Skip to main content

Comparative Study on Fly Ash Based AAM Concrete with GGBS, Rice Husk Ash and Sugarcane Bagasse Ash

  • Conference paper
  • First Online:
Environmental Restoration (F-EIR 2021)

Abstract

One of the main staples in the construction industry is Portland cement-based concrete, which currently contributes to 8% of global CO2 emissions during cement production. In this respect, the geopolymer technology shows considerable promise for application in the concrete industry as an alternative binder to Portland cement. Still, there has not been a significant shift away from the use of Portland Cement due to the demand for additional necessary precautions and the requirement of high temperature to bring about rapid strength gain. The mechanical and durability properties of class F fly-ash (FA), based Alkali Activated Concrete (AAM) with varying percentages of Ground Granulated Blast Furnace Slag (GGBS), Rice Husk Ash (RHA), and Sugarcane Bagasse Ash (SCBA) cured at ambient weather conditions are discussed. The results of the tests further indicate the possibility of using ambient cured AAM Concretes for construction purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEA-CSI (2018) Technology Roadmap for Cement. International Energy Agency, p 66

    Google Scholar 

  2. (2021) J Electron Inform 3(1). https://doi.org/10.36548/jei.2021.1

  3. Rameshkumar V, Prabhath Ranjan Kumar S, Poornima V, Venkatasubramani R, Sreevidya V (2020) Improvements in mechanical and durability parameters of bio-engineered concrete with metakaolin as a partial substitute for cement. Eur J Environ Civ Eng 1–14. https://doi.org/10.1080/19648189.2020.1767696

  4. Parvathy SS, Sharma AK, Anand KB (2019) Comparative study on synthesis and properties of geopolymer fine aggregate from fly ashes. Constr Build Mater 198:359–367. https://doi.org/10.1016/j.conbuildmat.2018.11.231

    Article  CAS  Google Scholar 

  5. Davidovits J (1991) Geopolymers. J Therm Anal 37(8):1633–1656. https://doi.org/10.1007/bf01912193

    Article  CAS  Google Scholar 

  6. Palomo A, Grutzeck MW, Blanco MT (1999) Alkali-activated fly ashes: a cement for the future. Cem Concr Res 29(8):1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9

    Article  CAS  Google Scholar 

  7. Xu H, Van Deventer JSJ (2000) Ab initio calculations on the five-membered alumino-silicate framework rings model: Implications for dissolution in alkaline solutions. Comput Chem 24(3–4):391–404. https://doi.org/10.1016/S0097-8485(99)00080-7

    Article  CAS  Google Scholar 

  8. Yip CK, Van Deventer JSJ (2003) Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. J Mater Sci 38(18):3851–3860. https://doi.org/10.1023/A:1025904905176

    Article  CAS  Google Scholar 

  9. Naik TR (2008) Sustainability of concrete construction. Pract Period Struct Des Constr 13(2):98–103. https://doi.org/10.1061/(asce)1084-0680(2008)13:2(98)

    Article  Google Scholar 

  10. Vijai K, Kumutha R, Vishnuram BG (2010) Effect of types of curing on strength of geopolymer concrete. Int J Phys Sci 5(9):1419–1423

    CAS  Google Scholar 

  11. Palomo Á, Fernández-Jiménez A, López-Hombrados C, Lleyda JL (2007) Railway sleepers made of alkali activated fly ash concrete. Rev Ing Constr 22(2):75–80. https://doi.org/10.4067/S0718-50732007000200001

    Article  CAS  Google Scholar 

  12. Lahoti M, Tan KH, Yang EH (2019) A critical review of geopolymer properties for structural fire-resistance applications. Constr Build Mater 221:514–526. https://doi.org/10.1016/j.conbuildmat.2019.06.076

    Article  CAS  Google Scholar 

  13. Vasudevan S, Poornima V, Balachandran M (2020) Influence of admixtures on properties of concrete and optimization using response surface methodology. Mater Today Proc 24:650–661. https://doi.org/10.1016/j.matpr.2020.04.319

    Article  CAS  Google Scholar 

  14. Provis JL, Bernal SA (2014) Geopolymers and related alkali-activated materials. Ann Rev Mater Res 44:299–327. https://doi.org/10.1146/annurev-matsci-070813-113515

    Article  CAS  Google Scholar 

  15. Li Z, Liu S (2007) Influence of slag as additive on compressive strength of fly ash-based geopolymer. J Mater Civ Eng 19(6):470–474. https://doi.org/10.1061/(asce)0899-1561(2007)19:6(470)

    Article  CAS  Google Scholar 

  16. Rangan B, Hardjito D (2005) Studies on fly ash-based geopolymer concrete. In: Proceedings of the world congress geopolymer, November 2005. http://www.google.com/books?hl=id&lr=&id=wIFo7L_zO8AC&oi=fnd&pg=PA133&dq=djwantoro&ots=FlZypGbTgV&sig=wTzPfRqrskTYXr8KGbO58Fgwij8

  17. Khater HM (2012) Effect of calcium on geopolymerization of aluminosilicate wastes. J Mater Civ Eng 24(1):92–101. https://doi.org/10.1061/(asce)mt.1943-5533.0000352

    Article  CAS  Google Scholar 

  18. ASTM (2010) Standard specification for coal fly ash and raw or calcined natural pozzolan for use. Annual book of ASTM standards, no C, pp 3–6

    Google Scholar 

  19. Rowles M, O’Connor B (2003) Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. J Mater Chem 13(5):1161–1165. https://doi.org/10.1039/b212629j

    Article  CAS  Google Scholar 

  20. da Silva Rocha T, Dias DP, França FCC, de Salles Guerra RR, da Costa de Oliveira Marques LR (2018) Metakaolin-based geopolymer mortars with different alkaline activators (Na+ and K+). Constr Build Mater 178:453–461. https://doi.org/10.1016/j.conbuildmat.2018.05.172

  21. Bakharev T (2006) Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cem Concr Res 36(6):1134–1147. https://doi.org/10.1016/j.cemconres.2006.03.022

    Article  CAS  Google Scholar 

  22. Joshi SV, Kadu MS (2012) Role of alkaline activator in development of eco-friendly fly ash based geo polymer concrete. Int J Environ Sci Dev 3(5):417–421. https://doi.org/10.7763/ijesd.2012.v3.258

    Article  CAS  Google Scholar 

  23. Jaffery I, Himath Kumar Y, Sarath Chandra Kumar B (2017) Study on strength and durability parameters of geo polymer concrete with GGBS for 12M and 14M alkali activators. ARPN J Eng Appl Sci 12(4):1202–1212

    CAS  Google Scholar 

  24. Joseph B, Mathew G (2012) Influence of aggregate content on the behavior of fly ash based geopolymer concrete. Sci. Iran. 19(5):1188–1194. https://doi.org/10.1016/j.scient.2012.07.006

    Article  CAS  Google Scholar 

  25. Rehman SKU et al (2020) Experimental investigation of NaOH and KOH mixture in SCBA-based geopolymer cement composite. Materials 13(15):1–28. https://doi.org/10.3390/ma13153437

    Article  CAS  Google Scholar 

  26. Nagaraj VK, Venkatesh Babu DL (2018) Assessing the performance of molarity and alkaline activator ratio on engineering properties of self-compacting alkaline activated concrete at ambient temperature. J Build Eng 20:137–155. https://doi.org/10.1016/j.jobe.2018.07.005

    Article  Google Scholar 

  27. Habert G, D’Espinose De Lacaillerie JB, Roussel N (2011) An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J Clean Prod 19(11):1229–1238. https://doi.org/10.1016/j.jclepro.2011.03.012

    Article  CAS  Google Scholar 

  28. Mustafa Al Bakri AM, Kamarudin H, Khairul Nizar I, Bnhussain M, Zarina Y, Rafiza AR (2012) Correlation between Na2SiO3/NaOH ratio and fly ash/alkaline activator ratio to the strength of geopolymer. Adv Mater Res 341–342:189–193. https://doi.org/10.4028/www.scientific.net/AMR.341-342.189

    Article  CAS  Google Scholar 

  29. Cho YK, Yoo SW, Jung SH, Lee KM, Kwon SJ (2017) Effect of Na2O content, SiO2/Na2O molar ratio, and curing conditions on the compressive strength of FA-based geopolymer. Constr Build Mater 145:253–260. https://doi.org/10.1016/j.conbuildmat.2017.04.004

    Article  CAS  Google Scholar 

  30. Nath P, Sarker PK (2014) Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater 66:163–171. https://doi.org/10.1016/j.conbuildmat.2014.05.080

    Article  Google Scholar 

  31. Yadav AL, Sairam V, Srinivasan K, Muruganandam L (2020) Synthesis and characterization of geopolymer from metakaolin and sugarcane bagasse ash. Constr Build Mater 258:119231. https://doi.org/10.1016/j.conbuildmat.2020.119231

    Article  CAS  Google Scholar 

  32. Rovnaník P (2010) Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr Build Mater 24(7):1176–1183. https://doi.org/10.1016/j.conbuildmat.2009.12.023

    Article  Google Scholar 

  33. Kastro Kiran V, Sathyan D, Anand KB, Devi PR (2020) Strength and durability properties (effect of salts) of internal curing concrete. IOP Conf Ser Mater Sci Eng 872(1):1–8. https://doi.org/10.1088/1757-899X/872/1/012115

    Article  Google Scholar 

  34. Mallikarjuna Rao G, Gunneswara Rao TD (2015) Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar. Arab J Sci Eng 40(11):3067–3074. https://doi.org/10.1007/s13369-015-1757-z

    Article  CAS  Google Scholar 

  35. Xie J, Wang J, Rao R, Wang C, Fang C (2019) Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate. Compos Part B Eng 164:179–190

    Article  CAS  Google Scholar 

  36. Ramani PV, Chinnaraj PK (2015) Geopolimerni beton s dodatkom granulirane zgure i crnoe pepela rižinih liuski. Gradjevinar 67(8):741–747. https://doi.org/10.14256/JCE.1208.2015

    Article  Google Scholar 

  37. Das SK, Mishra J, Mustakim SM (2018) Rice husk ash as a potential source material for geopolymer concrete: a review. Int J Appl Eng Res 13(7):81–84

    Google Scholar 

  38. Kishore GN, Gayathri B (2017) Experimental study on rise husk ash & fly ash based geo-polymer concrete using M-sand. IOP Conf Ser Mater Sci Eng 225(1):012273. https://doi.org/10.1088/1757-899X/225/1/012273

    Article  Google Scholar 

  39. Kim YY, Lee BJ, Saraswathy V, Kwon SJ (2014) Strength and durability performance of alkali-activated rice husk ash geopolymer mortar. Sci World J 2014. https://doi.org/10.1155/2014/209584

  40. Salas A, Delvasto S, de Gutierrez RM, Lange D (2009) Comparison of two processes for treating rice husk ash for use in high performance concrete. Cem Concr Res 39(9):773–778. https://doi.org/10.1016/j.cemconres.2009.05.006

    Article  CAS  Google Scholar 

  41. Castaldelli VN et al (2013) Use of slag/sugar cane bagasse ash (SCBA) blends in the production of alkali-activated materials. Materials 6(8):3108–3127. https://doi.org/10.3390/ma6083108

    Article  CAS  Google Scholar 

  42. Castaldelli VN et al (2016) Study of the binary system fly ash/sugarcane bagasse ash (FA/SCBA) in SiO2/K2O alkali-activated binders. Fuel 174:307–316. https://doi.org/10.1016/j.fuel.2016.02.020

    Article  CAS  Google Scholar 

  43. Cordeiro GC, Barroso TR, Toledo Filho RD (2018) Enhancement the properties of sugar cane bagasse ash with high carbon content by a controlled re-calcination process. KSCE J Civ Eng 22(4):1250–1257. https://doi.org/10.1007/s12205-017-0881-6

    Article  Google Scholar 

  44. Asrani NP, Murali G, Abdelgader HS, Parthiban K, Haridharan MK, Karthikeyan K (2019) Investigation on mode I fracture behavior of hybrid fiber-reinforced geopolymer composites. Arab J Sci Eng 44(10):8545–8555. https://doi.org/10.1007/s13369-019-04074-4

    Article  CAS  Google Scholar 

  45. IS:516-1959 (1959) Indian Standard Methods of Tests for Strength of Concrete. IS 516 (Reaffirmed 2004), vol 59, pp 1–30

    Google Scholar 

  46. ASTMC642-06 (2008) “ASTM C 642,” Standar Test Method Density, Absorption, Voids Hardened Concr, pp 11–13

    Google Scholar 

  47. Inti S, Sharma M, Tandon V (2016) Ground granulated blast furnace slag (GGBS) and rice husk ash (RHA) uses in the production of geopolymer concrete, pp 621–632. https://doi.org/10.1061/9780784480137.059

  48. Sounthararajan VM, Ramadasu TL, Sivasankar S (2019) Strength development properties of sugar cane bagasse ash blended geoploymer concrete containing waste steel fibers. Int J Eng Adv Technol 8(6):1151–1156. https://doi.org/10.35940/ijeat.F8349.088619

    Article  Google Scholar 

  49. Code of Practice (2016) UFU Indian Standard Plain and Reinforced Concrete

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Poornima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poornima, V., Vasanth Kumar, K., Hridhi Nandu, P.P. (2022). Comparative Study on Fly Ash Based AAM Concrete with GGBS, Rice Husk Ash and Sugarcane Bagasse Ash. In: Ashish, D.K., de Brito, J. (eds) Environmental Restoration. F-EIR 2021. Lecture Notes in Civil Engineering, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-030-96202-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96202-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96201-2

  • Online ISBN: 978-3-030-96202-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics