Skip to main content

FPGA Implementation of a Interval Type-2 Fuzzy Inference for Quadrotor Attitude Control

  • Conference paper
  • First Online:
Advances in Internet, Data & Web Technologies (EIDWT 2022)

Abstract

In this paper, we propose an FPGA implementation of Interval Type-2 Fuzzy Inference (IT2FI) for attitude control of quadrotors. Since IT2FI is suitable for parallel processing, the processing time can be significantly reduced even on low-power FPGA devices. In the proposed system, the IT2FI module is applied to each of the roll, pitch and yaw axis, and the operation amount of the quadrotor motor is obtained from each output value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oda, T., et al.: Design and implementation of a simulation system based on deep Q-network for mobile actor node control in wireless sensor and actor networks. In: Proceedings of The IEEE 31st International Conference on Advanced Information Networking and Applications Workshops, pp. 195–200 (2017)

    Google Scholar 

  2. Saito, N., Oda, T., Hirata, A., Hirota, Y., Hirota, M., Katayama, K.: Design and implementation of a DQN based AAV. In: Barolli, L., Takizawa, M., Enokido, T., Chen, H.-C., Matsuo, K. (eds.) BWCCA 2020. LNNS, vol. 159, pp. 321–329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-61108-8_32

    Chapter  Google Scholar 

  3. Saito, N., Oda, T., Hirata, A., Toyoshima, K., Hirota, M., Barolli, L.: Simulation results of a DQN based AAV testbed in corner environment: a comparison study for normal DQN and TLS-DQN. In: Barolli, L., Yim, K., Chen, H.-C. (eds.) IMIS 2021. LNNS, vol. 279, pp. 156–167. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-79728-7_16

    Chapter  Google Scholar 

  4. Saito, N., et al.: A tabu list strategy based DQN for AAV mobility in indoor single-path environment: implementation and performance evaluation. Internet Things 14, 100394 (2021)

    Article  Google Scholar 

  5. Saito, N., Oda, T., Hirata, A., Yukawa, C., Kulla, E., Barolli, L.: A LiDAR based mobile area decision method for TLS-DQN: improving control for AAV mobility. In: Barolli, L. (ed.) 3PGCIC 2021. LNNS, vol. 343, pp. 30–42. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-89899-1_4

    Chapter  Google Scholar 

  6. Saito, N., Oda, T., Hirata, A., Toyoshima, K., Hirota, M., Barolli, L.: A movement adjustment method for DQN-based autonomous aerial vehicle. In: Barolli, L., Chen, H.-C., Miwa, H. (eds.) INCoS 2021. LNNS, vol. 312, pp. 136–148. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-84910-8_15

    Chapter  Google Scholar 

  7. Salih, A.L., et al.: Flight PID controller design for a UAV quadrotor. Sci. Res. Essays 5(23), 3660–3667 (2010)

    Google Scholar 

  8. Bouabdallah, S., et al.: PID vs LQ Control Tech-Niques Applied to an Indoor Micro Quadrotor. In: Proceedings of The IEEE International Conference on Intelligent Robots and Systems, pp. 2451–2456 (2004)

    Google Scholar 

  9. Raza, S., Gueaieb, W.: Fuzzy logic based quadrotor flight controller. In: Proceedings of The 6th International Conference on Informatics in Control, Automation and Robotics, pp. 105–112 (2009)

    Google Scholar 

  10. Iswanto, et al.: Trajectory and altitude controls for autonomous hover of a quadrotor based on fuzzy algorithm. In: Proceedings of The 8th International Conference on Information Technology and Electrical Engineering, pp. 1–6 (2016)

    Google Scholar 

  11. Sarabakha, A., et al.: Type-2 fuzzy logic controllers made even simpler: from design to deployment for UAV. IEEE Trans. Industr. Electron. 65(6), 5069–5077 (2018)

    Article  Google Scholar 

  12. Naik, K.A., Gupta, C.P.: Performance comparison of Type-1 and Type-2 fuzzy logic systems. In: Proceedings of The 4th International Conference on Signal Processing, Computing and Control, pp. 72–76 (2017)

    Google Scholar 

  13. Baklouti, N., Alimi, A.M.: Interval type-2 fuzzy logic control of mobile robots. J. Intell. Learn. Syst. Appl. 4(4), 291–302 (2012)

    Google Scholar 

  14. Linda, O., Manic, M.: Interval type-2 fuzzy voter design for fault tolerant systems. Inf. Sci. 181, 2933–2950 (2011)

    Article  MathSciNet  Google Scholar 

  15. Huang, J., et al.: Interval type-2 fuzzy logic modeling and control of a mobile two-wheeled inverted pendulum. IEEE Trans. Fuzzy Syst. 26(4), 2030–2038 (2018)

    Article  Google Scholar 

  16. Imam, R., Kharisma, B.: Design of interval type-2 fuzzy logic based power system stabilize. Int. J. Electr. Electron. Eng. 3(10), 593–600 (2009)

    Google Scholar 

  17. Takano, K., Oda, T., Kohata, M.: Design of a DSL for converting rust programming language into RTL. In: Barolli, L., Okada, Y., Amato, F. (eds.) EIDWT 2020. LNDECT, vol. 47, pp. 342–350. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39746-3_36

    Chapter  Google Scholar 

  18. Takano, K., et. al.: Approach of a coding conventions for warning and suggestion in transpiler for rust convert to RTL. In: Proceedings of The IEEE 9th Global Conference on Consumer Electronics, pp. 789–790 (2020)

    Google Scholar 

  19. Takano, K., et al.: PC process migration using FPGAs in ring networks. IEICE Commun. Express 9(5), 141–145 (2020)

    Article  Google Scholar 

  20. Takano, K., Oda, T., Ozaki, R., Uejima, A., Kohata, M.: Implementation of process migration method for PC-FPGA hybrid system. In: Barolli, L., Takizawa, M., Enokido, T., Chen, H.-C., Matsuo, K. (eds.) BWCCA 2020. LNNS, vol. 159, pp. 204–210. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-61108-8_20

    Chapter  Google Scholar 

  21. Oleynikova, H., et al.: Reactive avoidance using embedded stereo vision for MAV flight. In: Proceedings of The IEEE International Conference on Robotics and Automation, pp. 50–56 (2015)

    Google Scholar 

  22. Honegger, D., et al.: Real-time and low latency embedded computer vision hardware based on a combination of FPGA and mobile CPU. In: International Conference on Intelligent Robots and Systems, pp. 4930–4935 (2014)

    Google Scholar 

  23. Jiang, Q., et al.: Attitude and heading reference system for quadrotor based on MEMS sensors. In: Proceedings of The 2nd International Conference on Instrumentation and Measurement, Computer, Communication and Control, pp. 1090–1093 (2012)

    Google Scholar 

  24. Lechekhab, T.E., et al.: Robust error-based active disturbance rejection control of a quadrotor. Aircr. Eng. Aerosp. Technol. 93(1), 89–104 (2020)

    Article  Google Scholar 

  25. Krajník, T., et al.: A simple visual navigation system for an UAV. In: Proceedings of The IEEE 9th International Multi-Conference on Systems, Signals and Devices, pp. 1–6 (2012)

    Google Scholar 

  26. Hamed, B.M., El-Moghany, M.S.: Fuzzy controller design using FPGA for sun tracking in solar array system. Int. J. Intell. Syst. Technol. Appl. 4(1), 46–52 (2012)

    Google Scholar 

  27. Alvarez, J., et al.: FPGA Implementation of a Fuzzy Controller for Automobile DC-DC Converters. In: Proceedings of The IEEE International Conference on Field Programmable Technology, pp. 237–240 (2006)

    Google Scholar 

  28. Matsui, T., et al.: FPGA implementation of a fuzzy inference based quadrotor attitude control system. In: Proceedings of The IEEE 10th Global Conference on Consumer Electronics, pp. 770–771 (2021)

    Google Scholar 

  29. Melgarejo, M.A., Pena-Reyes, C.A.: Hardware architecture and FPGA implementation of a type-2 fuzzy system. In: Proceedings of The 14th ACM Great Lakes Symposium on VLSI, pp. 458–461 (2004)

    Google Scholar 

  30. Wu, D., Nie, M.: Comparison and practical implementation of type-reduction algorithms for type-2 fuzzy sets and system. In: Proceedings of International Conference on Fuzzy Systems, pp. 2131–2138 (2011)

    Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number JP20K19793 and Grant for Promotion of OUS Research Project (OUS-RP-20-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Oda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matusi, T. et al. (2022). FPGA Implementation of a Interval Type-2 Fuzzy Inference for Quadrotor Attitude Control. In: Barolli, L., Kulla, E., Ikeda, M. (eds) Advances in Internet, Data & Web Technologies. EIDWT 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-030-95903-6_38

Download citation

Publish with us

Policies and ethics