Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 329 Accesses

Abstract

The timing jitter of a mode-locked laser quantifies the temporal pulse train stability in the presence of continuous external forcing. In this case, temporal stability refers to the pulse train’s ability to remain close to an ideal reference pulse train.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Parts of the chapter have been published in [1].

  2. 2.

    In more mathematical terms, a passively mode-locked laser is an autonomous system, which is subject to a time shift symmetry. Any periodic solution therefore exhibits a neutral mode, which corresponds to the time shift symmetry. Perturbations in the direction of the time shift mode, will therefore remain in the system and continuous perturbations, such as spontaneous emission noise, accumulate over time.

  3. 3.

    The truncated high frequencies correspond to a sampling time, which is not sufficient to resolve the individual pulses and thus prevents a time-domain estimation of the timing jitter.

  4. 4.

    The pulse positions are determined as the center of mass of their intensity distribution. This measure is more robust against pulse-shape fluctuations than the pulse maximum [20].

  5. 5.

    Within the framework of the Floquet theory, i.e., the linear stability analysis of periodic orbits, a periodic orbit can be expanded into Floquet modes. The corresponding eigenvalues (Floquet multipliers) determine the stability and if applicable the damping of each mode.

  6. 6.

    This construction of the pulse train implicitly assumes an actively more-locked laser with a fixed clock time dictated by an external modulation. The added independent timing noise to each ideal pulse position is neither correlated nor accumulative.

  7. 7.

    Without the factor two, the integrated rms timing jitter \(\sigma _\mathrm{{rms}}\) is nonetheless a suitable measure of the timing fluctuations. The factor two only becomes relevant when \(\sigma _\mathrm{{rms}}\) is converted into the long-term jitter and compared to other long-term jitter estimation methods.

  8. 8.

    The power spectral density \(\mathcal {S}_{|E|^2}\) is symmetric with respect to the origin, i.e., \(\mathcal {S}_{|E|^2}(-\nu ) = \mathcal {S}_{|E|^2}(\nu )\), since \(|E|^2\) itself is real. Thus, the power of the noise components at the absolute frequency \(|\nu |\) is equally shared between the frequencies \(\nu \) and \(-\nu \).

  9. 9.

    Approximating the power P(h) contained within a harmonic becomes worse at higher harmonics, since the characteristic linewidth grows quadratically. The constant factor of two in Eq. (3.8) becomes especially relevant if the long-term timing jitter is to be estimated and compared against other methods.

  10. 10.

    The respective power spectra are computed from 50 realizations for integration times from 1 to 20 \(\mu \)s and from 20 realizations for integration times from 50 to 100 \(\mu \)s.

  11. 11.

    The ensemble expectation value \(\langle \delta T_k^2 \rangle _m\) is stationary, i.e., does not depend on k. This condition is fulfilled as long as the mode-locking state is stable. The opposite would imply the breakup of the mode-locking state and thereby also render the mean pulse period \(T_\mathrm{{C}}\) ill-defined. The timing deviations \(\{\Delta t_n\}\) form a weak-sense stationary process, since they accumulate the fluctuations \(\{\delta T_k\}\). The respective variance therefore depends on the number of accumulated increments \(\delta T_k\) and thus on the time.

  12. 12.

    With this knowledge, an educated guess can also be performed based on the laser parameters if one assumes that all correlations have sufficiently decayed within five lifetimes of the slowest quantity (\(e^{-5} \approx 0.007 < 1\%\)). For the considered laser, the gain section carrier reservoir with a lifetime on \(1\,\mathrm {ns}\) represents the slowest quantity. This corresponds to correlation time of \(\approx 5\,\mathrm {ns} \approx 66T_\mathrm{{C}}\) and yields an approximate minimum pulse separation \(n = 660\), which is of the correct order of magnitude.

  13. 13.

    The direct time-domain estimate of the long-term timing jitter could in principle be improved by using multiple data points and fitting the final relaxation to its equilibrium long-term value with the exponential decay \(\sigma _{\Delta t}(n) = A \exp (-\gamma _n n) + \sigma _\mathrm{{lt}}\). In practice, however, the utilized curve-fitting routines (SciPy 1.10) produced uncertainties in the fit parameters, especially in the constant offset \(\sigma _\mathrm{{lt}}\), which outweighed the potentially gained advantages. Note that this issue does not arise in the pulse-period fluctuation autocorrelation method, since the autocorrelation functions are guaranteed to decay to zero.

  14. 14.

    Low timing jitter values produce small repetition-rate linewidths, which are computationally costly to properly resolve.

References

  1. Meinecke S, Lüdge K (2021) Efficient timing jitter simulation for passively mode-locked semiconductor lasers. App Phys Lett 118(1):011104. https://doi.org/10.1063/5.0036928

    Article  ADS  Google Scholar 

  2. Jiang LA, Grein ME, Ippen EP, McNeilage C, Searls J, Yokoyama H (2002) Quantum-limited noise performance of a mode-locked laser diode. Opt Lett 27(1):49–51. https://doi.org/10.1364/ol.27.000049

    Article  ADS  Google Scholar 

  3. Kuntz M, Fiol G, Lämmlin M, Meuer C, Bimberg D (2007) High-speed mode-locked quantum-dot lasers and optical amplifiers. Proc IEEE 95(9):1767–1778. ISSN 0018-9219. https://doi.org/10.1109/jproc.2007.900949

  4. Lelarge F, Dagens B, Renaudier J, Brenot R, Accard A, van Dijk F, Make D, Gouezigou OL, Provost JG, Poingt F, Landreau J, Drisse O, Derouin E, Rousseau B, Pommereau F, Duan GH (2007) Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 µm. IEEE J Sel Top Quantum Electron 13(1):111. ISSN 1077-260X. https://doi.org/10.1109/jstqe.2006.887154

  5. Valley GC (2007) Photonic analog-to-digital converters. Opt Express 15(5):1955–1982. https://doi.org/10.1364/oe.15.001955

    Article  ADS  Google Scholar 

  6. Bajek D, Cataluna MA (2021) Fast optical sampling by electronic repetition-rate tuning using a single mode-locked laser diode. Opt Express 29(5):6890–6902. https://doi.org/10.1364/oe.413045

    Article  ADS  Google Scholar 

  7. Jiang LA, Ippen EP, Yokoyama H (2005) Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission. J Opt Fiber Comm Rep 2:21–51

    Article  Google Scholar 

  8. Bimberg D, Fiol G, Kuntz M, Meuer C, Lämmlin M, Ledentsov NN, Kovsh AR (2006) High speed nanophotonic devices based on quantum dots. Phys Stat Sol A 203(14):3523–3532. https://doi.org/10.1002/pssa.200622488

    Article  ADS  Google Scholar 

  9. Schmeckebier H, Fiol G, Meuer C, Arsenijević D, Bimberg D (2010) Complete pulse characterization of quantum dot mode-locked lasers suitable for optical communication up to 160 Gbit/s. Opt Express 18(4):3415. https://doi.org/10.1364/oe.18.003415

    Article  ADS  Google Scholar 

  10. Liu S, Wu X, Jung D, Norman JC, Kennedy MJ, Tsang HK, Gossard AC, Bowers JE (2019) High-channel-count 20GHz passively mode-locked quantum dot laser directly grown on Si with 4.1Tbit/s transmission capacity. Optica 6(2):128–134. https://doi.org/10.1364/optica.6.000128

  11. Udem T, Holzwarth R, Hänsch TW (2002) Optical frequency metrology. Nature 416:233–237. https://doi.org/10.1038/416233a

    Article  ADS  Google Scholar 

  12. Keller U (2003) Recent developments in compact ultrafast lasers. Nature 424:831–838. https://doi.org/10.1038/nature01938

    Article  ADS  Google Scholar 

  13. Lüdge K (2012) Nonlinear laser dynamics—from quantum dots to cryptography. Wiley-VCH, Weinheim. 978-3-527-41100-9

    Google Scholar 

  14. von der Linde D (1986) Characterization of the noise in continuously operating mode-locked lasers. Appl Phys B 39(4):201. https://doi.org/10.1007/bf00697487

    Article  ADS  Google Scholar 

  15. Eliyahu D, Salvatore RA, Yariv A (1996) Noise characterization of a pulse train generated by actively mode-locked lasers. J Opt Soc Am B 13(7):1619. https://doi.org/10.1364/josab.13.001619

    Article  ADS  Google Scholar 

  16. Haus HA, Mecozzi A (1993) Noise of mode-locked lasers. IEEE J Quantum Electron 29(3):983. https://doi.org/10.1109/3.206583

    Article  ADS  Google Scholar 

  17. Eliyahu D, Salvatore RA (1997) Yariv A (1997) Effect of noise on the power spectrum of passively mode-locked lasers. J Opt Soc Am B 14(1):167. https://doi.org/10.1364/josab.14.000167

    Article  ADS  Google Scholar 

  18. Jiang LA, Grein ME, Haus HA, Ippen EP (2001) Noise of mode-locked semiconductor lasers. IEEE J Sel Top Quantum Electron 7(2):159. https://doi.org/10.1109/2944.954125

    Article  ADS  Google Scholar 

  19. Kefelian F, O’Donoghue S, Todaro MT, McInerney JG, Huyet G (2008) RF linewidth in monolithic passively mode-locked semiconductor laser. IEEE Photon Technol Lett 20(16):1405. ISSN 1041-1135. https://doi.org/10.1109/lpt.2008.926834

  20. Mulet J, Mørk J (2006) Analysis of timing jitter in external-cavity mode-locked semiconductor lasers. IEEE J Quantum Electron 42(3):249. https://doi.org/10.1109/jqe.2006.869808

    Article  ADS  Google Scholar 

  21. Lee DC (2002) Analysis of jitter in phase-locked loops. IEEE Trans Circuits Syst II 49(11):704. ISSN 1057-7130. https://doi.org/10.1109/tcsii.2002.807265

  22. Otto C (2014) Dynamics of quantum dot lasers—effects of optical feedback and external optical injection. Springer Theses. Springer, Heidelberg, 2014. ISBN 978-3-319-03785-1. https://doi.org/10.1007/978-3-319-03786-8

  23. Gardiner CW (2002) Handbook of stochastic methods for physics, chemistry and the natural sciences. Springer, Berlin

    Google Scholar 

  24. Kolner B, Bloom D (1986) Electrooptic sampling in GaAs integrated circuits. IEEE J Quantum Electron 22(1):79. ISSN 0018-9197. https://doi.org/10.1109/jqe.1986.1072877

  25. Demir A, Mehrotra A, Roychowdhury J (2000) Phase noise in oscillators: a unifying theory and numerical methods for characterization. IEEE Trans Circuits Syst I Regul Pap 47(5):655–674

    Article  Google Scholar 

  26. Demir A (2006) Computing timing jitter from phase noise spectra for oscillators and phase-locked loops with white and \(1/f\) noise. IEEE Trans Circuits Syst I Regul Pap 53(9):1869–1884

    Article  Google Scholar 

  27. Paschotta R (2004a) Noise of mode-locked lasers (part II): timing jitter and other fluctuations. Appl Phys B 79(2):163–173. ISSN 0946-2171. https://doi.org/10.1007/s00340-004-1548-9

  28. Mangold M, Link SM, Klenner A, Zaugg CA, Golling M, Tilma BW, Keller U (2014) Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser. IEEE Photon J 6(1):1500309. ISSN 1943-0655. https://doi.org/10.1109/jphot.2013.2295464

