Skip to main content

Geospatial Modelling of Solar Radiation Climate

  • Chapter
  • First Online:
Geospatial Optimization of Solar Energy

Abstract

Proper land planning and management in terms of agro-suitability of crops and adequate placement of solar photovoltaic and thermal technologies require a knowledge of how the solar insolation parameter varies on spatial and temporal scales. In this chapter, we explore methodologies including satellite remote sensing, Numerical Weather Prediction (NWP) model, and regression analysis that could enable countries to map the spatio-temporal variations in solar radiation. These techniques would offer researchers a route to the proper mapping of the solar resource potential for effective policy decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruiz-Arias JA, Quesada-Ruiz S, Fernandez EF, Grueymard CA (2015) Optimal combination of gridded and ground-observed solar radiation data for regional solar resource assessment. Solar Energy 112:411–424

    Article  Google Scholar 

  2. Nonnenmacher L, Kaur A, Coimbra CF (2014) Verification of the SUNY direct normal irradiance model with ground measurements. Solar Energy 99:246–258

    Article  Google Scholar 

  3. Cano D, Monget JM, Albuisson M, Guillard H, Regas N, Wald L (1986) A method for the determination of the global solar radiation from meteorological satellite data. Solar Energy 37(1):31–39

    Article  Google Scholar 

  4. Doorga JR, Rughooputh SD, Boojhawon R (2019) Modelling the global solar radiation climate of Mauritius using regression techniques. Renew Energy 131:861–878

    Article  Google Scholar 

  5. Linares-RodrÃnguez A, Ruiz-Arias JA, Pozo-Vazquez D, Tovar-Pescador J (2011) Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artificial neural networks. Energy 36(8):5356–5365

    Google Scholar 

  6. Harsarapama AP, Aryani DR, Rachmansyah D (2020) Open-source satellite-derived solar resource databases comparison and validation for Indonesia. J Renew Energy

    Google Scholar 

  7. Huld T, Muller R, Gracia-Amillo A, Pfeifroth U, Trentmann J (2017) Surface solar radiation data set Heliosat. Meteosat-East (SARAH-E) 1

    Google Scholar 

  8. Thompson G, Eidhammer T (2014) A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J Atmos Sci 71(10):3636–3658

    Article  Google Scholar 

  9. Gamarro H, Gonzalez JE, Ortiz LE (2019) On the assessment of a numerical weather prediction model for solar photovoltaic power forecasts in cities. J Energy Resour Tech 141(6)

    Google Scholar 

  10. Bungert M (2012) Termination of price wars: a signaling approach. Springer Science and Business Media

    Google Scholar 

  11. Araghinejad S (2013) Data-driven modeling: using MATLAB in water resources and environmental engineering. Springer Science and Business Media, p 67

    Google Scholar 

  12. Xuanxuan Z (2018) Multivariate linear regression analysis on online image study for IoT. Cogn Syst Res 52:312–316

    Article  Google Scholar 

  13. Duffie JA, Beckman WA (2013) Solar engineering of thermal processes. Wiley

    Google Scholar 

  14. Besharat F, Dehghan AA, Faghih AR (2013) Empirical models for estimating global solar radiation: a review and case study. Renew Sustain Energy Rev 21:798–821

    Article  Google Scholar 

  15. Allen RG (1997) Self-calibrating method for estimating solar radiation from air temperature. J Hydrol Eng 2(2):56–67

    Article  Google Scholar 

  16. Prescott JA (1940) Evaporation from a water surface in relation to solar radiation. Trans Roy Soc S, pp 114–118

    Google Scholar 

  17. Almorox JY, Hontoria CJEC (2004) Global solar radiation estimation using sunshine duration in Spain. Energy Convers Manag 45(9–10):1529–1535

    Article  Google Scholar 

  18. Pandey CK, Katiyar AK (2010) Temperature base correlation for the estimation of global solar radiation on horizontal surface. Int J Energy Environ 1(4):737–744

    Google Scholar 

  19. Black JN (1956) The distribution of solar radiation over the earth’s surface. Archiv fur Meteorologie, Geophysik und Bioklimatologie 7(2):165–189

    Article  Google Scholar 

  20. Badescu V (1999) Correlations to estimate monthly mean daily solar global irradiation: application to Romania. Energy 24(10):883–893

    Article  Google Scholar 

  21. Sayigh AAM (1977) Estimation of total radiation intensity-universal formula. Trans Am Geophys Union 58(8):817–817

    Google Scholar 

  22. Swartman RK, Ogunlade O (1967) Solar radiation estimates from common parameters. Solar Energy 11(3–4):170–172

    Article  Google Scholar 

  23. World Bank (2016) Assessing and mapping renewable energy resources. https://documents1.worldbank.org/curated/en/317661469501375609/pdf/107219-ESM-P131926-PUBLIC.pdf. Cited 8 August 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Doorga .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doorga, J., Rughooputh, S., Boojhawon, R. (2022). Geospatial Modelling of Solar Radiation Climate. In: Geospatial Optimization of Solar Energy. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-95213-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95213-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95212-9

  • Online ISBN: 978-3-030-95213-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics