Skip to main content

A Comprehensive Study on the Energy Efficiency of IoT from Four Angles: Clustering and Routing in WSNs, Smart Grid, Fog Computing and MQTT & CoAP Application Protocols

  • Conference paper
  • First Online:
IoT as a Service (IoTaaS 2021)

Abstract

The Internet of things (IoT) technologies have been developing since their inception. Consequently, the number of connected devices increases yearly. The development of IoT devices has to be set, taking into consideration parameters such as security, data rate and energy. In this paper, we carried out a comprehensive review on the main concern, which is the energy efficacy of IoT devices. We will target four research areas to make the searching process interesting and easier for researchers. The four research areas are related to clustering and routing in WSNs, smart grid, fog computing and MQTT & CoAP application protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sen, S., Koo, J., Bagchi, S.: Trifecta: security, energy efficiency, and communication capacity comparison for wireless IoT devices. IEEE Internet Comput. 22, 74–81 (2018)

    Article  Google Scholar 

  2. Perković, T., Damjanović, S., Šolić, P., Patrono, L., Rodrigues, J.: Meeting challenges in IoT: sensing, energy efficiency, and the implementation. In: Yang, X.-S., Sherratt, S., Dey, N., Joshi, A. (eds.) Fourth International Congress on Information and Communication Technology. AISC, vol. 1041, pp. 419–430. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0637-6_36Q!R

    Chapter  Google Scholar 

  3. Abdul-Qawy, A.S.H., Almurisi, N.M.S., Tadisetty, S.: Classification of energy saving techniques for IoT-based heterogeneous wireless nodes. Procedia Comput. Sci. 171, 2590–2599 (2020)

    Article  Google Scholar 

  4. Xiong, Z., Wang, H., Zhang, L., Fan, T., Shen, J.: A ring-based routing scheme for distributed energy resources management in IIoT. IEEE Access 8, 167490–167503 (2020)

    Article  Google Scholar 

  5. Zhang, X., Li, J., Qiu, R., Mean, T.-S., Jin, F.: Optimized routing model of sensor nodes in internet of things network. Sens. Mater. 32, 2801–2811 (2020)

    Google Scholar 

  6. Pereira, H., Moritz, G.L., Souza, R.D., Munaretto, A., Fonseca, M.: Increased network lifetime and load balancing based on network interface average power metric for RPL. IEEE Access 8, 48686–48696 (2020)

    Article  Google Scholar 

  7. Khan, F.A., Ahmad, A., Imran, M.: Energy optimization of PR-LEACH routing scheme using distance awareness in internet of things networks. Int. J. Parallel Prog. 48, 244–263 (2020)

    Article  Google Scholar 

  8. Abdullah, S., Asghar, M.N., Ashraf, M., Abbas, N.: An energy-efficient message scheduling algorithm with joint routing mechanism at network layer in Internet of things environment. Wireless Pers. Commun. 111, 1821–1835 (2020)

    Article  Google Scholar 

  9. Iqbal, S., Qureshi, K.N., Kanwal, N., Jeon, G.: Collaborative energy efficient zone‐based routing protocol for multihop Internet of Things. Trans. Emerging Telecommun. Technol. 33, e3885 (2020)

    Google Scholar 

  10. Safara, F., Souri, A., Baker, T., Al Ridhawi, I., Aloqaily, M.: PriNergy: a priority-based energy-efficient routing method for IoT systems. J. Supercomput. 76, 1–18 (2020)

    Google Scholar 

  11. Shen, J., Wang, A., Wang, C., Hung, P.C., Lai, C.-F.: An efficient centroid-based routing protocol for energy management in WSN-assisted IoT. IEEE Access 5, 18469–18479 (2017)

    Article  Google Scholar 

  12. Xu, Y., Yue, Z., Lv, L.: Clustering routing algorithm and simulation of internet of things perception layer based on energy balance. IEEE Access 7, 145667–145676 (2019)

    Article  Google Scholar 

  13. Ouhab, A., Abreu, T., Slimani, H., Mellouk, A.: Energy-efficient clustering and routing algorithm for large-scale SDN-based IoT monitoring. In: ICC 2020–2020 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2020)

    Google Scholar 

  14. Tang, L., Lu, Z.: DS evidence theory-based energy balanced routing algorithm for network lifetime enhancement in WSN-assisted IOT. Algorithms 13, 152 (2020)

    Article  Google Scholar 

  15. Iwendi, C., Maddikunta, P.K.R., Gadekallu, T.R., Lakshmanna, K., Bashir, A.K., Piran, M.J.: A metaheuristic optimization approach for energy efficiency in the IoT networks. Softw. Pract. Experience 51, 2558–2571 (2021)

    Google Scholar 

  16. Sarma, S.K.: Energy aware Cluster based routing for Wireless Sensor Network in IoT: impact of bio-inspired Algorithm. In: 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 198–206. IEEE (2020)

    Google Scholar 

  17. Reddy, M.P.K., Babu, M.R.: Energy efficient cluster head selection for internet of things. New Rev. Inf. Network. 22, 54–70 (2017)

    Article  Google Scholar 

  18. Chelloug, S.A., El-Zawawy, M.A.: Middleware for internet of things: survey and challenges. Intell. Autom. Soft Comput., 1–9 (2017)

    Google Scholar 

  19. La, Q.D., Ngo, M.V., Dinh, T.Q., Quek, T.Q., Shin, H.: Enabling intelligence in fog computing to achieve energy and latency reduction. Digit. Commun. Netw. 5, 3–9 (2019)

    Article  Google Scholar 

  20. Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: An energy-efficient model for fog computing in the internet of things (IoT). Internet Things 1, 14–26 (2018)

    Article  Google Scholar 

  21. Luo, J., Yin, L., Hu, J., Wang, C., Liu, X., Fan, X., Luo, H.: Container-based fog computing architecture and energy-balancing scheduling algorithm for energy IoT. Future Gener. Comput. Syst. 97, 50–60 (2019)

    Article  Google Scholar 

  22. Ma, K., Bagula, A., Nyirenda, C., Ajayi, O.: An IoT-based fog computing model. Sensors 19, 2783 (2019)

    Article  Google Scholar 

  23. Ghanavati, S., Abawajy, J.H., Izadi, D.: An energy aware task scheduling model using Ant-Mating Optimization in fog computing environment. IEEE Trans. Serv. Comput. (2020)

    Google Scholar 

  24. Heydari, G., Rahbari, D., Nickray, M.: Energy saving scheduling in a fog-based IoT application by Bayesian task classification approach. Turkish J. Electr. Eng. Comput. Sci. 27, 4167–4187 (2019)

    Article  Google Scholar 

  25. Abdel-Basset, M., El-shahat, D., Elhoseny, M., Song, H.: Energy-Aware Metaheuristic algorithm for Industrial Internet of Things task scheduling problems in fog computing applications. IEEE Internet Things J. 8, 12638–12649 (2020)

    Google Scholar 

  26. Arunkumar Reddy, D., Venkata Krishna, P.: Feedback-based fuzzy resource management in IoT using fog computing. Evol. Intell. 14, 669–681 (2021)

    Article  Google Scholar 

  27. Hosseinioun, P., Kheirabadi, M., Tabbakh, S.R.K., Ghaemi, R.: A new energy-aware tasks scheduling approach in fog computing using hybrid meta-heuristic algorithm. J. Parall. Distrib. Comput. 143, 88–96 (2020)

    Google Scholar 

  28. Gai, K., Qin, X., Zhu, L.: An energy-aware high performance task allocation strategy in heterogeneous fog computing environments. IEEE Trans. Comput. 70, 626–639 (2020)

    Google Scholar 

  29. Wang, K., Zhou, Y., Liu, Z., Shao, Z., Luo, X., Yang, Y.: Online task scheduling and resource allocation for intelligent NOMA-based industrial internet of things. IEEE J. Sel. Areas Commun. 38, 803–815 (2020)

    Article  Google Scholar 

  30. Rahbari, D., Nickray, M.: Low-latency and energy-efficient scheduling in fog-based IoT applications. Turkish J. Electr. Eng. Comput. Sci. 27, 1406–1427 (2019)

    Article  Google Scholar 

  31. Hassan, H.O., Azizi, S., Shojafar, M.: Priority, network and energy-aware placement of IoT-based application services in fog-cloud environments. IET Commun. 14, 2117–2129 (2020)

    Article  Google Scholar 

  32. Alhasnawi, B.N., Jasim, B.H.: Internet of Things (IoT) for smart grids: a comprehensive review. J. Xi’an Univ. Archit 63, 1006–7930 (2020)

    Google Scholar 

  33. Rao, B.N., Sudheer, R.: Energy monitoring using IOT. In: 2020 International Conference on Inventive Computation Technologies (ICICT), pp. 868–872. IEEE (2020)

    Google Scholar 

  34. Rashid, R.A., Chin, L., Sarijari, M.A., Sudirman, R., Ide, T.: Machine learning for smart energy monitoring of home appliances using IoT. In: 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), pp. 66–71. IEEE (2019)

    Google Scholar 

  35. Han, T., Muhammad, K., Hussain, T., Lloret, J., Baik, S.W.: An efficient deep learning framework for intelligent energy management in IoT networks. IEEE Internet Things J. 8, 3170–3179 (2020)

    Google Scholar 

  36. Yassein, M.B., et al.: Challenges and techniques of constrained application protocol (CoAP) for efficient energy consumption. In: 2020 11th International Conference on Information and Communication Systems (ICICS), pp. 373–377. IEEE (2020)

    Google Scholar 

  37. Mardini, W., Yassein, M.B., AlRashdan, M., Alsmadi, A., Amer, A.B.: Application-based power saving approach for IoT CoAP protocol. In: Proceedings of the First International Conference on Data Science, E-learning and Information Systems, pp. 1–5 (2018)

    Google Scholar 

  38. Jin, W., Kim, D.: A sleep-awake scheme based on CoAP for energy-efficiency in Internet of Things. JOIV Int. J. Inf. Visual. 1, 110–114 (2017)

    Google Scholar 

  39. Lai, W.-K., Wang, Y.-C., Lin, S.-Y.: Efficient scheduling, caching, and merging of notifications to save message costs in IoT networks using CoAP. IEEE Internet Things J. 8, 1016–1029 (2020)

    Article  Google Scholar 

  40. Khatade, V.D., Askhedkar, M.A.: Time synchronization for CoAP using NS2. In: 2019 5th International Conference on Computing, Communication, Control and Automation (ICCUBEA), pp. 1–4. IEEE (2019)

    Google Scholar 

  41. Ludovici, A., Garcia, E., Gimeno, X., Augé, A.C.: Adding QoS support for timeliness to the observe extension of CoAP. In: 2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 195–202. IEEE (2012)

    Google Scholar 

  42. Randhawa, R.H., Hameed, A., Mian, A.N.: Energy efficient cross-layer approach for object security of CoAP for IoT devices. Ad Hoc Netw. 92, 101761 (2019)

    Article  Google Scholar 

  43. Selvi, M., Gayathri, A., Santhosh, K.S., Kannan, A.: Energy efficient and secured MQTT protocol using IoT. Int. J. Innov. Technol. Exploring Eng. (IJITEE) 9, 11–14 (2020)

    Google Scholar 

  44. Gupta, S., Garg, R., Gupta, N., Alnumay, W.S., Ghosh, U., Sharma, P.K.: Energy-efficient dynamic homomorphic security scheme for fog computing in IoT networks. J. Inf. Secur. Appl. 58, 102768 (2021)

    Google Scholar 

  45. Peralta, G., Iglesias-Urkia, M., Barcelo, M., Gomez, R., Moran, A., Bilbao, J.: Fog computing based efficient IoT scheme for the Industry 4.0. In: 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and Their Application to Mechatronics (ECMSM), pp. 1–6. IEEE (2017)

    Google Scholar 

  46. Schütz, B., Bauer, J., Aschenbruck, N.: Improving energy efficiency of MQTT-SN in Lossy environments using seed-based network coding. In: 2017 IEEE 42nd Conference on Local Computer Networks (LCN), pp. 286–293. IEEE (2017)

    Google Scholar 

  47. Bideh, P.N., Sönnerup, J., Hell, M.: Energy consumption for securing lightweight IoT protocols. In: Proceedings of the 10th International Conference on the Internet of Things, pp. 1–8 (2020)

    Google Scholar 

  48. De Rango, F., Potrino, G., Tropea, M., Fazio, P.: Energy-aware dynamic Internet of Things security system based on elliptic curve cryptography and message queue telemetry transport protocol for mitigating replay attacks. Pervasive Mob. Comput. 61, 101105 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyad Almudayni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Almudayni, Z., Soh, B., Li, A. (2022). A Comprehensive Study on the Energy Efficiency of IoT from Four Angles: Clustering and Routing in WSNs, Smart Grid, Fog Computing and MQTT & CoAP Application Protocols. In: Hussain, W., Jan, M.A. (eds) IoT as a Service. IoTaaS 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 421. Springer, Cham. https://doi.org/10.1007/978-3-030-95987-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95987-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95986-9

  • Online ISBN: 978-3-030-95987-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics