Skip to main content

Supramolecular Electrochemistry: Recent Trends and Perspectives

  • Chapter
  • First Online:
Advances in Bioelectrochemistry Volume 1

Abstract

This book chapter addresses the recent advances in the supramolecular electrochemistry approach concerning investigation of electrochemical phenomena on nanoscale of self-assembled nanomaterials formed from individual components known as molecular building blocks, such as, semiconductive oxides, coordination compounds, metallic nanoparticles, biomolecules, and carbon-based materials. These individual lower-level components carry in their structures information that can be combined through self-assembly, self-recognition, dynamic nature, and self-organization processes in order to design new functional hybrid nanoarchitectures, nanocomposites, self-assembled monolayers, and 2-D multilayer assemblies. Generally, the self-assembled nanostructures exhibit high stability, chemical reactivity, and desirable targeting properties. We highlight the successful use of supramolecular electrochemistry strategy to understand the thermodynamics and kinetics proprieties developed by smart self-assembled nanomaterials used for construction of sensor, biosensor, electronic device, energy storage, and electrochemical device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silva, A.T.B., et al.: Nano-assembled supramolecular films from chitosan-stabilized gold nanoparticles and cobalt(II) phthalocyanine. J. Braz. Chem. Soc. 24, 1237–1245 (2013)

    CAS  Google Scholar 

  2. Carvalho, C.L.C., et al.: New hybrid nanomaterial based on self-assembly of cyclodextrins and cobalt Prussian blue analogue nanocubes. Int. J. Mol. Sci. 16, 14594–14607 (2015)

    Article  CAS  Google Scholar 

  3. Zhang, T., Ran, J., Ma, C., Yang, B.: A universal approach to enhance glucose biosensor performance by building blocks of Au nanoparticles. Adv. Mater. Interfaces 7, 1–9 (2020)

    Google Scholar 

  4. Samoľová, E., Premužić, D., Plociennik, S., Hołyńska, M.: Bis(benzimidazole) as supramolecular building block in manganese(IV) chemistry. J. Mol. Struct. 1176, 366–375 (2019)

    Article  CAS  Google Scholar 

  5. Sun, M. et al.: Multifunctional polymer bearing malonylurea groups for the fabrication of coordination complexes and supramolecular assemblies. Eur. Polym. J. 156, 110616 (2021)

    Google Scholar 

  6. Pinyou, P., Blay, V., Muresan, L.M., Noguer, T.: Enzyme-modified electrodes for biosensors and biofuel cells. Mater. Horizons 6, 1336–1358 (2019)

    Article  CAS  Google Scholar 

  7. Liu, C., Wang, Y.: Supramolecular chemistry of titanium oxide clusters. Chem. A Eur. J. 27, 4270–4282 (2021)

    Article  CAS  Google Scholar 

  8. Zhou, Y., Mintz, K.J., Sharma, S.K., Leblanc, R.M.: Carbon dots: diverse preparation, application, and perspective in surface chemistry. Langmuir 35, 9115–9132 (2019)

    Article  CAS  Google Scholar 

  9. Long, K., Liu, Y., Li, Y., Wang, W.: Self-assembly of trigonal building blocks into nanostructures: molecular design and biomedical applications. J. Mater. Chem. B 8, 6739–6752 (2020)

    Article  CAS  Google Scholar 

  10. Lindoy, L.F., Park, K.M., Lee, S.S.: Metals, macrocycles and molecular assemblies – macrocyclic complexes in metallo-supramolecular chemistry. Chem. Soc. Rev. 42, 1713–1727 (2013)

    Article  CAS  Google Scholar 

  11. Manke, A.M., Geisel, K., Fetzer, A., Kurz, P.: A water-soluble tin(iv) porphyrin as a bioinspired photosensitiser for light-driven proton-reduction. Phys. Chem. Chem. Phys. 16, 12029–12042 (2014)

    Article  CAS  Google Scholar 

  12. Gouyau, J., Duval, R.E., Boudier, A., Lamouroux, E.: Investigation of nanoparticle metallic core antibacterial activity: gold and silver nanoparticles against escherichia coli and staphylococcus aureus. Int. J. Mol. Sci. 22, 1–15 (2021)

    Article  CAS  Google Scholar 

  13. Mosquera, J., et al.: Plasmonic nanoparticles with supramolecular recognition. Adv. Funct. Mater. 30, 1–17 (2020)

    Article  CAS  Google Scholar 

  14. Montes-García, V. et al.: Harnessing selectivity and sensitivity in ion sensing via supramolecular recognition: a 3D hybrid gold nanoparticle network chemiresistor. Adv. Funct. Mater. 31 (2021)

    Google Scholar 

  15. Golub, E., Pelossof, G., Freeman, R., Zhang, H., Willner, I.: Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles. Anal. Chem. 81, 9291–9298 (2009)

    Article  CAS  Google Scholar 

  16. Lopes, L.C.S., et al.: Silver and gold nanoparticles from tannic acid: synthesis, characterization and evaluation of antileishmanial and cytotoxic activities. An. Acad. Bras. Cienc. 90, 2679–2689 (2018)

    Article  CAS  Google Scholar 

  17. Wang, Z., Zhang, Y., Liu, S., Zhang, T.: Preparation of Ag nanoparticles-SnO2 nanoparticles-reduced graphene oxide hybrids and their application for detection of NO2 at room temperature. Sens. Actuators, B Chem. 222, 893–903 (2016)

    Article  CAS  Google Scholar 

  18. Lin, M., et al.: Growth-dissolution-regrowth transitions of Fe3O4 nanoparticles as building blocks for 3D magnetic nanoparticle clusters under hydrothermal conditions. Langmuir 29, 15433–15441 (2013)

    Article  CAS  Google Scholar 

  19. Ma, Q., et al.: Fe3O4 nanoparticles coated with polyhedral oligomeric silsesquioxanes and β-cyclodextrin for magnetic solid-phase extraction of carbaryl and carbofuran. J. Sep. Sci. 43, 1514–1522 (2020)

    Article  CAS  Google Scholar 

  20. de Lima, L.F., et al.: An investigation of the synergistic effect between magnetite nanoparticles and polypyrrole in nanostructured layer-by-layer films. J. Appl. Polym. Sci. 138 (2021)

    Google Scholar 

  21. Chen, G.H., et al.: Self-assembly of a Ti4(embonate)6Cage toward silver. Inorg. Chem. 59, 14861–14865 (2020)

    Article  CAS  Google Scholar 

  22. Al Sharie, A.H., et al.: Green synthesis of zinc oxide nanoflowers using hypericum triquetrifolium extract: characterization, antibacterial activity and cytotoxicity against lung cancer A549 cells. Appl. Organomet. Chem. 34, 1–13 (2020)

    Google Scholar 

  23. Suchea, M.P., et al.: Article obtaining nanostructured zno onto si coatings for optoelectronic applications via eco-friendly chemical preparation routes. Nanomaterials 11, (2021)

    Google Scholar 

  24. Hassan, K., Hossain, R., Sahajwalla, V.: Novel microrecycled ZnO nanoparticles decorated macroporous 3D graphene hybrid aerogel for efficient detection of NO2 at room temperature. Sens. Actuators, B Chem. 330, 129278 (2021)

    Google Scholar 

  25. Wang, L., et al.: Fluorescent hybrid nanospheres induced by single-stranded DNA and magnetic carbon quantum dots. New J. Chem. 43, 4965–4974 (2019)

    Article  CAS  Google Scholar 

  26. Zhang, C., Miao, P., Sun, M., Yan, M., Liu, H.: Progress in miRNA detection using graphene material-based biosensors. Small 15, 1–23 (2019)

    Google Scholar 

  27. Dong, X.C., et al.: 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6, 3206–3213 (2012)

    Article  CAS  Google Scholar 

  28. Nasibulin, A.G., et al.: A novel hybrid carbon material. Nat. Nanotechnol. 2, 156–161 (2007)

    Article  CAS  Google Scholar 

  29. Sarkar, S., Dinda, S., Choudhury, P., Kumar Das, P.: Self-assembly of surface functionalized amphiphilic carbon dots: tuning in morphological manifestations. Soft Matter 15, 2863–2875 (2019)

    Google Scholar 

  30. Wareing, T.C., Gentile, P., Phan, A.N.: Biomass-based carbon dots: current development and future perspectives. ACS Nano (2021). https://doi.org/10.1021/acsnano.1c03886

    Article  Google Scholar 

  31. Rozhin, P., Charitidis, C., Marchesan, S.: Self-assembling peptides and carbon nanomaterials join forces for innovative biomedical applications. Molecules 26 (2021)

    Google Scholar 

  32. Yao, S., Yuan, X., Jiang, L., Xiong, T., Zhang, J.: Recent Progress on Fullerene-Based Materials (2020)

    Google Scholar 

  33. Antoku, D., Sugikawa, K., Ikeda, A.: Photodynamic activity of fullerene derivatives solubilized in water by natural-product-based solubilizing agents. Chem. A Eur. J. 25, 1854–1865 (2019)

    Article  CAS  Google Scholar 

  34. Shahzad, K., Tahir, M.B., Sagir, M.: Engineering the performance of heterogeneous WO3/fullerene@Ni3B/Ni(OH)2 photocatalysts for hydrogen generation. Int. J. Hydrogen Energy 44, 21738–21745 (2019)

    Article  CAS  Google Scholar 

  35. Ciesielski, A., Samorì, P.: Supramolecular approaches to graphene: from self-assembly to molecule-assisted liquid-phase exfoliation. Adv. Mater. 28, 6030–6051 (2016)

    Article  CAS  Google Scholar 

  36. Liu, Z., et al.: Ultralight hybrid silica aerogels derived from supramolecular hydrogels self-assembled from insoluble nano building blocks. RSC Adv. 11, 7331–7337 (2021)

    Article  CAS  Google Scholar 

  37. Yang, F., et al.: Chirality pure carbon nanotubes: growth, sorting, and characterization. Chem. Rev. 120, 2693–2758 (2020)

    Article  CAS  Google Scholar 

  38. Fang, R., et al.: The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 31, 1–22 (2019)

    Google Scholar 

  39. Ortiz, E., Gallay, P., Galicia, L., Eguílaz, M., Rivas, G.: Nanoarchitectures based on multi-walled carbon nanotubes non-covalently functionalized with Concanavalin A: a new building-block with supramolecular recognition properties for the development of electrochemical biosensors. Sens. Actuators, B Chem. 292, 254–262 (2019)

    Article  CAS  Google Scholar 

  40. Wu, L.L., et al.: Formation of hierarchical NiFe Prussian blue analogues/Prussian blue on nickel foam for superior water oxidation. Appl. Surf. Sci. 567, 1–8 (2021)

    Google Scholar 

  41. Rodrigues, W.V., et al.: Structural reorganization of CuO/Cu2 [Fe(Cn)6] nanocomposite: characterization and electrocatalytic effect for the hydrogen peroxide reduction. An. Acad. Bras. Cienc. 92, 1–16 (2020)

    Article  Google Scholar 

  42. Niu, Q., et al.: Glucose-sensing abilities of mixed-metal (Ni[sbnd]Co) Prussian blue analogs hollow nanocubes. J. Electroanal. Chem. 874, 114507 (2020)

    Google Scholar 

  43. Carvalho, C.L.C., et al.: Development of Co3[Co(CN)6]2/Fe3O4 bifunctional nanocomposite for clinical sensor applications. ACS Appl. Nano Mater. 1, 4283–4293 (2018)

    Article  CAS  Google Scholar 

  44. Moraes, R.R., Farias, E.A. de O., Carvalho, C.L.C., Cantanhêde, W., Eiras, C.: Development of cashew gum-based bionanocomposite as a platform for electrochemical trials. Int. J. Biol. Macromol. 153, 118–127 (2020)

    Google Scholar 

  45. Guo, J., Suma, T., Richardson, J.J., Ejima, H.: Modular assembly of biomaterials using polyphenols as building blocks. ACS Biomater. Sci. Eng. 5, 5578–5596 (2019)

    Article  CAS  Google Scholar 

  46. Mathivanan, N., et al.: Hydrogen-bonded multilayer thin films and capsules based on poly(2-n-propyl-2-oxazoline) and tannic acid: investigation on intermolecular forces, stability, and permeability. Langmuir 35, 14712–14724 (2019)

    Article  CAS  Google Scholar 

  47. Abe, I., et al.: A trigonal molecular assembly system with the dual light-driven functions of phase transition and fluorescence switching. J. Mater. Chem. C 7, 2276–2282 (2019)

    Article  CAS  Google Scholar 

  48. Abe, I., Han, M.: Green-light-induced melting of self-assembled azobenzene nano/microstructures. New J. Chem. 43, 19014–19019 (2019)

    Article  CAS  Google Scholar 

  49. Yin, H., Wang, H., Li, Z., Shu, D., Guo, P.: RNA micelles for the systemic delivery of anti-miRNA for cancer targeting and inhibition without ligand. ACS Nano 13, 706–717 (2019)

    Article  CAS  Google Scholar 

  50. Liu, R., Hudalla, G.A.: Using self-assembling peptides to integrate biomolecules into functional supramolecular biomaterials. Molecules 24, 15–21 (2019)

    Google Scholar 

  51. Moon, H., Lee, C., Lee, W., Kim, J., Chae, H.: Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater. 31, 1–14 (2019)

    Article  Google Scholar 

  52. Hasan, S., et al.: Thermodynamic modelling of InAs/InP(0 0 1) growth towards quantum dots formation by metalorganic vapor phase epitaxy. J. Cryst. Growth 509, 133–140 (2019)

    Article  CAS  Google Scholar 

  53. Sun, R., et al.: Dual quantum dots decorated TiO2 nanorod arrays for efficient CO2 reduction. J. Catal. 378, 192–200 (2019)

    Article  CAS  Google Scholar 

  54. Sowa, A., Voskuhl, J.: Host-guest complexes–boosting the performance of photosensitizers. Int. J. Pharm. 586, 119595 (2020)

    Google Scholar 

  55. Khurana, R., et al.: Supramolecular nanorods of (N-methylpyridyl) porphyrin with captisol: effective photosensitizer for anti-bacterial and anti-tumor activities. Front. Chem. 7, 1–11 (2019)

    Article  CAS  Google Scholar 

  56. Shee, N.K., Kim, M.K., Kim, H.J.: Fluorescent chemosensing for aromatic compounds by a supramolecular complex composed of tin(iv) porphyrin, viologen, and cucurbit[8]uril. Chem. Commun. 55, 10575–10578 (2019)

    Article  CAS  Google Scholar 

  57. Yao, T.T., et al.: A photodynamic antibacterial spray-coating based on the host-guest immobilization of the photosensitizer methylene blue. J. Mater. Chem. B 7, 5089–5095 (2019)

    Article  CAS  Google Scholar 

  58. Tang, Y., et al.: Redox-responsive poly(ionic liquid) microgels explored as the building blocks for supramolecular assembly. Polymer (Guildf) 220, 123575 (2021)

    Google Scholar 

  59. Ahmad, R., et al.: Deposition of nanomaterials: a crucial step in biosensor fabrication. Mater. Today Commun. 17, 289–321 (2018)

    Article  CAS  Google Scholar 

  60. Cui, K., Dorner, I., Mertens, S.F.L.: Interfacial supramolecular electrochemistry. Curr. Opin. Electrochem. 8, 156–163 (2018)

    Article  CAS  Google Scholar 

  61. Hein, R., Beer, P.D., Davis, J.J.: Electrochemical anion sensing: supramolecular approaches. Chem. Rev. 120, 1888–1935 (2020)

    Article  CAS  Google Scholar 

  62. Ran, X., et al.: Water-soluble pillar[6]arene functionalized nitrogen-doped carbon quantum dots with excellent supramolecular recognition capability and superior electrochemical sensing performance towards TNT. Sens. Actuators, B Chem. 257, 362–371 (2018)

    Article  CAS  Google Scholar 

  63. Boumya, W., Taoufik, N., Achak, M., Barka, N.: Chemically modified carbon-based electrodes for the determination of paracetamol in drugs and biological samples. J. Pharm. Anal. 11, 138–154 (2021)

    Article  Google Scholar 

  64. Watson, S., Nie, M., Wang, L., Stokes, K.: Challenges and developments of self-assembled monolayers and polymer brushes as a green lubrication solution for tribological applications. RSC Adv. 5, 89698–89730 (2015)

    Article  CAS  Google Scholar 

  65. Alotaibi, H.F., Al Thaher, Y., Perni, S., Prokopovich, P.: Role of processing parameters on surface and wetting properties controlling the behaviour of layer-by-layer coated nanoparticles. Curr. Opin. Colloid Interface Sci. 36, 130–142 (2018)

    Google Scholar 

  66. Li, X., et al.: Conducting polymers in environmental analysis. TrAC Trends Anal. Chem. 39, 163–179 (2012)

    Article  CAS  Google Scholar 

  67. Rizzo, H.F., Bidwell, L.R.: Formation and structure of SiB4. J. Am. Ceram. Soc. 43, 550–552 (1960)

    Article  CAS  Google Scholar 

  68. Singh, M., Kaur, N., Comini, E.: The role of self-assembled monolayers in electronic devices. J. Mater. Chem. C 8, 3938–3955 (2020)

    Article  CAS  Google Scholar 

  69. Kong, G.D., et al.: Mixed molecular electronics: tunneling behaviors and applications of mixed self-assembled monolayers. Adv. Electron. Mater. 6, 1–19 (2020)

    Article  CAS  Google Scholar 

  70. Liu, Y., Qiu, X., Soni, S., Chiechi, R.C.: Charge transport through molecular ensembles: recent progress in molecular electronics. Chem. Phys. Rev. 2, 021303 (2021)

    Google Scholar 

  71. Lin, Y., et al.: Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett. 5, 2935–2944 (2020)

    Article  CAS  Google Scholar 

  72. Kong, G.D., et al.: Interstitially mixed self-assembled monolayers enhance electrical stability of molecular junctions. Nano Lett. 21, 3162–3169 (2021)

    Article  CAS  Google Scholar 

  73. Qi, L., Tian, H., Shao, H., Yu, H.Z.: Host-guest interaction at molecular interfaces: Cucurbit[7]uril as a sensitive probe of structural heterogeneity in ferrocenyl self-assembled monolayers on gold. J. Phys. Chem. C 122, 15986–15995 (2018)

    Article  CAS  Google Scholar 

  74. Li, Y., Li, Y., Zhang, Y., Song, Y., Jiang, Y.: A rapid and sensitive electrochemical sensor for hydroxyl free radicals based on self-assembled monolayers of carboxyl functionalized graphene. J. Solid State Electrochem. 23, 187–194 (2019)

    Article  CAS  Google Scholar 

  75. Xu, X., et al.: Structural changes of mercaptohexanol self-assembled monolayers on gold and their influence on impedimetric aptamer sensors. Anal. Chem. (2019). https://doi.org/10.1021/acs.analchem.9b03946

    Article  Google Scholar 

  76. Yılmaz Aykut, D., Yolaçan, Ö., Deligöz, H.: pH stimuli drug loading/release platforms from LbL single/blend films: QCM-D and in-vitro studies. Colloids Surfaces A Physicochem. Eng. Asp. 602 (2020)

    Google Scholar 

  77. Ariga, K., Ahn, E., Park, M., Kim, B.S.: Layer-by-layer assembly: recent progress from layered assemblies to layered nanoarchitectonics. Chem. An Asian J. 14, 2553–2566 (2019)

    Article  CAS  Google Scholar 

  78. Zhang, X., Chen, H., Zhang, H.: Layer-by-layer assembly: from conventional to unconventional methods. Chem. Commun. 1395–1405 (2007). https://doi.org/10.1039/b615590a

  79. Li, Y., Wang, X., Sun, J.: Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem. Soc. Rev. 41, 5998–6009 (2012)

    Article  CAS  Google Scholar 

  80. Wang, S., et al.: Graphene quantum dot-assisted preparation of water-borne reduced graphene oxide/polyaniline: from composite powder to layer-by-layer self-assembly film and performance enhancement. Electrochim. Acta 295, 29–38 (2019)

    Article  CAS  Google Scholar 

  81. Wu, S., et al.: Layer-by-layer self-assembly film of PEI-reduced graphene oxide composites and cholesterol oxidase for ultrasensitive cholesterol biosensing. Sens. Actuators, B Chem. 298, 126856 (2019)

    Google Scholar 

  82. Correia, A.R., Sampaio, I., Comparetti, E.J., Vieira, N.C.S., Zucolotto, V.: Optimized PAH/Folic acid layer-by-layer films as an electrochemical biosensor for the detection of folate receptors. Bioelectrochemistry 137, 107685 (2021)

    Google Scholar 

  83. Guzmán, E., Rubio, R.G., Ortega, F.: A closer physico-chemical look to the layer-by-layer electrostatic self-assembly of polyelectrolyte multilayers. Adv. Colloid Interface Sci. 282, 102197 (2020)

    Google Scholar 

  84. Gu, M., Kim, B.S.: Electrochemistry of multilayer electrodes: from the basics to energy applications. Acc. Chem. Res. 54, 57–69 (2021)

    Google Scholar 

  85. Wang, Z., et al. Layer-by-layer self-assembled nanostructured electrodes for lithium-ion batteries. Small 17 (2021)

    Google Scholar 

  86. Wang, S., et al.: High-performance layer-by-layer self-assembly PANI/GQD-rGO/CFC electrodes for a flexible solid-state supercapacitor by a facile spraying technique. ACS Appl. Energy Mater. 2, 1077–1085 (2019)

    Article  CAS  Google Scholar 

  87. Pu, J., et al.: Electrodeposition technologies for Li-based batteries: new frontiers of energy storage. Adv. Mater. 32, 1–28 (2020)

    CAS  Google Scholar 

  88. Palomar-Pardavé, M., et al.: Supramolecular interaction of dopamine with β-cyclodextrin: an experimental and theoretical electrochemical study. J. Electroanal. Chem. 717–718, 103–109 (2014)

    Article  CAS  Google Scholar 

  89. Healy, B., Yu, T., da Silva Alves, D.C., Okeke, C., Breslin, C.B.: Cyclodextrins as supramolecular recognition systems: applications in the fabrication of electrochemical sensors. Materials (Basel) 14 (2021)

    Google Scholar 

  90. Unger, C., Lieberzeit, P.A.: Molecularly imprinted thin film surfaces in sensing: chances and challenges. React. Funct. Polym. 161, 104855 (2021)

    Google Scholar 

  91. Uppachai, P., Srijaranai, S., Poosittisak, S., Isa, I.M., Mukdasai, S.: Supramolecular electrochemical sensor for dopamine detection based on self-assembled mixed surfactants on gold nanoparticles deposited graphene oxide. Molecules 25 (2020)

    Google Scholar 

  92. Esmaeily, Z., Madrakian, T., Afkhami, A., Ghoorchian, A., Ghasemzadeh-Mohammadi, V.: Electropolymerization as an electrochemical preconcentration approach for the determination of melamine in milk samples. Electrochim. Acta 390, 138897 (2021)

    Google Scholar 

  93. Mangadlao, J.D., et al.: Grafted carbazole-assisted electrodeposition of graphene oxide. ACS Appl. Mater. Interfaces 7, 10266–10274 (2015)

    Article  CAS  Google Scholar 

  94. Ohtani, Y., Kumano, K., Saneshige, M., Takami, K., Hoshi, H.: Effect of electropolymerization duration on the structure and performance of polypyrrole/graphene nanoplatelet counter electrode for dye-sensitized solar cells. J. Solid State Electrochem. 25, 2107–2113 (2021)

    Article  CAS  Google Scholar 

  95. Yang, J., et al. Electropolymerization process dependent poly(1,4-di(2-thienyl)benzene) based full spectrum activated photocathodes for efficient photoelectrochemical hydrogen evolution. J. Electroanal. Chem. 903, 115712 (2021)

    Google Scholar 

  96. Zhang, D., Zhang, J., Pan, M., Wang, Y., Sun, T.: Necklace-like C-ZIF-8@MWCNTs fabricated by electrochemical deposition towards enhanced supercapacitor. J. Alloys Compd. 853, 157368 (2021)

    Google Scholar 

  97. Abbasi Kajani, A., Haghjooy Javanmard, S., Asadnia, M., Razmjou, A.: Recent advances in nanomaterials development for nanomedicine and cancer. ACS Appl. Bio Mater. (2021). https://doi.org/10.1021/acsabm.1c00591

  98. Hu, Q., Li, H., Wang, L., Gu, H., Fan, C.: DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 119, 6459–6506 (2019)

    Article  CAS  Google Scholar 

  99. Baig, N., Sajid, M., Saleh, T.A.: Recent trends in nanomaterial-modified electrodes for electroanalytical applications. TrAC Trends Anal. Chem. 111, 47–61 (2019)

    Article  CAS  Google Scholar 

  100. Da Silva, E.T.S.G., et al.: Electrochemical biosensors in point-of-care devices: recent advances and future trends. ChemElectroChem 4, 778–794 (2017)

    Article  CAS  Google Scholar 

  101. Roushani, M., Rahmati, Z., Farokhi, S., Hoseini, S.J., Fath, R.H.: The development of an electrochemical nanoaptasensor to sensing chloramphenicol using a nanocomposite consisting of graphene oxide functionalized with (3‐Aminopropyl) triethoxysilane and silver nanoparticles. Mater. Sci. Eng. C 108, 110388 (2020)

    Google Scholar 

  102. Gayda, G.Z., et al.: Metallic nanoparticles obtained via ‘green’ synthesis as a platform for biosensor construction. Appl. Sci. 9, (2019)

    Google Scholar 

  103. Avelino, K.Y.P.S., Oliveira, L.S., Lucena-Silva, N., Andrade, C.A.S., Oliveira, M.D.L.: Flexible sensor based on conducting polymer and gold nanoparticles for electrochemical screening of HPV families in cervical specimens. Talanta 226 (2021)

    Google Scholar 

  104. Avelino, K.Y.P.S., et al. Nanostructured sensor platform based on organic polymer conjugated to metallic nanoparticle for the impedimetric detection of SARS-CoV-2 at various stages of viral infection. J. Pharm. Biomed. Anal. 206, 114392 (2021)

    Google Scholar 

  105. Fatema, K.N., Oh, W.C.: A comparative electrochemical study of non-enzymatic glucose, ascorbic acid, and albumin detection by using a ternary mesoporous metal oxide (ZrO2, SiO2 and In2O3) modified graphene composite based biosensor. RSC Adv. 11, 4256–4269 (2021)

    Article  CAS  Google Scholar 

  106. Hashemi, S.A., et al.: Coupled graphene oxide with hybrid metallic nanoparticles as potential electrochemical biosensors for precise detection of ascorbic acid within blood. Anal. Chim. Acta 1107, 183–192 (2020)

    Article  CAS  Google Scholar 

  107. Xia, J., Zou, B., Liu, F., Wang, P., Yan, Y.: Sensitive glucose biosensor based on cyclodextrin modified carbon nanotubes for detecting glucose in honey. J. Food Compos. Anal. 105, 104221 (2022)

    Google Scholar 

  108. Zamiri, G., et al.: Ternary nanocomposite cathodes based on 3D graphene-Ag nanoparticle-polyaniline for hybrid electrochemical energy device. Synth. Met. 282, 116932 (2021)

    Google Scholar 

  109. Cao, R., Díaz-García, A.M., Cao, R.: Coordination compounds built on metal surfaces. Coord. Chem. Rev. 253, 1262–1275 (2009)

    Article  CAS  Google Scholar 

  110. Carvalho, C.L.C., et al.: Effect of Ibuprofen on the electrochemical properties of Prussian blue/single-walled carbon nanotubes nanocomposite modified electrode. Surfaces Interfaces 25 (2021)

    Google Scholar 

Download references

Acknowledgements

The financial support from CAPES and CNPq (436086/2018-2 and 314456/2020-1 projects) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Welter Cantanhêde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soares, A.M.B.F., Carvalho, C.L.C., de Andrade Rodrigues, G., Luz, R.A.S., Gerôncio, E.T.S., Cantanhêde, W. (2022). Supramolecular Electrochemistry: Recent Trends and Perspectives. In: Crespilho, F.N. (eds) Advances in Bioelectrochemistry Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-94988-4_6

Download citation

Publish with us

Policies and ethics