Skip to main content

Classifications of Blood Substitutes

  • Chapter
  • First Online:
Blood Substitutes and Oxygen Biotherapeutics

Abstract

There has been a global shortage of allogeneic human blood, and human blood transfusion has been associated with many side effects and complications. Thus, the pursuit for alternatives for human blood has continued over last 80 years. There are numerous products at various stages worldwide. For health care providers and scientific researchers to have a better understanding of blood substitutes, it is imperative that have a concise and practical classification system. This chapter described the different classifications of blood substitutes. Blood substitutes can be classified based on blood components into erythrocyte substitutes, leukocyte substitutes, platelet substitutes, and plasma substitutes. Erythrocyte substitutes can be classified as four major types: hemoglobin-based oxygen carriers, perfluorocarbon-based oxygen carriers, genetically engineered recombinant hemoglobins, and artificial or cultured erythrocytes. Erythrocyte substitutes can also be classified based on the source of hemoglobin, existence of cell membrane, and organic or inorganic oxygen carriers. Almost a century’s pursuit yielded only few products with limited clinical use in limited regions frustrated many but encouraged more. The accumulation of these efforts will eventually lead to a breakthrough which will have explosive growth in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Looker D, Abbott-Brown D, Cozart P, Durfee S, Hoffman S, Mathews AJ, et al. A human recombinant haemoglobin designed for use as a blood substitute. Nature. 1992;356:258–60. https://doi.org/10.1038/356258a0.

    Article  CAS  PubMed  Google Scholar 

  2. Sarkar S. Artificial blood. Indian J Crit Care Med. 2008;12(3):140–4. https://doi.org/10.4103/0972-5229.43685.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cohn EJ. Blood: a brief survey of its chemical components and of their natural functions and clinical uses. Blood. 2015;126(24):2531. https://doi.org/10.1182/blood-2015-10-676718. PMID: 26635404.

    Article  PubMed  Google Scholar 

  4. Mathew J, Sankar P, Varacallo M. Physiology, blood plasma. [Updated 2020 Oct 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK531504/.

    Google Scholar 

  5. Stanworth SJ, New HV, Apelseth TO, et al. Effects of the COVID-19 pandemic on supply and use of blood for transfusion. Lancet Haematol. 2020;7(10):e756–64. https://doi.org/10.1016/S2352-3026(20)30186-1.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jahr JS, Guinn NR, Lowery DR, Shore-Lesserson L, Shander A. Blood substitutes and oxygen therapeutics: a review. Anesth Analg. 2021;132(1):119–29. https://doi.org/10.1213/ANE.0000000000003957. PMID: 30925560.

    Article  CAS  PubMed  Google Scholar 

  7. Armstrong SH. The management of blood preservation and blood substitutes. Bull N Y Acad Med. 1946;22(9):451–64. PMCID: PMC1871538.

    PubMed  PubMed Central  Google Scholar 

  8. West KA, Conry-Cantilena C. Granulocyte transfusions: current science and perspectives. Semin Hematol. 2019;56(4):241–7. https://doi.org/10.1053/j.seminhematol.2019.11.002. Epub 2019 Nov 8. PMID: 31836030.

    Article  PubMed  Google Scholar 

  9. Coller BS, Springer KT, Beer JH, Mohandas N, Scudder LE, Norton KJ, West SM. Thromboerythrocytes. In vitro studies of a potential autologous, semi-artificial alternative to platelet transfusions. J Clin Invest. 1992;89(2):546–55. https://doi.org/10.1172/JCI115619. PMID: 1737845; PMCID: PMC442886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu D, Jin X, Wang X, Ma B, Lou C, Qu H, et al. Engineering temperature-sensitive plateletsomes as a tailored chemotherapy platform in combination with HIFU ablation for cancer treatment. Theranostics. 2019;9(13):3966–79. https://doi.org/10.7150/thno.32172. PMID: 31281525; PMCID: PMC6587342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Safar P, Takaori M, Kirimli B, Kampschulte S, Nemoto E. Plasma substitutes for resuscitation. Prog Clin Biol Res. 1978;19:91–107. PMID: 78501.

    CAS  PubMed  Google Scholar 

  12. Wiedermann CJ. Do plasma substitutes have additional properties beyond correcting volume deficits? Shock 25:2103-116, 2006. Shock. 2007;27(3):339–42. https://doi.org/10.1097/01.shk.0000258373.10244.5e. PMID: 17304118.

    Article  PubMed  Google Scholar 

  13. Amberson WR, Mulder AG, Steggerda FR, Flexner J, Pankratz DS. Mammalian life without red blood corpuscles. Science. 1933;78(2014):106–7.

    Article  CAS  Google Scholar 

  14. Amberson WR, Flexner J, Steggerda FR, Mulder AG, Tendler MJ, Pankratz DS, et al. On the use of ringer-locke solutions containing hemoglobin as a substitute for normal blood in mammals. J Cell Comp Physiol. 1943;5:359.

    Article  Google Scholar 

  15. Li S, Nickels J, Palmer AF. Liposome-encapsulated actin-hemoglobin (LEAcHb) artificial blood substitutes. Biomaterials. 2005 Jun;26(17):3759–69. https://doi.org/10.1016/j.biomaterials.2004.09.015.

    Article  CAS  PubMed  Google Scholar 

  16. Chang TMS. Hemoglobin corpuscles. J Biomater Artif Cells Artif Organs. 1988;16:1–9.

    Article  CAS  Google Scholar 

  17. Liu L, Martínez JL, Liu Z, Petranovic D, Nielsen J. Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae. Metab Eng. 2014;21:9–16. https://doi.org/10.1016/j.ymben.2013.10.010.

    Article  CAS  PubMed  Google Scholar 

  18. Hill SE. Oxygen therapeutics-current concepts. Can J Anaesth. 2001;48(4 Suppl):S32–40.

    CAS  PubMed  Google Scholar 

  19. Martínez JL, Petranovic D, Nielsen J. Heme metabolism in stress regulation and protein production: from Cinderella to a key player. Bioengineered. 2016;7:112–5. https://doi.org/10.1080/21655979.2015.1126016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moore EE, Moore FA, Fabian TC, Bernard AC, Fulda GJ, Hoyt DB, Duane TM, Weireter LJ Jr, Gomez GA, Cipolle MD, Rodman GH Jr, Malangoni MA, Hides GA, Omert LA, Gould SA, PolyHeme Study Group. Human polymerized hemoglobin for the treatment of hemorrhagic shock when blood is unavailable: the USA multicenter trial. J Am Coll Surg. 2009;208(1):1–13. https://doi.org/10.1016/j.jamcollsurg.2008.09.023. Epub 2008 Nov 7. PMID: 19228496.

    Article  PubMed  Google Scholar 

  21. Chen JY, Scerbo M, Kramer G. A review of blood substitutes: examining the history, clinical trial results, and ethics of hemoglobin-based oxygen carriers. Clinics (Sao Paulo). 2009;64(8):803–13. https://doi.org/10.1590/S1807-59322009000800016. PMCID: PMC2728196.

    Article  Google Scholar 

  22. Batool F, Stutz C, Petit C, Benkirane-Jessel N, Delpy E, Zal F, et al. A therapeutic oxygen carrier isolated from Arenicola marina decreased P. gingivalis induced inflammation and tissue destruction. Sci Rep. 2020;10(1):14745. https://doi.org/10.1038/s41598-020-71593-8. PMID: 32901057; PMCID: PMC7479608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Elmer J, Palmer AF, Cabrales P. Oxygen delivery during extreme anemia with ultra-pure earthworm hemoglobin. Life Sci. 2012;91(17–18):852–9. https://doi.org/10.1016/j.lfs.2012.08.036. Epub 2012 Sep 13. PMID: 22982347; PMCID: PMC3511863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang TMS. Hemoglobin corpuscles. Report of research project for Honours B.Sc., McGill University, 1957.

    Google Scholar 

  25. Haldar R, Gupta D, Chitranshi S, Singh MK, Sachan S. Artificial blood: a futuristic dimension of modern day transfusion sciences. Cardiovasc Hematol Agents Med Chem. 2019;17(1):11–6. https://doi.org/10.2174/1871525717666190617120045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Riess JG. Oxygen carriers (“blood substitutes”)-raison d’Etre, chemistry and some physiology. Chem Rev. 2001;101:2797–919.

    Article  CAS  Google Scholar 

  27. Jägers J, Wrobeln A, Ferenz KB. Perfluorocarbon-based oxygen carriers: from physics to physiology. Pflugers Arch. 2021;473(2):139–50. https://doi.org/10.1007/s00424-020-02482-2.

    Article  CAS  PubMed  Google Scholar 

  28. Riess JG, Le Blanc M. Solubility and transport phenomena in perfluorochemicals relevant to blood substitution and other biomedical applications. Pure Appl Chem. 1982;54:2383–406. https://doi.org/10.1351/pac198254122383.

    Article  CAS  Google Scholar 

  29. Ishchuk OP, Martínez JL, Petranovic D. Improving the production of cofactor-containing proteins: production of human hemoglobin in yeast. Methods Mol Biol. 2019;1923:243–64. https://doi.org/10.1007/978-1-4939-9024-5_11. PMID: 30737744.

    Article  CAS  PubMed  Google Scholar 

  30. Funaki R, Okamoto W, Endo C, Morita Y, Kihira K, Komatsu T. Genetically engineered haemoglobin wrapped covalently with human serum albumins as an artificial O2 carrier. J Mater Chem B. 2020;8(6):1139–45. https://doi.org/10.1039/c9tb02184a. Epub 2019 Dec 16. PMID: 31840728.

    Article  CAS  PubMed  Google Scholar 

  31. Chang TM. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond. Artif Cells Blood Substit Immobil Biotechnol. 2012;40(3):197–9. https://doi.org/10.3109/10731199.2012.662408. Epub 2012 Mar 13. PMID: 22409281; PMCID: PMC3566225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo J, Agola JO, Serda R, Franco S, Lei Q, Wang L, Minster J, Croissant JG, Butler KS, Zhu W, Brinker CJ. Biomimetic rebuilding of multifunctional red blood cells: modular design using functional components. ACS Nano. 2020;14(7):7847–59. https://doi.org/10.1021/acsnano.9b08714. Epub 2020 May 11. PMID: 32391687.

    Article  CAS  PubMed  Google Scholar 

  33. Chang TM. Blood substitutes based on nanobiotechnology. Trends Biotechnol. 2006;24(8):372–7. https://doi.org/10.1016/j.tibtech.2006.06.005. Epub 2006 Jul 11. PMID: 16815577.

    Article  CAS  PubMed  Google Scholar 

  34. Heshusius S, Heideveld E, Burger P, Thiel-Valkhof M, Sellink E, Varga E, et al. Large-scale in vitro production of red blood cells from human peripheral blood mononuclear cells. Blood Adv. 2019;3(21):3337–50. https://doi.org/10.1182/bloodadvances.2019000689. PMID: 31698463; PMCID: PMC6855111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang N, Wei MY, Ma Q. Nanomedicines: a potential treatment for blood disorder diseases. Front Bioeng Biotechnol. 2019;7:369. https://doi.org/10.3389/fbioe.2019.00369. PMID: 31850329; PMCID: PMC6892756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All authors have no conflict of interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, H. et al. (2022). Classifications of Blood Substitutes. In: Liu, H., Kaye, A.D., Jahr, J.S. (eds) Blood Substitutes and Oxygen Biotherapeutics. Springer, Cham. https://doi.org/10.1007/978-3-030-95975-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95975-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95974-6

  • Online ISBN: 978-3-030-95975-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics