumab PET supports clinical decision making in breast cancer patients, when HER2 status cannot be determined by standard work up. Eur J Nucl Med Mol Imaging 45:2300–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lenzo NP, Meyrick D, Turner JH (2018) Review of gallium-68 PSMA PET/CT imaging in the management of prostate cancer. Diagnostics 11:8

    Google Scholar 

  71. Hofman MS, Lawrentschuk N, Francis RJ et al (2020) Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395:1208–1216

    Article  CAS  PubMed  Google Scholar 

  72. Langbein T, Weber WA, Eiber M (2019) Future of theranostics: an outlook on precision oncology in nuclear medicine. J Nucl Med 60:13S–19S

    Article  CAS  PubMed  Google Scholar 

  73. Kratochwil C, Flechsig P, Lindner T et al (2019) 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med 60:801–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lindner T, Loktev A, Altmann A et al (2018) Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med 59:1415–1422

    Article  CAS  PubMed  Google Scholar 

  75. Yilmaz S, Ozhan M, Sager S et al (2011) Metformin-induced intense bowel uptake observed on restaging FDG PET/CT study in a patient with gastric lymphoma. Mol Imaging Radionucl Ther 20:114–116

    Article  PubMed  PubMed Central  Google Scholar 

  76. Nakamoto Y, Tatsumi M, Hammoud D et al (2005) Normal FDG distribution patterns in the head and neck: PET/CT evaluation. Radiology 234:879–885

    Article  PubMed  Google Scholar 

  77. Roy FN, Beaulieu S, Boucher L et al (2009) Impact of intravenous insulin on 18F-FDG PET in diabetic cancer patients. J Nucl Med 50:178–183

    Article  PubMed  Google Scholar 

  78. Osman MM, Tran IT, Parkar N, Muzaffar R et al (2011) Does 18F-FDG Uptake of respiratory muscles on PET/CT correlate with chronic obstructive pulmonary disease diagnosis? J Nucl Med Technol 39:252–257

    Article  PubMed  Google Scholar 

  79. Tam CS, Lecoultre V, Ravussin E (2012) Brown adipose tissue: mechanisms and potential therapeutic targets. Circulation 125(22):2782–2791

    Article  PubMed  Google Scholar 

  80. Cronin CG, Prakash P, Daniels GH et al (2012) Brown fat at PET/CT: correlation with patient characteristics. Radiology 263:836–842

    Article  PubMed  Google Scholar 

  81. Muzaffar R, Nguyen NC, Kudva G, Osman MM (2011) Incidental diagnosis of thrombus within an aneurysm in FDG PET/CT: frequency in 926 patients. J Nucl Med 52:1408–1411

    Article  PubMed  Google Scholar 

  82. Are C, Hsu JF, Ghossein RA, Schoder H, Shah JP, Shaha AR (2007) Histological aggressiveness of fluorodeoxyglucose positron-emission tomogram (FDG-PET)-detected incidental thyroid carcinomas. Ann Surg Oncol 14:3210–3215

    Article  PubMed  Google Scholar 

  83. Berthet L, Cochet A, Kanoun S et al (2013) In newly diagnosed diffuse large B-cell lymphoma, determination of bone marrow involvement with 18F-FDG PET/CT provides better diagnostic performance and prognostic stratification than does biopsy. J Nucl Med 54:1244–1250

    Article  CAS  PubMed  Google Scholar 

  84. Zhang X, Liu H, Balter P et al (2012) Positron emission tomography for assessing local failure after stereotactic body radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 83:1558–1565

    Article  PubMed  PubMed Central  Google Scholar 

  85. Palestro CJ (2013) FDG-PET in musculoskeletal infections. Semin Nucl Med 43:367–376

    Article  PubMed  Google Scholar 

  86. Iravani A, Osman MM, Weppler AM et al (2020) FDG PET/CT for tumoral and systemic immune response monitoring of advanced melanoma during first-line combination ipilimumab and nivolumab treatment. Eur J Nucl Med Mol Imaging 47:2776–2786

    Article  CAS  PubMed  Google Scholar 

  87. Hodi FS, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P et al (2018) Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol 19:1480–1492

    Article  CAS  PubMed  Google Scholar 

  88. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD et al (2019) Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 381:1535–1546

    Article  CAS  PubMed  Google Scholar 

  89. Postow MA, Sidlow R, Hellmann MD (2018) Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 3778:158–168

    Article  Google Scholar 

  90. Prigent K, Aide N (2020) 18F-Fludeoxyglucose PET/computed tomography for assessing tumor response to immunotherapy and detecting immune-related side effects: a checklist for the PET reader. PET Clin 15:1–10

    Article  PubMed  Google Scholar 

  91. Blake MA, Singh A, Setty BN et al (2006) Pearls and pitfalls in interpretation of abdominal and pelvic PET-CT. Radiographics 26:1335–1353

    Article  PubMed  Google Scholar 

  92. Sarikaya I, Sarikaya A (2021) PET/CT image artifacts caused by the arms. J Nucl Med Technol 49:19–22

    Article  PubMed  Google Scholar 

  93. Sarikaya I, Sarikaya A (2020) Assessing PET parameters in oncologic 18F-FDG studies. J Nucl Med Technol 48:278–282

    Article  PubMed  Google Scholar 

  94. Zasadny KR, Wahl RL (1993) Standardized uptake values of normal tissues at PET with2-[fluorine 18]fluoro-2-deoxy-D-glucose: variations with body weight and amethod for correction. Radiology 189:847–850

    Article  CAS  PubMed  Google Scholar 

  95. Sarikaya I, Albatineh A, Sarikaya A (2019) Re-visiting SUV-weight and SUV-lean body mass in FDG PET studies. J Nucl Med Technol 2020(48):163–167

    Google Scholar 

  96. Sugawara Y, Shulkin BL, Zasadny KR et al (2000) Standardized uptake values inpediatric patients: variations with patient characteristics and methods for correction. J Nucl Med 41:196

    Google Scholar 

  97. Grupta NC, Peter N, Blomfield SM (1999) FDG-PET in staging work-up of patients with suspected intracranial metastatic tumors. Ann Surg 230:202–206

    Article  Google Scholar 

  98. Chidel MA, Suh JH, Greskovich JF et al (1999) Treatment outcome for patients with primary nonsmall-cell lung cancer and synchronous brain metastasis. Radiat Oncol Investig 7:313–319

    Article  CAS  PubMed  Google Scholar 

  99. Vecht CJ (1998) Clinical management of brain metastasis. J Neurol 245:127–131

    Article  CAS  PubMed  Google Scholar 

  100. Langleben DD, Segall GM (2000) PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 41:1861–1867

    CAS  PubMed  Google Scholar 

  101. Chen W (2007) Clinical applications of PET in brain tumors. J Nucl Med 48:1468–1481

    Article  PubMed  Google Scholar 

  102. Kratochwil C, Combs SE, Leotta K, Afshar-Oromieh A, Rieken S et al (2014) Intra-individual comparison of 18F-FET and 18F-DOPA in PET imaging of recurrent brain tumors. Neuro-Oncology 16:434–440

    Article  CAS  PubMed  Google Scholar 

  103. Fink JR, Muzi M, Peck M, Krohn KA (2015) Multimodality brain tumor imaging: MR imaging, PET, and PET/MR imaging. J Nucl Med 56:1554–1561

    Article  CAS  PubMed  Google Scholar 

  104. Patronas NJ, Bousser MG, Comar D et al (1984) Crossed cerebellar glucose metabolism in supratentorial tumors. Brain Res 291:93–101

    Article  CAS  PubMed  Google Scholar 

  105. Fulham MJ, Brooks RA, Hallett M et al (1995) Cerebellar diaschisis revisited: pontine hypometabolism and dentate sparing. J Neurol 142:2267–2273

    Google Scholar 

  106. Quon A, Fischbein NJ, McDougall IR et al (2007) Management of squamous cell carcinoma of the head and neck and thyroid carcinoma. J Nucl Med 48:585–675

    Google Scholar 

  107. Abgral R, Querellou S, Potard G et al (2009) Does 18F-FDG PET/CT improve detection of posttreatment recurrence of head and neck squamous cell carcinoma in patients negative for disease on clinical follow-up? J Nucl Med 50:24–29

    Article  PubMed  Google Scholar 

  108. Santhanam P, Taieb D, Solnes L et al (2017) Utility of I-124 PET/CT in identifying radioiodine avid lesions in differentiated thyroid cancer: a systematic review and meta-analysis. Clin Endocrinol 86:645–651

    Article  CAS  Google Scholar 

  109. Zhuang H, Kumar R, Mandel S et al (2004) Investigation of thyroid, head, and neck cancers with PET. Radiol Clin N Am 42:1101–1111

    Article  PubMed  Google Scholar 

  110. Szakall S, Esik O, Bajzik G et al (2002) 18F-FDG PET detection of lymph node metastases in medullary thyroid carcinoma. J Nucl Med 43:66–71

    PubMed  Google Scholar 

  111. Lyer RB, Silverman PM, Tamm EP et al (2003) Diagnosis, staging, and follow-up of esophageal cancer. Am J Roentgenol 181:785–793

    Article  Google Scholar 

  112. Yoon YC, Lee KS, Shim YM et al (2003) Metastasis to regional lymph nodes in patients with esophageal squamous cell carcinoma: CT versus FDG PET for presurgical detection- prospective study. Radiology 227:764–770

    Article  PubMed  Google Scholar 

  113. Barber TW, Duong CP, Leong T et al (2012) 18F-FDG PET/CT has a high impact on patient management and provides powerful prognostic stratification in the primary staging of esophageal cancer: a prospective study with mature survival data. J Nucl Med 53:864–871

    Article  PubMed  Google Scholar 

  114. Park JW, Jo MK, Lee HM (2009) Significance of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography for the postoperative surveillance of advanced renal cell carcinoma. BJU Int 103:615–619

    Article  PubMed  Google Scholar 

  115. Anjos DA, Etchebehere EC, Ramos CD et al (2007) 18F-FDG PET/CT delayed images after diuretic for restaging invasive bladder cancer. J Nucl Med 48:764–770

    Article  PubMed  Google Scholar 

  116. Armstrong EP (2010) Prophylaxis of cervical cancer and related cervical disease: a review of the cost-effectiveness of vaccination against oncogenic HPV types. J Manag Care Pharm 16:217–230

    Article  PubMed  Google Scholar 

  117. Belhocine T, Thille A, Fridman V (2002) Contribution of whole-body 18FDG PET imaging in the management of cervical cancer. Gynecol Oncol 87:90–97

    Article  PubMed  Google Scholar 

  118. Reinhardt MJ, Ehritt-Braun C, Vogelgesang D et al (2001) Metastatic lymph nodes in patients with cervical cancer: detection with MR imaging and FDG PET. Radiology 218:776–782

    Article  CAS  PubMed  Google Scholar 

  119. Pandit-Taskar N (2005) Oncologic imaging in gynecologic malignancies. J Nucl Med 46:1842–1850

    PubMed  Google Scholar 

  120. Fenchel S, Grab D, Nuessle K et al (2002) Asymptomatic adnexal masses: correlation of FDG PET and histopathologic findings. Radiology 223:780–788

    Article  PubMed  Google Scholar 

  121. American Cancer Society (2011) Colorectal cancer facts & figures 2011–2013. American Cancer Society, Atlanta

    Google Scholar 

  122. Willkomm P, Bender H, Bangard M et al (2000) FDG PET and immunoscintigraphy with 99mTc-labeled antibody fragments for detection of the recurrence of colorectal carcinoma. J Nucl Med 41:1657–1663

    CAS  PubMed  Google Scholar 

  123. Kantorová I, Lipská L, Bêlohlávek O et al (2003) Routine (18)F-FDG PET preoperative staging of colorectal cancer: comparison with conventional staging and its impact on treatment decision making. J Nucl Med 44:1784–1788

    PubMed  Google Scholar 

  124. Cascini GL, Avallone A, Delrio P et al (2006) 18F-FDG PET is an early predictor of pathologic tumor response to preoperative radiochemotherapy in locally advanced rectal cancer. J Nucl Med 47:1241–1248

    CAS  PubMed  Google Scholar 

  125. Niekel MC, Bipat S, Stoker J (2010) Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. Radiology 257:674–684

    Article  PubMed  Google Scholar 

  126. Gambhir SS, Czernin J, Schwimmer J et al (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93S

    CAS  PubMed  Google Scholar 

  127. American Cancer Society (2013) Cancer fact & figures. American Cancer Society, Atlanta

    Google Scholar 

  128. Higashi K, Ueda Y, Sakuma T et al (2001) Comparison of [(18)F]FDG PET and (201)Tl SPECT in evaluation of pulmonary nodules. J Nucl Med 42:1489–1496

    CAS  PubMed  Google Scholar 

  129. Kaiser LR, Shrager JB (1995) Video-assisted thoracic surgery: the current state of the art. AJR Am J Roentgenol 165:1111–1117

    Article  CAS  PubMed  Google Scholar 

  130. Gould MK, Maclean CC, Kuschner WG et al (2001) Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 285:914–924

    Article  CAS  PubMed  Google Scholar 

  131. Schreyögg J, Weller J, Stargardt T et al (2010) Cost-effectiveness of hybrid PET/CT for staging of non-small cell lung cancer. J Nucl Med 51:1668–1675

    Article  PubMed  Google Scholar 

  132. de Geus-Oei LF, van der Heijden HF, Visser EP et al (2007) Chemotherapy response evaluation with 18F-FDG PET in patients with non-small cell lung cancer. J Nucl Med 48:1592–1598

    Article  PubMed  Google Scholar 

  133. Rohren EM, Turkington TG, Coleman RE (2004) Clinical applications of PET in oncology. Radiology 231:305–332

    Article  PubMed  Google Scholar 

  134. Kostakoglu L, Agress H Jr, Goldsmith SJ (2003) Clinical role of FDG PET in evaluation of cancer patients. Radiographics 23:315–340

    Article  PubMed  Google Scholar 

  135. Bunyaviroch T, Coleman RE (2006) PET evaluation of lung cancer. J Nucl Med 47:451–469

    PubMed  Google Scholar 

  136. Kamel EM, Zwahlen D, Wyss MT et al (2003) Whole-body (18)F-FDG PET improves the management of patients with small cell lung cancer. J Nucl Med 44:1911–1917

    PubMed  Google Scholar 

  137. Segall GM (2001) FDG PET, imaging in patients with lymphoma: a clinical perspective. J Nucl Med 42:609–610

    CAS  PubMed  Google Scholar 

  138. Spaepen K, Stroobants S, Dupont P et al (2001) Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first-line chemotherapy in non-Hodgkin’s lymphoma: is [18F]FDG-PET a valid alternative to conventional diagnostic methods? J Clin Oncol 19:414–419

    Article  CAS  PubMed  Google Scholar 

  139. Ben-Haim S, Ell P (2009) 18F-FDG PET and PET/CT in the evaluation of cancer treatment response. J Nucl Med 50:88–99

    Article  PubMed  Google Scholar 

  140. Römer W, Schwaiger M (1998) Positron emission tomography in diagnosis and therapy monitoring of patients with lymphoma. Clin Positron Imaging 1:101–110

    Article  PubMed  Google Scholar 

  141. Paes FM, Kalkanis DG, Sideras PA et al (2010) FDG PET/CT of extranodal involvement in non-Hodgkin lymphoma and Hodgkin disease. Radiographics 30:269–291

    Article  PubMed  Google Scholar 

  142. Wahl RL, Hutchins GD, Buchsbaum DJ et al (1991) 18F-2-deoxy-2-fluoro-D-glucose uptake into human tumor xenografts. Feasibility studies for cancer imaging with positron-emission tomography. Cancer 67:1544–1550

    Article  CAS  PubMed  Google Scholar 

  143. Crippa F, Leutner M, Belli F et al (2000) Which kinds of lymph node metastases can FDG PET detect? A clinical study in melanoma. J Nucl Med 41:1491–1494

    CAS  PubMed  Google Scholar 

  144. Rossi CR, De Salvo GL, Trifirò G et al (2006) The impact of lymphoscintigraphy technique on the outcome of sentinel node biopsy in 1,313 patients with cutaneous melanoma: an Italian Multicentric Study (SOLISM-IMI). J Nucl Med 47:234–241

    PubMed  Google Scholar 

  145. Vallabhajosula S, Solnes L, Vallabhajosula B (2011) A broad overview of positron emission tomography radiopharmaceuticals and clinical applications: what is new? Semin Nucl Med 41:246–264

    Article  PubMed  Google Scholar 

  146. Avril N, Rose CA, Schelling M et al (2000) Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol 18:3495–3502

    Article  CAS  PubMed  Google Scholar 

  147. Dose Schwarz J, Bader M, Jenicke L et al (2005) Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET. J Nucl Med 46:1144–1150

    PubMed  Google Scholar 

  148. Groheux D, Espie M, Giacchetti S et al (2013) Performance of FDG PET/CT in the clinical management of breast cancer. Radiology 266:388–405

    Article  PubMed  Google Scholar 

  149. NCCN Clinical Practice Guidelines in Oncology (NCCN guidelines). National Comprehensive Cancer Network. Version 4 2017-2018

    Google Scholar 

  150. Crippa F, Seregni E, Agresti R et al (1998) Association between [18F]fluorodeoxyglucose uptake and postoperative histopathology, hormone receptor status, thymidine labelling index and p53 in primary breast cancer: a preliminary observation. Eur J Nucl Med 25:1429–1434

    Article  CAS  PubMed  Google Scholar 

  151. Ueda S, Tsuda H, Asakawa H et al (2008) Clinicopathological and prognostic relevance of uptake level using 18F-fluorodeoxyglucose positron emission tomography/computed tomography fusion imaging (18F-FDG PET/CT) in primary breast cancer. Jpn J Clin Oncol 38:250–258

    Article  PubMed  Google Scholar 

  152. Wang CL, MacDonald LR, Rogers JV et al (2011) Positron emission mammography: correlation of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 status and 18F-FDG. AJR Am J Roentgenol 197:W247–W255

    Article  PubMed  Google Scholar 

  153. Alexandraki KI, Kaltsas G (2012) Gastroenteropancreatic neuroendocrine tumors: new insights in the diagnosis and therapy. Endocrine 41:40–52

    Article  CAS  PubMed  Google Scholar 

  154. Crown A, Rocha FG, Raghu P et al (2020) Impact of initial imaging with gallium-68 dotatate PET/CT on diagnosis and management of patients with neuroendocrine tumors. J Surg Oncol 121:480–485

    Article  CAS  PubMed  Google Scholar 

  155. Rust E, Hubele F, Marzano E, Goichot B, Pessaux P et al (2012) Nuclear medicine imaging of gastro-entero-pancreatic neuroendocrine tumors. The key role of cellular differentiation and tumor grade: from theory to clinical practice. Cancer Imaging 21(12):173–184

    Article  Google Scholar 

  156. Taïeb D, Jha A, Treglia G, Pacak K (2019) Molecular imaging and radionuclide therapy of pheochromocytoma and paraganglioma in the era of genomic characterization of disease subgroups. Endocr Relat Cancer 26:R627–R652

    Article  PubMed  PubMed Central  Google Scholar 

  157. Nuñez R, Macapinlac HA, Yeung HW et al (2002) Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med 43:46–55

    PubMed  Google Scholar 

  158. Even-Sapir E, Metser U, Mishani E et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297

    PubMed  Google Scholar 

  159. Apolo AB, Pandit-Taskar N, Morris MJ (2008) Novel tracers and their development for the imaging of metastatic prostate cancer. J Nucl Med 49:2031–2041

    Article  PubMed  Google Scholar 

  160. Parent EE, Schuster DM (2018) Update on 18 F-Fluciclovine PET for prostate cancer imaging. J Nucl Med 59:733–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hofman MS, Emmett L, Sandhu S et al (2021) [177 Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 397:797–804

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Medhat M. Osman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muzaffar, R., Osman, M.M., Sarikaya, I., Elgazzar, A.H. (2022). Nuclear Oncology. In: Elgazzar, A.H. (eds) The Pathophysiologic Basis of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-96252-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96252-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96251-7

  • Online ISBN: 978-3-030-96252-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics