Skip to main content

Advances in Biogeochemical Modeling for Intensively Managed Landscapes

  • Chapter
  • First Online:
Book cover Biogeochemistry of the Critical Zone

Abstract

The study of Critical Zone (CZ) biogeochemistry in Intensively Managed Landscapes is a study of transitions. Large-scale anthropogenic inputs in the form of agricultural practices have induced significant shifts in the transport and transformation of water, carbon, and nutrients across the landscape. Disentangling the present-day complexity of physical, biological, and hydrologic CZ processes in intensively managed landscapes requires us to first understand the interplay between underlying natural processes which have occurred over geologic time scales from the overpowering, comparatively abrupt onset of intensive agricultural practices that have dominated the landscape in recent centuries. Modeling provides a unique advantage to extricate such complex processes. Advancements in recent years have improved our ability to elucidate (1) the coevolution of soil organic carbon storage, movement, and decomposition under climate and land cover changes, (2) the impacts of intensive agricultural management practices on age-nutrient dynamics and their consequential modification of rates and landscape fluxes, and (3) the integral regulatory role of vegetation and root exudation on CZ biogeochemical processes. In this chapter, we will review several recent models developed in the Intensively Managed Landscape Critical Zone Observatory in Illinois, USA that advance our understanding of critical transitions in biogeochemical dynamics due to intensive management and discuss future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • [Online]. Available: http://criticalzone.org/iml/

  • Abramoff R et al (2018) The millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry 137(1):51–71

    Google Scholar 

  • Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N, Böhm S, Grassein F, Hölzel N, Klaus VH et al (2015) Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol Lett 18(8):834–843

    Article  Google Scholar 

  • Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL (2015) Soil and human security in the 21st century. Science 348(6235)

    Google Scholar 

  • Anders AM, Bettis EA III, Grimley DA, Stumpf AJ, Kumar P (2018) Impacts of quaternary history on critical zone structure and processes: examples and a conceptual model from the intensively managed landscapes critical zone observatory. Front Earth Sci 6:24

    Article  Google Scholar 

  • Bacco M, Berton A, Ferro E, Gennaro C, Gotta A, Matteoli S, Paonessa F, Ruggeri M, Virone G, Zanella A (2018) Smart farming: opportunities, challenges and technology enablers. In: IoT vertical and topical summit on agriculture-Tuscany (IOT Tuscany). IEEE, pp 1–6

    Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19(2):90–98

    Article  Google Scholar 

  • Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29(12):692–699

    Article  Google Scholar 

  • Berhe AA, Torn MS (2017) Erosional redistribution of topsoil controls soil nitrogen dynamics. Biogeochemistry 132(1–2):37–54

    Article  Google Scholar 

  • Berhe AA, Harden JW, Torn MS, Harte J (2008) Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions. J Geophys Res: Biogeosci 113(4):1–12

    Google Scholar 

  • Bodner G, Nakhforoosh A, Kaul H-P (2015) Management of crop water under drought: a review. Agron Sustain Dev 35(2):401–442

    Article  Google Scholar 

  • Brilli L, Bechini L, Bindi M, Carozzi M, Cavalli D, Conant R, Dorich CD, Doro L, Ehrhardt F, Farina R et al (2017) Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating c and n fluxes. Sci Total Environ 598:445–470

    Article  Google Scholar 

  • Candiago S, Remondino F, De Giglio M, Dubbini M, Gattelli M (2015) Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens 7(4):4026–4047

    Article  Google Scholar 

  • Castellano MJ, Archontoulis SV, Helmers MJ, Poffenbarger HJ, Six J (2019) Sustainable intensification of agricultural drainage. Nature Sustain 2(10):914–921

    Article  Google Scholar 

  • Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329(1–2):1–25

    Article  Google Scholar 

  • Chen L, Wei W, Fu B, Lü Y (2007) Soil and water conservation on the loess plateau in China: review and perspective. Progr Phys Geogr 31(4):389–403

    Article  Google Scholar 

  • David MB, McIsaac GF, Darmody RG, Omonode RA (2009) Long-term changes in Mollisol organic carbon and nitrogen. J Environ Qual 38(1):200 (Online). Available: https://www.agronomy.org/publications/jeq/abstracts/38/1/200

  • Davis CA, Ward AS, Burgin AJ, Loecke TD, Riveros-Iregui DA, Schnoebelen DJ, Just CJ, Thomas SA, Weber LJ, St Clair MA (2014) Antecedent moisture controls on stream nitrate flux in an agricultural watershed. J Environ Qual 43(4):1494–1503

    Google Scholar 

  • Delhez EJM, Campin JM, Hirst AC, Deleersnijder E (1999) Toward a general theory of the age in ocean modeling. Ocean Modeling 1:17–27

    Google Scholar 

  • Doetterl S, Asefaw A, Nadeu E, Wang Z, Sommer M, Fiener P (2016) Erosion, deposition and soil carbon: a review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth Sci Rev 154:102–122

    Article  Google Scholar 

  • Dornbush ME, Wilsey BJ (2010) Experimental manipulation of soil depth alters species richness and co-occurrence in restored tallgrass prairie. J Ecol 98(1):117–125

    Article  Google Scholar 

  • Drewry DT, Kumar P, Long S, Bernacchi C, Liang XZ, Sivapalan M (2010) Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway. J Geophys Res: Biogeosci (2005–2012) 115(G4)

    Google Scholar 

  • Drewry DT, Kumar P, Long S, Bernacchi C, Liang XZ, Sivapalan M (2010) Ecohydrological responses of dense canopies to environmental variability: 2. Role of acclimation under elevated CO2. J Geophys Res: Biogeosci (2005–2012) 115(G4)

    Google Scholar 

  • Duffy C (2010) Dynamical modeling of concentration-age-discharge in watersheds. Hydrol Processes 24:1711–1719

    Article  Google Scholar 

  • el Zahar Haichar F, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Google Scholar 

  • Fausey NR, Brown LC, Belcher HW, Kanwar RS (1995) Drainage and water quality in great lakes and cornbelt states. J Irrigation Drainage Eng 121(4):283–288

    Article  Google Scholar 

  • Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob Change Biol 21(5):2082–2094

    Article  Google Scholar 

  • Gardner JB, Drinkwater LE (2009) The fate of nitrogen in grain cropping systems: a meta-analysis of 15n field experiments. Ecol Appl 19(8):2167–2184

    Article  Google Scholar 

  • Garten C, Wullschleger SD (2000) Soil carbon dynamics beneath switchgrass as indicated by stable isotope analysis. J Environ Qual 29(2):645–653

    Article  Google Scholar 

  • Grant RF, Black TA, Jassal RS, Bruemmer C (2010) Changes in net ecosystem productivity and greenhouse gas exchange with fertilization of douglas fir: mathematical modeling in ecosys. J Geophys Res: Biogeosci 115(G4)

    Google Scholar 

  • Grant RF (2004) Modeling topographic effects on net ecosystem productivity of boreal black spruce forests. Tree Physiol 24(1):1–18

    Article  Google Scholar 

  • Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete AR, Zarco-Tejada P, Lee J-E et al (2014) Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc Natl Acad Sci 111(14):E1327–E1333

    Article  Google Scholar 

  • Guo Z-Y, Kong C-H, Wang J-G, Wang Y-F (2011) Rhizosphere isoflavones (daidzein and genistein) levels and their relation to the microbial community structure of mono-cropped soybean soil in field and controlled conditions. Soil Biol Biochem 43(11):2257–2264

    Article  Google Scholar 

  • Hansel A, Mckay E III (2010) Geology of Illinois. Illinois State Geological Survey, Champaign, IL, USA

    Google Scholar 

  • Haque F, Santos RM, Dutta A, Thimmanagari M, Chiang YW (2019) Co-benefits of wollastonite weathering in agriculture: CO2 sequestration and promoted plant growth. ACS Omega 4(1):1425–1433

    Article  Google Scholar 

  • Herzberger AJ, Duncan Ds, Jackson RD (2014) Bouncing back: plant-associated soil microbes respond rapidly to prairie establishment. PloS One 9(12):e115775

    Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated ph changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248(1–2):43–59

    Article  Google Scholar 

  • Jin Z, Cui B, Song Y, Shi W, Wang K, Wang Y, Liang J (2012) How many check dams do we need to build on the loess plateau?

    Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytologist 163(3):459–480

    Article  Google Scholar 

  • Kidd P, Llugany M, Poschenrieder C, Gunse B, Barcelo J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (zea mays l.). J Experimental Botany 52(359):1339–1352

    Google Scholar 

  • Kim N, Zabaloy MC, Guan K, Villamil MB (2020) Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol Biochem 142:107701

    Google Scholar 

  • Knox JC (1989) Long-and short-term episodic storage and removal of sediment in watersheds of Southwestern Wisconsin and Northwestern Illinois. In: Sediment and the environment. International Association of Hydrological Sciences Publication, vol 184, pp 157–164

    Google Scholar 

  • Kratt CB, Woo DK, Johnson KN, Haagsma M, Kumar P, Selker J, Tyler S (2020) Field trials to detect drainage pipe networks using thermal and RGB data from unmanned aircraft. Agric Water Manage 229(28):105895

    Google Scholar 

  • Kraut-Cohen J, Zolti A, Shaltiel-Harpaz L, Argaman E, Rabinovich R, Green SJ, Minz D (2020) Effects of tillage practices on soil microbiome and agricultural parameters. Sci Total Environ 705:135791

    Google Scholar 

  • Kumar P, Le PV, Papanicolaou AT, Rhoads BL, Anders AM, Stumpf A, Wilson CG, Bettis EA III, Blair N, Ward AS et al (2018) Critical transition in critical zone of intensively managed landscapes. Anthropocene 22:10–19

    Article  Google Scholar 

  • Lanfranco L, Fiorilli V, Gutjahr C (2018) Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist 220(4):1031–1046

    Article  Google Scholar 

  • Le PV, Kumar P, Drewry DT (2011) Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the midwestern united states. Proc Natl Acad Sci 108(37):15085–15090

    Google Scholar 

  • Le PV, Kumar P (2017) Interaction between ecohydrologic dynamics and microtopographic variability under climate change. Water Resources Res 53:8383–8403

    Article  Google Scholar 

  • Le PV, Kumar P, Valocchi AJ, Dang H-V (2015) Gpu-based high-performance computing for integrated surface-sub-surface flow modeling. Environ Modelling Softw 73:1–13

    Article  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528(7580):60–68

    Article  Google Scholar 

  • Li YY, Shao MA (2006) Change of soil physical properties under long-term natural vegetation restoration in the loess plateau of china. J Arid Environ 64(1):77–96

    Article  Google Scholar 

  • Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 1. model structure and sensitivity. J Geophys Res: Atmos 97(D9):9759–9776

    Article  Google Scholar 

  • Li L, Malone RW, Ma L, Kaspar TC, Jaynes DB, Saseendran SA, Thorp KR, Yu Q, Ahuja LR (2008) Winter cover crop effects on nitrate leaching in subsurface drainage as simulated by RZWQM-DSSAT. Trans ASABE 51:1575–1583

    Article  Google Scholar 

  • Li B, Li Y-Y, Wu H-M, Zhang F-F, Li C-J, Li X-X, Lambers H, Li L (2016) Root exudates drive interspecific facilitation by enhancing nodulation and n2 fixation. Proc Natl Acad Sci 113(23):6496–6501

    Article  Google Scholar 

  • Li L, Maher K, Navarre-Sitchler A, Druhan J, Meile C, Lawrence C, Moore J, Perdrial J, Sullivan P, Thompson A et al (2017) Expanding the role of reactive transport models in critical zone processes. Earth-Science Rev 165:280–301

    Article  Google Scholar 

  • Liu C, Li Z, Dong Y, Nie X, Liu L, Xiao H, Zeng G (2017) Do land use change and check-dam construction affect a real estimate of soil carbon and nitrogen stocks on the loess plateau of China? Ecol Eng 101:220–226

    Article  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Austr J Botany 55(5):493–512

    Article  Google Scholar 

  • Lynch J, Whipps J (1990) Substrate flow in the rhizosphere. Plant Soil 129(1):1–10

    Article  Google Scholar 

  • Ma Z, Wood C, Bransby D (2000) Carbon dynamics subsequent to establishment of switchgrass. Biomass Bioenergy 18(2):93–104

    Article  Google Scholar 

  • Mahvi A, Nouri J, Babaei A, Nabizadeh R (2005) Agricultural activities impact on groundwater nitrate pollution. Int J Environ Sci Technol 2(1):41–47

    Article  Google Scholar 

  • Manzoni S, Porporato A (2009) Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol Biochem 41(7):1355–1379

    Article  Google Scholar 

  • Math RK, Dharwadkar NV (2017) A wireless sensor network based low cost and energy efficient frame work for precision agriculture. In: 2017 International Conference on Nascent Technologies in Engineering (ICNTE). IEEE, pp 1–6