  29. Otto C, Jaurigue LC, Schöll E, Lüdge K (2014) Optimization of timing jitter reduction by optical feedback for a passively mode-locked laser. IEEE Photon J 6(5):1501814. https://doi.org/10.1109/jphot.2014.2352934

    Article  Google Scholar 

  30. Breuer S, Elsäßer W, McInerney JG, Yvind K, Pozo J, Bente EAJM, Yousefi M, Villafranca A, Vogiatzis N, Rorison J (2010) Investigations of repetition rate stability of a mode-locked quantum dot semiconductor laser in an auxiliary optical fiber cavity. IEEE J Quantum Electron 46(2):150. ISSN 0018-9197. https://doi.org/10.1109/jqe.2009.2033255

  31. Lin CY, Grillot F, Li Y (2011) Microwave characterization and stabilization of timing jitter in a quantum dot passively mode-locked laser via external optical feedback. IEEE J Sel Top Quantum Electron 17(5):1311. https://doi.org/10.1109/jstqe.2011.2118745

    Article  ADS  Google Scholar 

  32. Drzewietzki L, Breuer S, Elsäßer W (2013) Timing jitter reduction of passively mode-locked semiconductor lasers by self- and external-injection: numerical description and experiments. Opt Express 21(13):16142–16161. https://doi.org/10.1364/oe.21.016142

    Article  ADS  Google Scholar 

  33. Auth D, Liu S, Norman J, Bowers JE, Breuer S (2019) Passively mode-locked semiconductor quantum dot on silicon laser with 400 Hz rf line width. Opt Express 27(19):27256–27266. https://doi.org/10.1364/oe.27.027256

    Article  ADS  Google Scholar 

  34. Yamamoto Y (1983) AM and FM quantum noise in semiconductor lasers—part I: theoretical analysis. IEEE J Quantum Electron 19(1):34–46. ISSN 0018-9197. https://doi.org/10.1109/jqe.1983.1071726

  35. Haug H, Koch SW (1993) Quantum theory of the optical and electronic properties of semiconductors, 3rd edn. World Scientific, Singapore. 9810218648 (pbk)

    Google Scholar 

  36. Press WH, Flannery BP, Teukolsky SA, Vettering WT (2007) Numerical recipes, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  37. Lüdge K, Schöll E (2009) Quantum-dot lasers–desynchronized nonlinear dynamics of electrons and holes. IEEE J Quantum Electron 45(11):1396–1403. https://doi.org/10.1109/jqe.2009.2028159

    Article  ADS  Google Scholar 

  38. Lingnau B, Chow WW, Lüdge K (2014) Amplitude-phase coupling and chirp in quantum-dot lasers: influence of charge carrier scattering dynamics. Opt Express 22(5):4867–4879. https://doi.org/10.1364/oe.22.004867

    Article  ADS  Google Scholar 

  39. Zajnulina M, Lingnau B, Lüdge K (2017) Four-wave mixing in quantum dot semiconductor optical amplifiers: a detailed analysis of the nonlinear effects. IEEE J Sel Top Quantum Electron 23(6):3000112. ISSN 1077-260X. https://doi.org/10.1109/jstqe.2017.2681803

  40. Lingnau B, Lüdge K (2018) Rabi-oscillation-enhanced frequency conversion in quantum-dot semiconductor optical amplifiers. Opt Quantum Electron 50(2):111. ISSN 1572-817X. https://doi.org/10.1007/s11082-018-1380-9

  41. Paschotta R (2004) Noise of mode-locked lasers (part I): numerical model. Appl Phys B 79:153–162. ISSN 0946-2171. https://doi.org/10.1007/s00340-004-1547-x

  42. Schelte C, Javaloyes J, Gurevich SV (2018) Functional mapping for passively mode-locked semiconductor lasers. Opt Lett 43(11):2535–2538. https://doi.org/10.1364/ol.43.002535

    Article  ADS  Google Scholar 

  43. Vladimirov AG, Turaev DV (2005) Model for passive mode locking in semiconductor lasers. Phys Rev A 72(3):033808. https://doi.org/10.1103/physreva.72.033808

    Article  ADS  Google Scholar 

  44. Bandelow U, Radziunas M, Vladimirov AG, Hüttl B, Kaiser R (2006) 40 GHz mode locked semiconductor lasers: theory, simulation and experiments. Opt Quantum Electron 38:495. https://doi.org/10.1007/s11082-006-0045-2

    Article  Google Scholar 

  45. Radziunas M, Vladimirov AG, Viktorov EA, Fiol G, Schmeckebier H, Bimberg D (2011) Pulse broadening in quantum-dot mode-locked semiconductor lasers: simulation, analysis, and experiments. IEEE J Quantum Electron 47(7):935–943

    Article  ADS  Google Scholar 

  46. Javaloyes J, Balle S (2011) Anticolliding design for monolithic passively mode-locked semiconductor lasers. Opt Lett 36(22):4407–4409

    Article  ADS  Google Scholar 

  47. Rossetti M, Tianhong X, Bardella P, Montrosset I (2011) Impact of gain saturation on passive mode locking regimes in quantum dot lasers with straight and tapered waveguides. IEEE J Quantum Electron 47(11):1404. https://doi.org/10.1109/jqe.2011.2167131

    Article  ADS  Google Scholar 

  48. Otto C, Lingnau B, Schöll E, Lüdge K (2014) Manipulating coherence resonance in a quantum dot semiconductor laser via electrical pumping. Opt Express 22:13288. https://doi.org/10.1364/oe.22.013288

    Article  ADS  Google Scholar 

  49. Jaurigue LC, Nikiforov O, Schöll E, Breuer S, Lüdge K (2016) Dynamics of a passively mode-locked semiconductor laser subject to dual-cavity optical feedback. Phys Rev E 93(2):022205. https://doi.org/10.1103/physreve.93.022205

    Article  ADS  Google Scholar 

  50. Bardella P, Drzewietzki L, Krakowski M, Krestnikov I, Breuer S (2018) Mode locking in a tapered two-section quantum dot laser: design and experiment. Opt Lett 43(12):2827–2830. https://doi.org/10.1364/ol.43.002827

    Article  ADS  Google Scholar 

  51. Meinecke S, Drzewietzki L, Weber C, Lingnau B, Breuer S, Lüdge K (2019) Ultra-short pulse generation in a three section tapered passively mode-locked quantum-dot semiconductor laser. Sci Rep 9:1783. https://doi.org/10.1038/s41598-018-38183-1

    Article  ADS  Google Scholar 

  52. Hausen J, Meinecke S, Lingnau B, Lüdge K (2019) Pulse cluster dynamics in passively mode-locked semiconductor vertical-external-cavity surface-emitting lasers. Phys Rev Appl 11:044055. https://doi.org/10.1103/physrevapplied.11.044055

    Article  ADS  Google Scholar 

  53. Pimenov AS, Habruseva T, Rachinskii D, Hegarty SP, Huyet G, Vladimirov AG (2014) The effect of dynamical instability on timing jitter in passively mode-locked quantum-dot lasers. Opt Lett 39(24):6815. https://doi.org/10.1364/ol.39.006815

    Article  ADS  Google Scholar 

  54. Jaurigue LC, Pimenov AS, Rachinskii D, Schöll E, Lüdge K, Vladimirov AG (2015) Timing jitter of passively mode-locked semiconductor lasers subject to optical feedback; a semi-analytic approach. Phys Rev A 92(5):053807. https://doi.org/10.1103/physreva.92.053807

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Meinecke .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meinecke, S. (2022). Timing Jitter in Mode-Locked Lasers. In: Spatio-Temporal Modeling and Device Optimization of Passively Mode-Locked Semiconductor Lasers. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-96248-7_3

Download citation

Publish with us

Policies and ethics