Skip to main content

Taming Combinatorial Challenges in Clutter Removal

  • Conference paper
  • First Online:
Robotics Research (ISRR 2019)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 20))

Included in the following conference series:

  • 1624 Accesses

Abstract

We examine an important combinatorial challenge in clearing clutter using a mobile robot equipped with a manipulator, seeking to compute an optimal object removal sequence for minimizing the task completion time, assuming that each object is grasped once and then subsequently removed. On the structural side, we establish that such an optimal sequence can be NP-hard to compute, even when no two objects to be removed have any overlap. Then, we construct asymptotically optimal and heuristic algorithms for clutter removal. Employing dynamic programming, our optimal algorithm scales to 40 objects. On the other hand, for random clutter, fast greedy algorithms tend to produce solutions comparable to these generated by the optimal algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Berg, M., Khosravi, A.: Optimal binary space partitions in the plane. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 216–225. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14031-0_25

    Chapter  Google Scholar 

  2. Canny, J.: The Complexity of Robot Motion Planning. MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  3. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M. (eds.) CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75538-8_7

    Chapter  Google Scholar 

  4. Dantam, N.T., Kingston, Z.K., Chaudhuri, S., Kavraki, L.E.: Incremental task and motion planning: a constraint-based approach. In: Robotics: Science and Systems, pp. 1–6 (2016)

    Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability. WH Freeman, New York (2002)

    Google Scholar 

  6. Garrett, C.R., Lozano-Pérez, T., Kaelbling, L.P.: FFRob: an efficient heuristic for task and motion planning. In: Akin, H.L., Amato, N.M., Isler, V., van der Stappen, A.F. (eds.) Algorithmic Foundations of Robotics XI. STAR, vol. 107, pp. 179–195. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16595-0_11

    Chapter  Google Scholar 

  7. Halperin, D., Latombe, J.C., Wilson, R.H.: A general framework for assembly planning: the motion space approach. Algorithmica 26(3–4), 577–601 (2000)

    Article  MathSciNet  Google Scholar 

  8. Han, S.D., Stiffler, N.M., Krontiris, A., Bekris, K.E., Yu, J.: Complexity results and fast methods for optimal tabletop rearrangement with overhand grasps. Int. J. Robot. Res. 37(13–14), 1775–1795 (2018)

    Article  Google Scholar 

  9. Havur, G., Ozbilgin, G., Erdem, E., Patoglu, V.: Geometric rearrangement of multiple movable objects on cluttered surfaces: a hybrid reasoning approach. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 445–452. IEEE (2014)

    Google Scholar 

  10. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  Google Scholar 

  11. Kavraki, L., Latombe, J.C., Wilson, R.H.: On the complexity of assembly partitioning. Inf. Process. Lett. 48(5), 229–235 (1993)

    Article  Google Scholar 

  12. Kavraki, L., Svestka, P., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces, vol. 1994 (1994)

    Google Scholar 

  13. Kavraki, L.E., Kolountzakis, M.N.: Partitioning a planar assembly into two connected parts is NP-complete. Inf. Process. Lett. 55(3), 159–165 (1995)

    Article  MathSciNet  Google Scholar 

  14. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_29

    Chapter  Google Scholar 

  15. Krontiris, A., Bekris, K.E.: Dealing with difficult instances of object rearrangement. In: Robotics: Science and Systems (2015)

    Google Scholar 

  16. LaValle, S.M., Kuffner, J.J., Jr.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)

    Article  Google Scholar 

  17. Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 22(10), 560–570 (1979)

    Article  Google Scholar 

  18. Lozano-Perez, T., Wilson, R.H.: Assembly sequencing for arbitrary motions. In: Proceedings IEEE International Conference on Robotics and Automation (ICRA), pp. 527–532 (1993)

    Google Scholar 

  19. Murphy, R.R.: Disaster Robotics. MIT Press, Cambridge (2014)

    Book  Google Scholar 

  20. Natarajan, B.K.: On planning assemblies. In: Proceedings of the Fourth Annual Symposium on Computational Geometry, pp. 299–308. ACM (1988)

    Google Scholar 

  21. Nieuwenhuisen, D., van der Stappen, A.F., Overmars, M.H.: An effective framework for path planning amidst movable obstacles. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds.) Algorithmic Foundation of Robotics VII. STAR, vol. 47, pp. 87–102. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68405-3_6

    Chapter  Google Scholar 

  22. Ota, J.: Rearrangement planning of multiple movable objects by a mobile robot. Adv. Robot. 23(1–2), 1–18 (2009)

    Article  Google Scholar 

  23. Otte, M., Frazzoli, E.: \({\rm RRT^{X}}\): real-time motion planning/replanning for environments with unpredictable obstacles. In: Akin, H.L., Amato, N.M., Isler, V., van der Stappen, A.F. (eds.) Algorithmic Foundations of Robotics XI. STAR, vol. 107, pp. 461–478. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16595-0_27

    Chapter  Google Scholar 

  24. Plaku, E., Hager, G.D.: Sampling-based motion and symbolic action planning with geometric and differential constraints. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 5002–5008. IEEE (2010)

    Google Scholar 

  25. Pratt, G., Manzo, J.: The DARPA robotics challenge [competitions]. IEEE Robot. Autom. Mag. 20(2), 10–12 (2013)

    Article  Google Scholar 

  26. Stilman, M., Kuffner, J.: Planning among movable obstacles with artificial constraints. Int. J. Robot. Res. 27(11–12), 1295–1307 (2008)

    Article  Google Scholar 

  27. Tang, W.N., Yu, J.: Taming combinatorial challenges in optimal clutter removal tasks. arXiv:1905.13530 (2019)

  28. van den Berg, J., Stilman, M., Kuffner, J., Lin, M., Manocha, D.: Path planning among movable obstacles: a probabilistically complete approach. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds.) Algorithmic Foundation of Robotics VIII. STAR, vol. 57, pp. 599–614. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00312-7_37

  29. Vega-Brown, W., Roy, N.: Asymptotically optimal planning under piecewise-analytic constraints. In: The 12th International Workshop on the Algorithmic Foundations of Robotics (2016)

    Google Scholar 

  30. Wilfong, G.: Motion planning in the presence of movable obstacles. Ann. Math. Artif. Intell. 3(1), 131–150 (1991)

    Article  MathSciNet  Google Scholar 

  31. Wilson, R.H., Latombe, J.C.: Geometric reasoning about mechanical assembly. Artif. Intell. 71(2), 371–396 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work is supported by NSF awards IIS-1617744, IIS-1734419, and IIS-1845888. Opinions expressed here do not reflect the views of the sponsor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjin Yu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 9793 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, W.N., Yu, J. (2022). Taming Combinatorial Challenges in Clutter Removal. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (eds) Robotics Research. ISRR 2019. Springer Proceedings in Advanced Robotics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-95459-8_18

Download citation

Publish with us

Policies and ethics