Skip to main content

Central Nervous System

  • Chapter
  • First Online:
The Pathophysiologic Basis of Nuclear Medicine
  • 582 Accesses

Abstract

In this chapter, we present a review of the anatomy, physiology, and pathophysiology of the brain. This will lay the groundwork for a more in-depth presentation of the physiological basis for use of nuclear medicine methods in disease diagnosis and therapy management. This will be discussed in the context of radiopharmaceuticals commonly used to diagnose brain diseases. The specific patterns of radiotracer distribution as seen in nuclear scintigraphy will be correlated with the pathophysiology of the disease process. The different scintigraphic techniques will be reviewed to be followed by relevant clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lloyd-Jones D, Adams R, Carnethon M et al (2009) Heart disease and stroke statistics-2009 update a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119(3):480–486

    Article  PubMed  Google Scholar 

  2. Lewis DH, Toney LK, Baron JC (2012) Nuclear medicine in cerebrovascular disease. Semin Nucl Med 42(6):387–405

    Article  PubMed  Google Scholar 

  3. Powers WJ, Grubb RL, Raichle ME (1984) Physiological-responses to focal cerebral-ischemia in humans. Ann Neurol 16(5):546–552

    Article  CAS  PubMed  Google Scholar 

  4. Powers WJ, Grubb RL, Darriet D, Raichle ME (1985) Cerebral blood-flow and cerebral metabolic-rate of oxygen requirements for cerebral function and viability in humans. J Cereb Blood Flow Metab 5(4):600–608

    Article  CAS  PubMed  Google Scholar 

  5. Baron JC, Jones T (2012) Oxygen metabolism, oxygen extraction and positron emission tomography: historical perspective and impact on basic and clinical neuroscience. NeuroImage 61(2):492–504

    Article  PubMed  Google Scholar 

  6. Baron JC, Bousser MG, Comar D, Soussaline F, Castaigne P (1981) Non-invasive tomographic study of cerebral blood-flow and oxygen-metabolism in vivo – potentials, limitations, and clinical-applications in cerebral ischemic disorders. Eur Neurol 20(3):273–284

    Article  CAS  PubMed  Google Scholar 

  7. Baron JC, Bousser MG, Rey A, Guillard A, Comar D, Castaigne P (1981) Reversal of focal misery-perfusion syndrome by extra-intracranial arterial bypass in hemodynamic cerebral-ischemia - a case-study with O-15 positron emission tomography. Stroke 12(4):454–459

    Article  CAS  PubMed  Google Scholar 

  8. Heiss WD (2012) The ischemic penumbra: how does tissue injury evolve? Ann N Y Acad Sci 1268:26–34

    Article  PubMed  Google Scholar 

  9. Lassen NA (1966) Luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localised within brain. Lancet 2(7473):1113–1115

    Article  CAS  PubMed  Google Scholar 

  10. Terpogossian MM, Herscovitch P (1985) Radioactive O-15 in the study of cerebral blood-flow, blood-volume, and oxygen-metabolism. Semin Nucl Med 15(4):377–394

    Article  CAS  Google Scholar 

  11. Lenzi GL, Frackowiak RSJ, Jones T (1982) Cerebral oxygen-metabolism and blood-flow in human cerebral ischemic infarction. J Cereb Blood Flow Metab 2(3):321–335

    Article  CAS  PubMed  Google Scholar 

  12. Victor M, Ropper AH, Adams RD (2005) Adams and Victor’s principles of neurology. McGraw-Hill, New York

    Google Scholar 

  13. von Strauss E, Viitanen M, De Ronchi D, Winblad B, Fratiglioni L (1999) Aging and the occurrence of dementia – findings from a population-based cohort with a large sample of nonagenarians. Arch Neurol 56(5):587–592

    Article  Google Scholar 

  14. Gauthier S, Reisberg B, Zaudig M et al (2006) Mild cognitive impairment. Lancet 367(9518):1262–1270

    Article  PubMed  Google Scholar 

  15. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191

    Article  PubMed  Google Scholar 

  16. Torosyan N, Silverman DHS (2012) Neuronuclear imaging in the evaluation of dementia and mild decline in cognition. Semin Nucl Med 42(6):415–422

    Article  PubMed  PubMed Central  Google Scholar 

  17. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34(7):939–944

    Article  CAS  PubMed  Google Scholar 

  18. Reiman EM, Chen K, Alexander GE et al (2005) Correlations between apolipoprotein E epsilon4 gene dose and brain-imaging measurements of regional hypometabolism. Proc Natl Acad Sci U S A 102(23):8299–8302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Toney LK, McCue TJ, Minoshima S, Lewis DH (2011) Nuclear medicine imaging in dementia: a practical overview for hospitalists. Hosp Prac 39(3):149–160

    Article  Google Scholar 

  20. Stieglitz RD (2000) Diagnostic and statistical manual of mental disorders. Z Klin Psychol Forsc 29(1):63–64

    Article  Google Scholar 

  21. Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):270–279

    Article  PubMed  PubMed Central  Google Scholar 

  22. Commission on Classification and Terminology of the International League Against Epilepsy (1981) Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia 22(4):489–501

    Article  Google Scholar 

  23. Kleihues P, Louis DN, Scheithauer BW et al (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61(3):215–225

    Article  PubMed  Google Scholar 

  24. Meara J, Bhowmick BK, Hobson P (1999) Accuracy of diagnosis in patients with presumed Parkinson’s disease. Age Ageing 28(2):99–102

    Article  CAS  PubMed  Google Scholar 

  25. Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ (2001) What features improve the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study. Neurology 57(10):S34–S38

    CAS  PubMed  Google Scholar 

  26. Marshall V, Grosset D (2003) Role of dopamine transporter imaging in routine clinical practice. Mov Disord 18(12):1415–1423

    Article  PubMed  Google Scholar 

  27. Bradley WG, Kortman KE, Burgoyne B (1986) Flowing cerebrospinal-fluid in normal and hydrocephalic states – appearance on MR images. Radiology 159(3):611–616

    Article  PubMed  Google Scholar 

  28. Kawaguchi S, Iio M, Murata H et al (1980) Comparative-study of NPH by RN cisternography and CT scan in the aged. J Nucl Med 21(6):84

    Google Scholar 

  29. Silberstein EB (1983) Brain scintigraphy in the diagnosis of the sequela of head trauma. Semin Nucl Med 13(2):153–167

    Article  CAS  PubMed  Google Scholar 

  30. Mitjavila M, Balsa MA, Penin J, Pey C (2004) Radionuclide cisternography in spontaneous intracranial hypotension syndrome. Rev Esp Med Nucl 23(5):338–342

    Article  CAS  PubMed  Google Scholar 

  31. Takahashi M, Momose T, Kameyama M, Mizuno S, Kumakura Y, Ohtomo K (2005) Detection of cerebrospinal fluid leakage in intracranial hypotension with radionuclide cisternography and blood activity monitoring. Ann Nucl Med 19(4):339–343

    Article  PubMed  Google Scholar 

  32. Ozaki Y, Sumi Y, Kyogoku S, Shindoh N, Katayama H (1999) Spontaneous intracranial hypotension: characteristic findings of radionuclide cisternography using In-111 DTPA. Clin Nucl Med 24(10):823–825

    Article  CAS  PubMed  Google Scholar 

  33. Saha GB, MacIntyre WJ, Go RT (1994) Radiopharmaceuticals for brain imaging. Semin Nucl Med 24(4):324–349

    Article  CAS  PubMed  Google Scholar 

  34. Kung HF, Kung MP, Choi SR (2003) Radiopharmaceuticals for single-photon emission computed tomography brain imaging. Semin Nucl Med 33(1):2–13

    Article  PubMed  Google Scholar 

  35. Otte A, Halsband U (2006) Brain imaging tools in neurosciences. J Physiol Paris 99(4–6):281–292

    Article  PubMed  Google Scholar 

  36. Lassen NA, Blasberg RG (1988) Technetium-99m-d, l-HM-PAO, the development of a new class of 99mTc-labeled tracers: an overview. J Cereb Blood Flow Metab 8(6):S1–S3

    Article  CAS  PubMed  Google Scholar 

  37. Walovitch RC, Hill TC, Garrity ST et al (1989) Characterization of technetium-99m-L, L-ECD for brain perfusion imaging, part 1: pharmacology of technetium-99m ECD in nonhuman primates. J Nucl Med 30(11):1892–1901

    CAS  PubMed  Google Scholar 

  38. Lassen NA (1985) Cerebral blood flow tomography with xenon-133. Semin Nucl Med 15(4):347–356

    Article  CAS  PubMed  Google Scholar 

  39. Mintun MA, Raichle ME, Martin WR, Herscovitch P (1984) Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 25(2):177–187

    CAS  PubMed  Google Scholar 

  40. Mountz JM, Raymond PA, McKeever PE et al (1989) Specific localization of thallium 201 in human high-grade astrocytoma by microautoradiography. Cancer Res 49(14):4053–4056

    CAS  PubMed  Google Scholar 

  41. O’Tuama LA, Treves ST, Larar JN et al (1993) Thallium-201 versus technetium-99m-MIBI SPECT in evaluation of childhood brain tumors: a within-subject comparison. J Nucl Med 34(7):1045–1051

    PubMed  Google Scholar 

  42. Conti PS (1995) Introduction to imaging brain tumor metabolism with positron emission tomography (PET). Cancer Investig 13(2):244–259

    Article  CAS  Google Scholar 

  43. Emond P, Chalon S, Garreau L et al (1997) A new iodinated tropane derivative (beta-CDIT) for in vivo dopamine transporter exploration: comparison with beta-CIT. Synapse 26(1):72–80

    Article  CAS  PubMed  Google Scholar 

  44. Djang DSW, Janssen MJR, Bohnen N et al (2012) SNM practice guideline for dopamine transporter imaging with I-123-ioflupane SPECT 1.0. J Nucl Med 53(1):154–163

    Article  CAS  PubMed  Google Scholar 

  45. Maisey MN (2002) Overview of clinical PET. Br J Radiol 75:S1–S5

    Article  PubMed  Google Scholar 

  46. Ell PJ, Gambhir S (2004) Nuclear medicine in clinical diagnosis and treatment. Churchill Livingstone, Edinburgh

    Google Scholar 

  47. Andersen AR, Friberg H, Knudsen KB et al (1988) Extraction of [99mTc]-d, l-HM-PAO across the blood-brain barrier. J Cereb Blood Flow Metab 8(6):S44–S51

    Article  CAS  PubMed  Google Scholar 

  48. Leveille J, Demonceau G, De Roo M et al (1989) Characterization of technetium-99m-L, L-ECD for brain perfusion imaging, part 2: biodistribution and brain imaging in humans. J Nucl Med 30(11):1902–1910

    CAS  PubMed  Google Scholar 

  49. Jacquier-Sarlin MR, Polla BS, Slosman DO (1996) Cellular basis of ECD brain retention. J Nucl Med 37(10):1694–1697

    CAS  PubMed  Google Scholar 

  50. Slosman DO, Chicherio C, Ludwig C et al (2001) (133)Xe SPECT cerebral blood flow study in a healthy population: determination of T-scores. J Nucl Med 42(6):864–870

    CAS  PubMed  Google Scholar 

  51. Yamauchi H, Fukuyama H, Nagahama Y et al (1999) Significance of increased oxygen extraction fraction in five-year prognosis of major cerebral arterial occlusive diseases. J Nucl Med 40(12):1992–1998

    CAS  PubMed  Google Scholar 

  52. Deutsch G, Mountz JM, Liu HG, SanPedro EC, Sutor RJ (1997) Xenon-133 brain SPECT provides improved sensitivity to cerebrovascular stress studies. J Nucl Med 38(5):37p

    Google Scholar 

  53. Price JC (2003) Principles of tracer kinetic analysis. Neuroimaging Clin N Am 13(4):689–701

    Article  PubMed  Google Scholar 

  54. Woods RP, Cherry SR, Mazziotta JC (1992) Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 16(4):620–633

    Article  CAS  PubMed  Google Scholar 

  55. Ancri D, Basset JY, Lonchampt MF, Etavard C (1978) Diagnosis of cerebral lesions by thallium 201. Radiology 128(2):417–422

    Article  CAS  PubMed  Google Scholar 

  56. Nass HW (1977) New Tl-201 nuclear decay data. J Nucl Med 18(10):1047–1048

    CAS  PubMed  Google Scholar 

  57. Saha GB (1992) Fundamentals of nuclear pharmacy, 3rd edn. Springer, New York

    Book  Google Scholar 

  58. Sehweil AM, Mckillop JH, Milroy R, Wilson R, Abdeldayem HM, Omar YT (1989) Mechanism of Tl-201 uptake in tumors. Eur J Nucl Med 15(7):376–379

    Article  CAS  PubMed  Google Scholar 

  59. Piwnicaworms D, Kronauge JF, Lefurgey A et al (1994) Mitochondrial localization and characterization of Tc-99-sestamibi in heart-cells by electron-probe X-ray-microanalysis and Tc-99-Nmr spectroscopy. Magn Reson Imaging 12(4):641–652

    Article  CAS  Google Scholar 

  60. Sokoloff L, Reivich M, Kennedy C et al (1977) Deoxyglucose-C-14 method for measurement of local cerebral glucose-utilization – theory, procedure, and normal values in conscious and anesthetized albino-rat. J Neurochem 28(5):897–916

    Article  CAS  PubMed  Google Scholar 

  61. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE (1980) Non-invasive determination of local cerebral metabolic-rate of glucose in man. Am J Phys 238(1):E69–E82

    CAS  Google Scholar 

  62. Lucignani G, Schmidt KC, Moresco RM et al (1993) Measurement of regional cerebral glucose-utilization with fluorine-18-FDG and PET in heterogeneous tissues – theoretical considerations and practical procedure. J Nucl Med 34(3):360–369

    CAS  PubMed  Google Scholar 

  63. Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data - generalizations. J Cereb Blood Flow Metab 5(4):584–590

    Article  CAS  PubMed  Google Scholar 

  64. Sokoloff L (1997) Relation between physiological function and energy metabolism in the central nervous system. J Neurochem 29:13–26

    Article  Google Scholar 

  65. Liu HG, Mountz JM (2003) F-18FDG brain positron emission tomography and tl-201 early and delayed SPECT in distinguishing atypical cerebral tumor from cerebral infarction. Clin Nucl Med 28(3):241–242

    PubMed  Google Scholar 

  66. Chao ST, Suh JH, Raja S, Lee SY, Barnett G (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96(3):191–197

    Article  CAS  PubMed  Google Scholar 

  67. Herholz K, Holzer T, Bauer B et al (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50(5):1316–1322

    Article  CAS  PubMed  Google Scholar 

  68. Hustinx R, Pourdehnad M, Kaschten B, Alavi A (2005) PET imaging for differentiating recurrent brain tumor from radiation necrosis. Radiol Clin N Am 43(1):35–47

    Article  PubMed  Google Scholar 

  69. Ericson K, Lilja A, Bergstrom M et al (1985) Positron emission tomography with ([11C]methyl)-L-methionine, [11C]D-glucose, and [68Ga]EDTA in supratentorial tumors. J Comput Assist Tomogr 9(4):683–689

    Article  CAS  PubMed  Google Scholar 

  70. De Witte O, Goldberg I, Wikler D et al (2001) Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 95(5):746–750

    Article  PubMed  Google Scholar 

  71. Ribom D, Eriksson A, Hartman M et al (2001) Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas. Cancer 92(6):1541–1549

    Article  CAS  PubMed  Google Scholar 

  72. Ogawa T, Inugami A, Hatazawa J et al (1996) Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F 18 and L-methyl-11C-methionine. AJNR Am J Neuroradiol 17(2):345–353

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chang CC, Kuwana N, Ito S, Yokoyama T, Kanno H, Yamamoto I (2003) Cerebral haemodynamics in patients with hydrocephalus after subarachnoid haemorrhage due to ruptured aneurysm. Eur J Nucl Med Mol Imaging 30(1):123–126

    Article  CAS  PubMed  Google Scholar 

  74. Kaschten B, Stevenaert A, Sadzot B et al (1998) Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39(5):778–785

    CAS  PubMed  Google Scholar 

  75. Sasaki M, Kuwabara Y, Yoshida T et al (1998) Carbon-11-methionine PET in focal cortical dysplasia: a comparison with fluorine-18-FDG PET and technetium-99m-ECD SPECT. J Nucl Med 39(6):974–977

    CAS  PubMed  Google Scholar 

  76. Bustany P, Chatel M, Derlon JM et al (1986) Brain tumor protein synthesis and histological grades: a study by positron emission tomography (PET) with C11-L-Methionine. J Neuro-Oncol 3(4):397–404

    Article  CAS  Google Scholar 

  77. Tsuyuguchi N, Sunada I, Iwai Y et al (2003) Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg 98(5):1056–1064

    Article  PubMed  Google Scholar 

  78. Pirotte B, Goldman S, Massager N et al (2004) Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomography-guided stereotactic brain biopsies. J Neurosurg 101(3):476–483

    Article  CAS  PubMed  Google Scholar 

  79. Ullrich RT, Kracht L, Brunn A et al (2009) Methyl-L-11C-methionine PET as a diagnostic marker for malignant progression in patients with glioma. J Nucl Med 50(12):1962–1968

    Article  PubMed  Google Scholar 

  80. Yamane T, Sakamoto S, Senda M (2010) Clinical impact of (11)C-methionine PET on expected management of patients with brain neoplasm. Eur J Nucl Med Mol Imaging 37(4):685–690

    Article  PubMed  Google Scholar 

  81. Weber WA, Wester HJ, Grosu AL et al (2000) O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 27(5):542–549

    Article  CAS  PubMed  Google Scholar 

  82. Spaeth N, Wyss MT, Weber B et al (2004) Uptake of 18F-fluorocholine, 18F-fluoroethyl-L-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: implications for separation of radiation necrosis from tumor recurrence. J Nucl Med 45(11):1931–1938