    Google Scholar 

  • Mendes J, Pinho TM, Neves dos Santos F, Sousa JJ, Peres E, Boaventura-Cunha J, Cunha M, Morais R (2020) Smartphone applications targeting precision agriculture practices—a systematic review. Agronomy 10(6):855

    Article  Google Scholar 

  • Nakagaki N, Wieczorek M (2016) Estimates of subsurface tile drainage extent for 12 Midwest states, 2012: U.S. Geological Survey data release. U.S. Geological Survey, Tech Rep

    Google Scholar 

  • Nippert JB, Wieme RA, Ocheltree TW, Craine JM (2012) Root characteristics of c 4 grasses limit reliance on deep soil water in tallgrass prairie. Plant Soil 355(1):385–394

    Article  Google Scholar 

  • Papanicolaou AN, Abban BKB, Dermisis DC, Giannopoulos CP, Flanagan DC, Frankenberger JR, Wacha KM (2018) Flow resistance interactions on hillslopes with heterogeneous attributes: effects on runoff hydrograph characteristics. In: Water resources research, pp 1–22

    Google Scholar 

  • Papanicolaou A, Wacha KM, Abban BK, Wilson CG, Hatfield JL, Stanier CO, Filley TR (2015) From soilscapes to landscapes: a landscape-oriented approach to simulate soil organic carbon dynamics in intensively managed landscapes. J Geophys Res Biogeosci 120:979–988

    Article  Google Scholar 

  • Philippot L, Hallin S, Börjesson G, Baggs E (2009) Biochemical cycling in the rhizosphere having an impact on global change. Plant Soil 321(1–2):61–81

    Article  Google Scholar 

  • Pielou EC (2008) After the ice age: the return of life to glaciated North America. University of Chicago Press

    Google Scholar 

  • Porporato A, Odorico PDÕ (2003) Hydrologic controls on soil carbon and nitrogen cycles. I. Modeling scheme. Adv Water Resources 26:45–58

    Article  Google Scholar 

  • Preece C, Peñuelas J (2016) Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant Soil 409(1–2):1–17

    Article  Google Scholar 

  • Qiang-guo C (2001) Soil erosion and management on the loess plateau. J Geographical Sci 11(1):53–70

    Article  Google Scholar 

  • Quijano JC, Kumar P, Drewry DT, Goldstein A, Misson L (2012) Competitive and mutualistic dependencies in multispecies vegetation dynamics enabled by hydraulic redistribution. Water Resources Res 48(5)

    Google Scholar 

  • Quijano JC, Kumar P, Drewry DT (2013) Passive regulation of soil biogeochemical cycling by root water transport. Water Resources Res 49(6):3729–3746

    Article  Google Scholar 

  • Quijano JC, Kumar P, Drewry DT (2013) Passive regulation of soil biogeochemical cycling by root water transport. Water Resources Res 49:3729–3746

    Article  Google Scholar 

  • Quinton JN, Govers G, Oost KV, Bardgett RD (2010) The impact of agricultural soil erosion on biogeochemical cycling. In: Nature geoscience, vol 3, no 5, pp 311–314 (Online). Available: http://dx.doi.org/10.1038/ngeo838

  • Radcliffe DE, Reid DK, Blomback K, Bolster CH, Collick AS, Easton ZM, Francesconi W, Fuka DR, Johnsson H, King K, Larsbo M, Youssef MA, Mulkey AS, Nelson NO, Persson K, Ramirez-Avila JJ, Schmieder F, Smith DR (2015) Applicability of models to predict phosphorus losses in drained fields: a review. J Environ Qual 44:614–628

    Article  Google Scholar 

  • Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH (2018) Trends in global agricultural land use: implications for environmental health and food security. Ann Rev Plant Biol 69:789–815

    Article  Google Scholar 

  • Rasmann S, Turlings TC (2016) Root signals that mediate mutualistic interactions in the rhizosphere. Curr Opinion Plant Biol 32:62–68

    Article  Google Scholar 

  • Rhoads BL, Lewis QW, Andresen W (2016) Historical changes in channel network extent and channel planform in an intensively managed landscape: natural versus human-induced effects. Geomorphology 252:17–31

    Article  Google Scholar 

  • Richardson M, Kumar P (2017) Critical zone services as environmental assessment criteria in intensively managed landscapes. Earth’s Future 5(6):617–632

    Article  Google Scholar 

  • Roque-Malo S, Woo DK, Kumar P (2020) Modeling the role of root exudation in critical zone nutrient dynamics. Water Resources Res 56(8):e2019WR026606

    Google Scholar 

  • Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter—a key but poorly understood component of terrestrial c cycle. Plant Soil 338(1–2):143–158

    Article  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23(1):25–41

    Article  Google Scholar 

  • Sharma R, Kamble SS, Gunasekaran A (2018) Big gis analytics framework for agriculture supply chains: a literature review identifying the current trends and future perspectives. Comput Electronics Agric 155:103–120

    Article  Google Scholar 

  • Shi H, Shao M (2000) Soil and water loss from the loess plateau in china. J Arid Environ 45(1):9–20

    Article  Google Scholar 

  • Shukla KP, Sharma S, Singh NK, Singh V, Tiwari K, Singh S (2011) Nature and role of root exudates: efficacy in bioremediation. Afr J Biotechnol 10(48):9717–9724

    Google Scholar 

  • Sprunger CD, Culman SW, Peralta AL, DuPont ST, Lennon JT, Snapp SS (2019) Perennial grain crop roots and nitrogen management shape soil food webs and soil carbon dynamics. Soil Biol Biochem 137:107573

    Google Scholar 

  • Stallard RF (1998) Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Glob Biogeochem Cycles 12(2):231–257

    Article  Google Scholar 

  • Sugiyama A (2019) The soybean rhizosphere: metabolites, microbes, and beyond—a review. J Adv Res

    Google Scholar 

  • Sugiyama A, Ueda Y, Zushi T, Takase H, Yazaki K (2014) Changes in the bacterial community of soybean rhizospheres during growth in the field. PLoS One 9(6):e100709

    Google Scholar 

  • Szymanski LM, Sanford GR, Heckman KA, Jackson RD, Marín-Spiotta E (2019) Conversion to bioenergy crops alters the amount and age of microbially-respired soil carbon. Soil Biol Biochem 128:35–44

    Article  Google Scholar 

  • Tian J, Huang C-H (2000) Soil erosion and dryland farming. CRC Press

    Google Scholar 

  • Toal M, Yeomans C, Killham K, Meharg A (2000) A review of rhizosphere carbon flow modelling. Plant Soil 222(1–2):263–281

    Article  Google Scholar 

  • Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, Marques Da Silva JR, Merckx R (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318(5850):626–629

    Article  Google Scholar 

  • Vereecken H, Schnepf A, Hopmans JW, Javaux M, Or D, Roose T, Vanderborght J, Young M, Amelung W, Aitkenhead M et al (2016) Modeling soil processes: review, key challenges, and new perspectives. Vadose Zone J 15(5)

    Google Scholar 

  • Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM (2020) Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep 39(1):3–17

    Article  Google Scholar 

  • Vuran MC, Salam A, Wong R, Irmak S (2018) Internet of underground things in precision agriculture: architecture and technology aspects. Ad Hoc Netw 81:160–173

    Article  Google Scholar 

  • Wang J, Li X, Zhang J, Yao T, Wei D, Wang Y, Wang J (2012) Effect of root exudates on beneficial microorganisms—evidence from a continuous soybean monoculture. Plant Ecol 213(12):1883–1892

    Article  Google Scholar 

  • Wang Y, Chen L, Gao Y, Wang S, Lü Y, Fu B (2014) Carbon sequestration function of check-dams: a case study of the loess plateau in China. Ambio 43(7):926–931

    Article  Google Scholar 

  • Wang X, Cammeraat ELH, Romeijn P, Kalbitz K (2014) Soil organic carbon redistribution by water erosion—the role of CO2 emissions for the carbon budget. PLoS ONE 9(5):e96299

    Google Scholar 

  • Wen Z, Li H, Shen Q, Tang X, Xiong C, Li H, Pang J, Ryan<H, Lambers H, Shen J (2019) Trade-offs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. In: New phytologist

    Google Scholar 

  • What is a tile drain? http://blog.armchairbuilder.com/2767/what-is-drain-tile/ (2021) [Online; accessed 23-November-2020]

  • Wiaux F, Cornelis J, Cao W, Vanclooster M, Oost KV (2014) Geoderma combined effect of geomorphic and pedogenic processes on the distribution of soil organic carbon quality along an eroding hillslope on loess soil. Geoderma 216:36–47

    Article  Google Scholar 

  • Wieder WR, Bonan GB, Allison SD (2013) Global soil carbon projections are improved by modelling microbial processes. Nature Climate Change 3(10):909

    Article  Google Scholar 

  • Wilson CG, Abban B, Keefer LL, Wacha K, Dermisis D, Giannopoulos C, Zhou S, Goodwell AE, Woo DK, Yan Q et al (2018) The intensively managed landscape critical zone observatory: a scientific testbed for understanding critical zone processes in agroecosystems. Vadose Zone J 17(1)

    Google Scholar 

  • Wilson CG, Papanicolaou NT, Abaci O (2009) SOM dynamics and erosion in an agricultural test field of the Clear Creek, IA watershed. In: Hydrology and earth system sciences discussions, vol 6, no 2, pp 1581–1619

    Google Scholar 

  • Woo DK, Quijano JC, Kumar P, Chaoka S, Bernacchi CJ (2014) Threshold dynamics in soil carbon storage for bioenergy crops. Environ Sci Technol 48(20):12090–12098

    Google Scholar 

  • Woo DK, Song H, Kumara P. Mapping subsurface tile drainage systems with thermal images. In: Mapping subsurface tile drainage systems with thermal images, vol 218, no 1, pp 94–101, Agricultural Water Management

    Google Scholar 

  • Woo DK, Kumar P (2016) Mean age distribution of inorganic soil-nitrogen. Water Resources Res 52(7):5516–5536

    Article  Google Scholar 

  • Woo DK, Kumar P (2017) Role of micro-topographic variability on the distribution of inorganic soil-nitrogen age in intensively managed landscape. Water Resources Res 53(10):8404–8422

    Article  Google Scholar 

  • Woo DK, Kumar P (2019) Impacts of subsurface tile drainage on age–concentration dynamics of inorganic nitrogen in soil. Water Resources Res 55(2):1470–1489

    Article  Google Scholar 

  • Yan Q, Le PVV, Woo DK, Hou T, Filley T, Kumar P (2019) Three-dimensional modeling of the coevolution of landscape and soil organic carbon. Water Resources Res 55(2):1218–1241

    Article  Google Scholar 

  • Yan Q, Kumar P, Wang Y, Zhao Y, Lin H, Ran Q, An Z, Zhou W (2020) Sustainability of soil organic carbon in consolidated gully land in China’s loess plateau. Sci Rep 10(1):1–12

    Article  Google Scholar 

  • Yan Q, Kumar P (2020) Impacts of landscape evolution on heterotrophic carbon loss in intensively managed landscapes

    Google Scholar 

  • Yan Q, Le PVV, Woo DK, Hou T, Filley TR, Kumar P (2018) 3-D modeling of the co-evolution of landscape and soil organic carbon. In: Water resources research (Online). Available: http://doi.wiley.com/10.1029/2018WR023634

  • Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Cho H, Karaoz U, Loqué D, Bowen BP et al (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiol 3(4):470–480

    Article  Google Scholar 

  • Zhao D, Xu M, Liu G, Ma L, Zhang S, Xiao T, Peng G (2017) Effect of vegetation type on microstructure of soil aggregates on the loess plateau, china. Agriculture Ecosyst Environ 242:1–8

    Article  Google Scholar 

  • Zieger A, Kaiser K, Ríos Guayasamín P, Kaupenjohann M (2017) Massive carbon addition to an organic-rich Andosol did not increase the topsoil but the subsoil carbon stock. Biogeosci Discussions 2017:1–30

    Google Scholar 

Download references

Acknowledgements

This work was generously funded by NSF Grant EAR-1331906, NSF OAC-1835834, and NSF EAR-2012850.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Roque-Malo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roque-Malo, S., Yan, Q., Woo, D.K., Druhan, J.L., Kumar, P. (2022). Advances in Biogeochemical Modeling for Intensively Managed Landscapes. In: Wymore, A.S., Yang, W.H., Silver, W.L., McDowell, W.H., Chorover, J. (eds) Biogeochemistry of the Critical Zone. Advances in Critical Zone Science. Springer, Cham. https://doi.org/10.1007/978-3-030-95921-0_6

Download citation

Publish with us

Policies and ethics