    CAS  PubMed  Google Scholar 

  83. Chen W, Silverman DH, Delaloye S et al (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47(6):904–911

    CAS  PubMed  Google Scholar 

  84. Pauleit D, Floeth F, Hamacher K et al (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128(Pt 3):678–687

    Article  PubMed  Google Scholar 

  85. Rachinger W, Goetz C, Popperl G et al (2005) Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57(3):505–511

    Article  PubMed  Google Scholar 

  86. Floeth FW, Pauleit D, Wittsack HJ et al (2005) Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy. J Neurosurg 102(2):318–327

    Article  PubMed  Google Scholar 

  87. Garnett S, Firnau G, Nahmias C, Chirakal R (1983) Striatal dopamine metabolism in living monkeys examined by positron emission tomography. Brain Res 280(1):169–171

    Article  CAS  PubMed  Google Scholar 

  88. Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305(5930):137–138

    Article  CAS  PubMed  Google Scholar 

  89. Yee RE, Cheng DW, Huang SC, Namavari M, Satyamurthy N, Barrio JR (2001) Blood-brain barrier and neuronal membrane transport of 6-[18F]fluoro-L-DOPA. Biochem Pharmacol 62(10):1409–1415

    Article  CAS  PubMed  Google Scholar 

  90. Stout DB, Huang SC, Melega WP, Raleigh MJ, Phelps ME, Barrio JR (1998) Effects of large neutral amino acid concentrations on 6-[F-18]Fluoro-L-DOPA kinetics. J Cereb Blood Flow Metab 18(1):43–51

    Article  CAS  PubMed  Google Scholar 

  91. Fueger BJ, Czernin J, Cloughesy T et al (2010) Correlation of 6-18F-fluoro-L-dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas. J Nucl Med 51(10):1532–1538

    Article  PubMed  Google Scholar 

  92. Becherer A, Karanikas G, Szabo M et al (2003) Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging 30(11):1561–1567

    Article  CAS  PubMed  Google Scholar 

  93. Rasey JS, Koh WJ, Evans ML et al (1996) Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 36(2):417–428

    Article  CAS  PubMed  Google Scholar 

  94. Brown JM (2001) Therapeutic targets in radiotherapy. Int J Radiat Oncol Biol Phys 49(2):319–326

    Article  CAS  PubMed  Google Scholar 

  95. Szeto MD, Chakraborty G, Hadley J et al (2009) Quantitative metrics of net proliferation and invasion link biological aggressiveness assessed by MRI with hypoxia assessed by FMISO-PET in newly diagnosed glioblastomas. Cancer Res 69(10):4502–4509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cher LM, Murone C, Lawrentschuk N et al (2006) Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fluoromisonidazole, 18F-FDG PET, and immunohistochemical studies. J Nucl Med 47(3):410–418

    CAS  PubMed  Google Scholar 

  97. Spence AM, Muzi M, Swanson KR et al (2008) Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res 14(9):2623–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Oborski MJ, Laymon CM, Lieberman FS, Mountz JM (2013) Distinguishing pseudoprogression from progression in high-grade gliomas: a brief review of current clinical practice and demonstration of the potential value of 18F-FDG PET. Clin Nucl Med 38(5):381–384

    Article  PubMed  Google Scholar 

  99. Barthel H, Cleij MC, Collingridge DR et al (2003) 3′-deoxy-3′-[F-18]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 63(13):3791–3798

    CAS  PubMed  Google Scholar 

  100. Chen W, Cloughesy T, Kamdar N et al (2005) Imaging proliferation in brain tumors with F-18-FLT PET: comparison with F-18-FDG. J Nucl Med 46(6):945–952

    CAS  PubMed  Google Scholar 

  101. Munch-Petersen B, Cloos L, Jensen HK, Tyrsted G (1995) Human thymidine kinase 1. Regulation in normal and malignant cells. Adv Enzym Regul 35:69–89

    Article  CAS  Google Scholar 

  102. d’Asseler YM, Koole M, Lemahieu I et al (1997) Recent and future evolutions in NeuroSPECT with particular emphasis on the synergistic use and fusion of imaging modalities. Acta Neurol Belg 97(3):154–162

    PubMed  Google Scholar 

  103. Blume H, Hemminger BM (1997) Image presentation in digital radiology: perspectives on the emerging DICOM display function standard and its application. Radiographics 17(3):769–777

    Article  CAS  PubMed  Google Scholar 

  104. Bartenstein P, Asenbaum S, Catafau A et al (2002) European association of nuclear medicine procedure guidelines for brain imaging using[F-18]FDG. Eur J Nucl Med Mol Imaging 29(10):43–48

    Google Scholar 

  105. Talairach JSG, Tournoux P, Prossalentis M, Bordasferrer L, Covello L, Jacob M, Mempel E (1967) Atlas of stereotaxis anatomy of the telencephalon. Masson, Paris

    Google Scholar 

  106. Evans AC, Collins DL (1993) A 305-Member MRI-based stereotaxic atlas for CBF activation studies. J Nucl Med 34(5):70–71

    Google Scholar 

  107. Friston K, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  108. Asenbaum S, Brucke T, Pirker W, Pietrzyk U, Podreka I (1998) Imaging of cerebral blood flow with Technetium-99m-HMPAO and Technetium-99m-ECD: a comparison. J Nucl Med 39(4):613–618

    CAS  PubMed  Google Scholar 

  109. Abraham T, Feng J (2011) Evolution of brain imaging instrumentation. Semin Nucl Med 41(3):202–219

    Article  PubMed  Google Scholar 

  110. Cikrit DF, Dalsing MC, Harting PS et al (1997) Cerebral vascular reactivity assessed with acetazolamide single photon emission computer tomography scans before and after carotid endarterectomy. Am J Surg 174(2):193–197

    Article  CAS  PubMed  Google Scholar 

  111. Berenstein A, Ransohoff J, Kupersmith M, Flamm E, Graeb D (1984) Trans-vascular treatment of giant aneurysms of the cavernous carotid and vertebral arteries – functional investigation and embolization. Surg Neurol 21(1):3–12

    Article  CAS  PubMed  Google Scholar 

  112. Petersen RC, Thomas RG, Grundman M et al (2005) Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 352(23):2379–2388

    Article  CAS  PubMed  Google Scholar 

  113. Silverman DHS (2004) Brain F-18-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. J Nucl Med 45(4):594–607

    PubMed  Google Scholar 

  114. Burdette JH, Minoshima S, Borght TV, Tran DD, Kuhl DE (1996) Alzheimer disease: improved visual interpretation of PET images by using three-dimensional stereotaxic surface projections. Radiology 198(3):837–843

    Article  CAS  PubMed  Google Scholar 

  115. Administration FaD. Highlights of prescribing information: Amyvid (florbetapir F18 injection). http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/202008s000lbl.pdf

  116. Okie S (2011) Confronting Alzheimer’s disease. N Engl J Med 365(12):1069–1072

    Article  CAS  PubMed  Google Scholar 

  117. O’Brien TJ, O’Connor MK, Mullan BP et al (1998) Subtraction ictal SPET co-registered to MRI in partial epilepsy: description and technical validation of the method with phantom and patient studies. Nucl Med Commun 19(1):31–45

    Article  PubMed  Google Scholar 

  118. Galynker II, Cai J, Ongseng F, Finestone H, Dutta E, Serseni D (1998) Hypofrontality and negative symptoms in major depressive disorder. J Nucl Med 39(4):608–612

    CAS  PubMed  Google Scholar 

  119. Mountz JM, Tolbert LC, Lill DW, Katholi CR, Liu HG (1995) Functional deficits in autistic disorder: characterization by technetium-99m-HMPAO and SPECT. J Nucl Med 36(7):1156–1162

    CAS  PubMed  Google Scholar 

  120. Krug DA, Arick J, Almond P (1980) Behavior checklist for identifying severely handicapped individuals with high levels of autistic behavior. J Child Psychol Psychiatry 21(3):221–229

    Article  CAS  PubMed  Google Scholar 

  121. Wilms G, Marchal G, Demaerel PH, Van Hecke P, Baert AL (1991) Gadolinium-enhanced MRI of intracranial lesions. A review of indications and results. Clin Imaging 15(3):153–165

    Article  CAS  PubMed  Google Scholar 

  122. Valk PE, Dillon WP (1991) Radiation injury of the brain. AJNR Am J Neuroradiol 12(1):45–62

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Schwartz RB, Holman BL, Polak JF et al (1998) Dual-isotope single-photon emission computerized tomography scanning in patients with glioblastoma multiforme: association with patient survival and histopathological characteristics of tumor after high-dose radiotherapy. J Neurosurg 89(1):60–68

    Article  CAS  PubMed  Google Scholar 

  124. Kaplan WD, Takvorian T, Morris JH, Rumbaugh CL, Connolly BT, Atkins HL (1987) Thallium-201 brain tumor imaging: a comparative study with pathologic correlation. J Nucl Med 28(1):47–52

    CAS  PubMed  Google Scholar 

  125. Delbeke D, Meyerowitz C, Lapidus RL et al (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195(1):47–52

    Article  CAS  PubMed  Google Scholar 

  126. Wurker M, Herholz K, Voges J et al (1996) Glucose consumption and methionine uptake in low-grade gliomas after iodine-125 brachytherapy. Eur J Nucl Med 23(5):583–586

    Article  CAS  PubMed  Google Scholar 

  127. Langleben DD, Segall GM (2000) PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 41(11):1861–1867

    CAS  PubMed  Google Scholar 

  128. MacDonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8(7):1277–1280

    Article  CAS  PubMed  Google Scholar 

  129. Taal W, Brandsma D, de Bruin HG et al (2008) Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer 113(2):405–410

    Article  CAS  PubMed  Google Scholar 

  130. Brandes AA, Franceschi E, Tosoni A et al (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26(13):2192–2197

    Article  PubMed  Google Scholar 

  131. Esteller M, Garcia-Foncillas J, Andion E et al (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343(19):1350–1354

    Article  CAS  PubMed  Google Scholar 

  132. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003

    Article  CAS  PubMed  Google Scholar 

  133. Brandes AA, Tosoni A, Cavallo G et al (2006) Correlations between O6-methylguanine DNA methyltransferase promoter methylation status, 1p and 19q deletions, and response to temozolomide in anaplastic and recurrent oligodendroglioma: a prospective GICNO study. J Clin Oncol 24(29):4746–4753

    Article  CAS  PubMed  Google Scholar 

  134. Clarke JL, Chang S (2009) Pseudoprogression and pseudoresponse: challenges in brain tumor imaging. Curr Neurol Neurosci Rep 9(3):241–246

    Article  PubMed  Google Scholar 

  135. Vredenburgh JJ, Desjardins A, Herndon JE et al (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13(4):1253–1259

    Article  CAS  PubMed  Google Scholar 

  136. Schlemmer HP, Pichler BJ, Schmand M et al (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248(3):1028–1035

    Article  PubMed  Google Scholar 

  137. Boss A, Bisdas S, Kolb A et al (2010) Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med 51(8):1198–1205

    Article  PubMed  Google Scholar 

  138. Wang SX, Boethius J, Ericson K (2006) FDG-PET on irradiated brain tumor: ten years’ summary. Acta Radiol 47(1):85–90

    Article  CAS  PubMed  Google Scholar 

  139. Hatakeyama T, Kawai N, Nishiyama Y et al (2008) 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging 35(11):2009–2017

    Article  CAS  PubMed  Google Scholar 

  140. Jacobs AH, Thomas A, Kracht LW et al (2005) 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46(12):1948–1958

    CAS  PubMed  Google Scholar 

  141. Chen W, Delaloye S, Silverman DH et al (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 25(30):4714–4721

    Article  CAS  PubMed  Google Scholar 

  142. Benamer HTS, Patterson J, Grosset DG et al (2000) Accurate differentiation of parkinsonism and essential tremor using visual assessment of [I-123]-FP-CIT SPECT imaging: the [I-123]-FP-CIT Study Group. Mov Disord 15(3):503–510

    Article  CAS  PubMed  Google Scholar 

  143. Schwarzenberg J, Czernin J, Cloughesy TF et al (2012) 3′-deoxy-3′-18F-fluorothymidine PET and MRI for early survival predictions in patients with recurrent malignant glioma treated with bevacizumab. J Nucl Med 53(1):29–36

    Article  CAS  PubMed  Google Scholar 

  144. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23(5):1011–1027

    Article  CAS  PubMed  Google Scholar 

  145. Ferrara N, Hillan KJ, Novotny W (2005) Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 333(2):328–335

    Article  CAS  PubMed  Google Scholar 

  146. Booij J, Habraken JBA, Bergmans P et al (1998) Imaging of dopamine transporters with iodine-123-FP-CIT SPECT in healthy controls and patients with Parkinson’s disease. J Nucl Med 39(11):1879–1884

    CAS  PubMed  Google Scholar 

  147. Gunther I, Hall H, Halldin C, Swahn CG, Farde L, Sedvall G (1997) [I-125]beta-CIT-FE and [I-125]beta-CIT-FP are superior to [I-125]beta-CIT for dopamine transporter visualization: autoradiographic evaluation in the human brain. Nucl Med Biol 24(7):629–634

    Article  CAS  PubMed  Google Scholar 

  148. AbiDargham A, Gandelman MS, DeErausquin GA et al (1996) SPECT imaging of dopamine transporters in human brain with iodine-123-fluoroalkyl analogs of beta-CIT. J Nucl Med 37(7):1129–1133

    CAS  Google Scholar 

  149. Booij J, Tissingh G, Winogrodzka A et al (1997) Practical benefit of [I-123]FP-CIT SPET in the demonstration of the dopaminergic deficit in Parkinson’s disease. Eur J Nucl Med 24(1):68–71

    Article  CAS  PubMed  Google Scholar 

  150. Booij J, Tissingh G, Boer GJ et al (1997) [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 62(2):133–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Marek K, Jennings D, Seibyl J (2003) Single-photon emission tomography and dopamine transporter imaging in Parkinson’s disease. Adv Neurol 91:183–191

    PubMed  Google Scholar 

  152. Tatsch K, Schwarz J, Mozley PD et al (1997) Relationship between clinical features of Parkinson’s disease and presynaptic dopamine transporter binding assessed with [I-123]IPT and single-photon emission tomography. Eur J Nucl Med 24(4):415–421

    CAS  PubMed  Google Scholar 

  153. Chmielowski K, Podgorski JK, Twarkowski P, Pietrzykowski J, Szalus N (2004) Radionuclide cisternography in the diagnosis of normal pressure hydrocephalus. Pol Merkur Lekarski 16(96):576–580

    PubMed  Google Scholar 

  154. Cernochova I, Lipina R (2004) Radionuclide cisternography in diagnostics of obstruction hydrocephalus in introduced ventriculoperitoneal shunt. Nucl Med Rev Cent East Eur 7(1):85–86

    PubMed  Google Scholar 

  155. Borbely K (2004) Functional imaging of cerebrospinal fluid pathology. IdeggyogySz 57(9–10):301–312

    Google Scholar 

  156. The Quality Standards Subcommittee of the American Academy of Neurology (1995) Practice parameters for determining brain death in adults (summary statement). Neurology 45(5):1012–1014

    Article  Google Scholar 

  157. Okizaki A, Shuke N, Aburano T, Hashizume K, Nakai H, Tanaka T (2001) Detection of cerebrospinal fluid leak by dual-isotope SPECT with In-111 DTPA and Tc-99m HMDP. Clin Nucl Med 26(7):628–629

    Article  CAS  PubMed  Google Scholar 

  158. Goodman JM, Mishkin FS, Dyken M (1969) Determination of brain death by isotope angiography. JAMA 209(12):1869–1872

    Article  CAS  PubMed  Google Scholar 

  159. Nagle CE (1980) Use of immediate static scans in combination with radionuclide cerebral angiography as a confirmatory test in the diagnosis of brain death. Clin Nucl Med 5(4):152–153

    Article  CAS  PubMed  Google Scholar 

  160. Roine RO, Launes J, Lindroth L, Nikkinen P (1986) 99mTc-hexamethylpropyleneamine oxime scans to confirm brain death. Lancet 2(8517):1223–1224

    Article  CAS  PubMed  Google Scholar 

  161. Reid RH, Gulenchyn KY, Ballinger JR (1989) Clinical use of technetium-99m HM-PAO for determination of brain death. J Nucl Med 30(10):1621–1626

    CAS  PubMed  Google Scholar 

  162. Sharp PF, Smith FW, Gemmell HG et al (1986) Technetium-99m HM-PAO stereoisomers as potential agents for imaging regional cerebral blood flow: human volunteer studies. J Nucl Med 27(2):171–177

    CAS  PubMed  Google Scholar 

  163. Donohoe KJ, Frey KA, Gerbaudo VH, Mariani G, Nagel JS, Shulkin B (2003) Procedure guideline for brain death scintigraphy. J Nucl Med 44(5):846–851

    PubMed  Google Scholar 

  164. Leveille J, Demonceau G, Walovitch RC (1992) Intrasubject comparison between technetium-99m-ECD and technetium-99m-HMPAO in healthy human subjects. J Nucl Med 33(4):480–484

    CAS  PubMed  Google Scholar 

  165. Herholz K, Heiss WD (2004) Positron emission tomography in clinical neurology. Mol Imaging Biol 6(4):239–269

    Article  PubMed  Google Scholar 

  166. Nguyen NC et al (2018) Targeted therapy and immunotherapy response assessment with F-18 Fluorothymidine positron-emission tomography/magnetic resonance imaging in melanoma brain metastasis: a pilot study. Front Oncol 8:18

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Mountz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mountz, J.M. (2022). Central Nervous System. In: Elgazzar, A.H. (eds) The Pathophysiologic Basis of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-96252-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96252-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96251-7

  • Online ISBN: 978-3-030-96252-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics