Skip to main content

Artificial Intelligence in Breast Imaging

  • Chapter
  • First Online:
Breast Imaging

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

The development and implementation of artificial intelligence (AI) for breast imaging have been ongoing for several decades and have played an important role in clinical practice. With the emergence and maturity of deep learning (DL) algorithms, the application of AI technology in medical imaging has gradually moved to a higher level and broader range. It may break the performance bottleneck of traditional computer-aided detection/diagnosis (CAD) systems. This chapter reviews the three domains of clinical use cases for AI techniques in breast imaging, including risk assessment for screening, breast cancer detection and classification for diagnosis, and therapy selection and outcome prediction for interventions. As for future directions, it is necessary to improve the AI-based system’s interpretability and performance in a clinical application and maximize its clinical impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Antari MA, Al-Masni MA, Choi MT, Han SM, Kim TS (2018) A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int J Med Inform 117:44–54

    Article  PubMed  Google Scholar 

  • Al-Masni MA, Al-Antari MA, Park J-M, Gi G, Kim T-Y, Rivera P et al (2018) Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Comput Methods Programs Biomed 157:85–94

    Article  PubMed  Google Scholar 

  • Arefan D, Mohamed AA, Berg WA, Zuley ML, Sumkin JH, Wu S (2020) Deep learning modeling using normal mammograms for predicting breast cancer risk. Med Phys 47(1):110–118

    Article  PubMed  Google Scholar 

  • Bahl M (2020) Artificial intelligence: a primer for breast imaging radiologists. J Breast Imaging 2(4):304–314

    Article  PubMed  PubMed Central  Google Scholar 

  • Barinov L, Jairaj A, Becker M, Seymour S, Lee E, Schram A et al (2019) Impact of data presentation on physician performance utilizing artificial intelligence-based computer-aided diagnosis and decision support systems. J Digit Imaging 32(3):408–416

    Article  CAS  PubMed  Google Scholar 

  • Bejnordi BE, Veta M, Van Diest PJ, Van Ginneken B, Karssemeijer N, Litjens G et al (2017) Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22):2199–2210

    Article  Google Scholar 

  • Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A et al (2019) Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin 69(2):127–157

    PubMed  PubMed Central  Google Scholar 

  • Boulehmi H, Mahersia H, Hamrouni K (2016) A new CAD system for breast microcalcifications diagnosis. Int J Adv Comput Sci Appl 7(4):133–143

    Google Scholar 

  • Braman N, Adoui ME, Vulchi M, Turk P, Etesami M, Fu P et al (2020) Deep learning-based prediction of response to HER2-targeted neoadjuvant chemotherapy from pre-treatment dynamic breast MRI: a multi-institutional validation study. arXiv preprint arXiv:08570

    Google Scholar 

  • Brem RF, Baum J, Lechner M, Kaplan S, Souders S, Naul LG et al (2003) Improvement in sensitivity of screening mammography with computer-aided detection: a multiinstitutional trial. AJR Am J Roentgenol 181(3):687–693

    Article  PubMed  Google Scholar 

  • Brentnall AR, Harkness EF, Astley SM, Donnelly LS, Stavrinos P, Sampson S et al (2015) Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res 17(1):1–10

    Article  Google Scholar 

  • Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295(21):2492–2502

    Article  CAS  PubMed  Google Scholar 

  • Chan HP, Doi K, Galhotra S, Vyborny CJ, MacMahon H, Jokich PM (1987) Image feature analysis and computer-aided diagnosis in digital radiography. I. Automated detection of microcalcifications in mammography. Med Phys 14(4):538–548

    Article  CAS  PubMed  Google Scholar 

  • Chan HP, Doi K, Vyborny CJ, Schmidt RA, Metz CE, Lam KL et al (1990) Improvement in radiologists’ detection of clustered microcalcifications on mammograms. The potential of computer-aided diagnosis. Invest Radiol 25(10):1102–1110

    Article  CAS  PubMed  Google Scholar 

  • Chan HP, Samala RK, Hadjiiski LM (2020) CAD and AI for breast cancer-recent development and challenges. Br J Radiol 93(1108):20190580

    Article  PubMed  Google Scholar 

  • Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ et al (2017) Deep learning: a primer for radiologists. Radiographics 37(7):2113–2131

    Article  PubMed  Google Scholar 

  • Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining

    Google Scholar 

  • Cho E, Kim EK, Song MK, Yoon JH (2018) Application of computer-aided diagnosis on breast ultrasonography: evaluation of diagnostic performances and agreement of radiologists according to different levels of experience. J Ultrasound Med 37(1):209–216

    Article  PubMed  Google Scholar 

  • Choi JH, Kim H-A, Kim W, Lim I, Lee I, Byun BH et al (2020) Early prediction of neoadjuvant chemotherapy response for advanced breast cancer using PET/MRI image deep learning. Sci Rep 10(1):1–11

    Article  Google Scholar 

  • Ciritsis A, Rossi C, Eberhard M, Marcon M, Becker AS, Boss A (2019) Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making. Eur Radiol 29(10):5458–5468

    Article  PubMed  Google Scholar 

  • Conant EF, Toledano AY, Periaswamy S, Fotin SV, Go J, Boatsman JE et al (2019) Improving accuracy and efficiency with concurrent use of artificial intelligence for digital breast tomosynthesis. Radiol Artif Intell 1(4):e180096

    Article  PubMed  PubMed Central  Google Scholar 

  • Cong J, Wei B, He Y, Yin Y, Zheng Y (2017) A selective ensemble classification method combining mammography images with ultrasound images for breast cancer diagnosis. Comput Math Methods Med 2017:4896386

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalmış MU, Vreemann S, Kooi T, Mann RM, Karssemeijer N, Gubern-Mérida A (2018) Fully automated detection of breast cancer in screening MRI using convolutional neural networks. J Med Imaging 5(1):014502

    Article  Google Scholar 

  • Dalmis MU, Gubern-Merida A, Vreemann S, Bult P, Karssemeijer N, Mann R et al (2019) Artificial intelligence-based classification of breast lesions imaged with a multiparametric breast MRI protocol with ultrafast DCE-MRI, T2, and DWI. Invest Radiol 54(6):325–332

    Article  PubMed  Google Scholar 

  • Dembrower K, Liu Y, Azizpour H, Eklund M, Smith K, Lindholm P et al (2020) Comparison of a deep learning risk score and standard mammographic density score for breast cancer risk prediction. Radiology 294(2):265–272

    Article  PubMed  Google Scholar 

  • Do S, Song KD, Chung JW (2020) Basics of deep learning: a radiologist’s guide to understanding published radiology articles on deep learning. Korean J Radiol 21(1):33–41

    Article  PubMed  Google Scholar 

  • Dorrius MD, Jansen-van der Weide MC, van Ooijen PM, Pijnappel RM, Oudkerk M (2011) Computer-aided detection in breast MRI: a systematic review and meta-analysis. Eur Radiol 21(8):1600–1608

    Article  PubMed  PubMed Central  Google Scholar 

  • El Adoui M, Drisis S, Benjelloun M (2020) Multi-input deep learning architecture for predicting breast tumor response to chemotherapy using quantitative MR images. Int J Comput Assist Radiol Surg 15(9):1491–1500

    Article  PubMed  Google Scholar 

  • Elmore JG, Jackson SL, Abraham L, Miglioretti DL, Carney PA, Geller BM et al (2009) Variability in interpretive performance at screening mammography and radiologists’ characteristics associated with accuracy. Radiology 253(3):641–651

    Article  PubMed  PubMed Central  Google Scholar 

  • Faneyte IF, Schrama JG, Peterse JL, Remijnse PL, Rodenhuis S, van de Vijver MJ (2003) Breast cancer response to neoadjuvant chemotherapy: predictive markers and relation with outcome. Br J Cancer 88(3):406–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fathy WE, Ghoneim AS (2019) A deep learning approach for breast cancer mass detection. Int J Adv Comput Sci Appl 10(1). https://doi.org/10.14569/IJACSA.2019.0100123

  • Fenton JJ, Taplin SH, Carney PA, Abraham L, Sickles EA, D’Orsi C et al (2007) Influence of computer-aided detection on performance of screening mammography. N Engl J Med 356(14):1399–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujioka T, Kubota K, Mori M, Kikuchi Y, Katsuta L, Kasahara M et al (2019) Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network. Jpn J Radiol 37(6):466–472

    Article  PubMed  Google Scholar 

  • Geras KJ, Mann RM, Moy L (2019) Artificial intelligence for mammography and digital breast tomosynthesis: current concepts and future perspectives. Radiology 293(2):246–259

    Article  PubMed  Google Scholar 

  • Ha R, Chang P, Karcich J, Mutasa S, Van Sant EP, Liu MZ et al (2019a) Convolutional neural network based breast cancer risk stratification using a mammographic dataset. Acad Radiol 26(4):544–549

    Article  PubMed  Google Scholar 

  • Ha R, Chin C, Karcich J, Liu MZ, Chang P, Mutasa S et al (2019b) Prior to initiation of chemotherapy, can we predict breast tumor response? Deep learning convolutional neural networks approach using a breast MRI tumor dataset. J Digit Imaging 32(5):693–701

    Article  PubMed  Google Scholar 

  • Habib G, Kiryati N, Sklair-Levy M, Shalmon A, Neiman OH, Weidenfeld RF et al (2020) Automatic breast lesion classification by joint neural analysis of mammography and ultrasound. Multimodal learning for clinical decision support and clinical image-based procedures. Springer, New York, pp 125–135

    Google Scholar 

  • He T, Puppala M, Ezeana CF, Huang YS, Chou PH, Yu X et al (2019) A deep learning-based decision support tool for precision risk assessment of breast cancer. JCO Clin Cancer Inform 3:1–12

    Article  PubMed  Google Scholar 

  • Herent P, Schmauch B, Jehanno P, Dehaene O, Saillard C, Balleyguier C et al (2019) Detection and characterization of MRI breast lesions using deep learning. Diagn Interv Imaging 100(4):219–225

    Article  CAS  PubMed  Google Scholar 

  • Houssami N, Hunter K (2017) The epidemiology, radiology and biological characteristics of interval breast cancers in population mammography screening. NPJ Breast Cancer 3(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Zhang F, Li X (2018) Machine learning in ultrasound computer-aided diagnostic systems: a survey. Biomed Res Int 2018:5137904

    Article  PubMed  PubMed Central  Google Scholar 

  • Huynh BQ, Antropova N, Giger ML (2017) Comparison of breast DCE-MRI contrast time points for predicting response to neoadjuvant chemotherapy using deep convolutional neural network features with transfer learning. In: Medical imaging 2017: computer-aided diagnosis. International Society for Optics and Photonics, Bellingham, WA

    Google Scholar 

  • Jackson A, O’Connor JP, Parker GJ, Jayson GC (2007) Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance imaging. Clin Cancer Res 13(12):3449–3459

    Article  PubMed  Google Scholar 

  • Kaufmann M, Hortobagyi GN, Goldhirsch A, Scholl S, Makris A, Valagussa P et al (2006) Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: an update. J Clin Oncol 24(12):1940–1949

    Article  PubMed  Google Scholar 

  • Kimme C, O’Loughlin BJ, Sklansky J (1977) Automatic detection of suspicious abnormalities in breast radiographs. In: Data structures, computer graphics, and pattern recognition. Elsevier, Amsterdam, pp 427–447

    Chapter  Google Scholar 

  • Le EPV, Wang Y, Huang Y, Hickman S, Gilbert FJ (2019) Artificial intelligence in breast imaging. Clin Radiol 74(5):357–366

    Article  CAS  PubMed  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  CAS  PubMed  Google Scholar 

  • Lee CI, Elmore JG (2019) Artificial intelligence for breast cancer imaging: the new frontier? Oxford University Press, Oxford

    Google Scholar 

  • Lehman CD, Lee JM, DeMartini WB, Hippe DS, Rendi MH, Kalish G et al (2016) Screening MRI in women with a personal history of breast cancer. J Natl Cancer Inst 108(3):djv349

    Article  PubMed  Google Scholar 

  • Li H, Giger ML, Huynh BQ, Antropova NO (2017) Deep learning in breast cancer risk assessment: evaluation of convolutional neural networks on a clinical dataset of full-field digital mammograms. J Med Imaging (Bellingham) 4(4):041304

    Google Scholar 

  • Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  PubMed  Google Scholar 

  • Liu Y, Azizpour H, Strand F, Smith K (eds) (2020) Decoupling inherent risk and early cancer signs in image-based breast cancer risk models. International conference on medical image computing and computer-assisted intervention. Springer, New York

    Google Scholar 

  • Louro J, Posso M, Hilton Boon M, Roman M, Domingo L, Castells X et al (2019) A systematic review and quality assessment of individualised breast cancer risk prediction models. Br J Cancer 121(1):76–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Mann RM, Hooley R, Barr RG, Moy L (2020) Novel approaches to screening for breast cancer. Radiology 297(2):266–285

    Article  PubMed  Google Scholar 

  • McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577(7788):89–94

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Base A, Morra L, Meyer-Base U, Pinker K (2020) Current status and future perspectives of artificial intelligence in magnetic resonance breast imaging. Contrast Media Mol Imaging 2020:6805710

    Article  PubMed  PubMed Central  Google Scholar 

  • Miglioretti DL, Smith-Bindman R, Abraham L, Brenner RJ, Carney PA, Bowles EJ et al (2007) Radiologist characteristics associated with interpretive performance of diagnostic mammography. J Natl Cancer Inst 99(24):1854–1863

    Article  PubMed  Google Scholar 

  • Nguyen PL, Taghian AG, Katz MS, Niemierko A, Abi Raad RF, Boon WL et al (2008) Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy. J Clin Oncol 26(14):2373–2378

    Article  PubMed  Google Scholar 

  • Nishikawa RM (2007) Current status and future directions of computer-aided diagnosis in mammography. Comput Med Imaging Graph 31(4–5):224–235

    Article  PubMed  Google Scholar 

  • Ou WC, Polat D, Dogan BE (2021) Deep learning in breast radiology: current progress and future directions. Eur Radiol 31(7):4872–4885

    Article  PubMed  Google Scholar 

  • Pang T, Wong JHD, Ng WL, Chan CS (2020) Deep learning radiomics in breast cancer with different modalities: overview and future. Expert Syst Appl 2020:113501

    Article  Google Scholar 

  • Qu YH, Zhu HT, Cao K, Li XT, Ye M, Sun YS (2020) Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method. Thorac Cancer 11(3):651–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinovici-Cohen S, Tlusty T, Abutbul A, Antila K, Fernandez X, Rejo BG et al (2020) Radiomics for predicting response to neoadjuvant chemotherapy treatment in breast cancer. In: Medical imaging 2020: imaging informatics for healthcare, research, and applications. International Society for Optics and Photonics, Bellingham, WA

    Google Scholar 

  • Ravichandran K, Braman N, Janowczyk A, Madabhushi A (2018) A deep learning classifier for prediction of pathological complete response to neoadjuvant chemotherapy from baseline breast DCE-MRI. In: Medical imaging 2018: computer-aided diagnosis. International Society for Optics and Photonics, Bellingham, WA

    Google Scholar 

  • Reig B, Heacock L, Geras KJ, Moy L (2020) Machine learning in breast MRI. J Magn Reson Imaging 52(4):998–1018

    Article  PubMed  Google Scholar 

  • Rodriguez-Ruiz A, LÃ¥ng K, Gubern-Merida A, Teuwen J, Broeders M, Gennaro G et al (2019a) Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study. Eur Radiol 29(9):4825–4832

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Ruiz A, Krupinski E, Mordang JJ, Schilling K, Heywang-Kobrunner SH, Sechopoulos I et al (2019b) Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology 290(2):305–314

    Article  PubMed  Google Scholar 

  • Roehrig J, Doi T, Hasegawa A, Hunt B, Marshall J, Romsdahl H et al (1998) Clinical results with R2 imagechecker system. In: Digital mammography. Springer, New York, pp 395–400

    Chapter  Google Scholar 

  • Samala RK, Chan HP, Hadjiiski L, Helvie MA, Wei J, Cha K (2016) Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med Phys 43(12):6654

    Article  PubMed  PubMed Central  Google Scholar 

  • Samala RK, Chan H-P, Hadjiiski L, Helvie MA, Richter CD, Cha KH (2018) Breast cancer diagnosis in digital breast tomosynthesis: effects of training sample size on multi-stage transfer learning using deep neural nets. IEEE Trans Med Imaging 38(3):686–696

    Article  Google Scholar 

  • Schaffter T, Buist DSM, Lee CI, Nikulin Y, Ribli D, Guan Y et al (2020) Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms. JAMA Netw Open 3(3):e200265

    Article  PubMed  PubMed Central  Google Scholar 

  • Schott AF, Hayes DF (2012) Defining the benefits of neoadjuvant chemotherapy for breast cancer. J Clin Oncol 30(15):1747–1749

    Article  PubMed  Google Scholar 

  • Sechopoulos I, Teuwen J, Mann R (eds) (2020) Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: state of the art, Seminars in cancer biology. Elsevier, Amsterdam

    Google Scholar 

  • Semmlow JL, Shadagopappan A, Ackerman LV, Hand W, Alcorn FS (1980) A fully automated system for screening xeromammograms. Comput Biomed Res 13(4):350–362

    Article  CAS  PubMed  Google Scholar 

  • Spiesberger W (1979) Mammogram inspection by computer. IEEE Trans Biomed Eng 26(4):213–219

    Article  CAS  PubMed  Google Scholar 

  • Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY et al (2017) Risk factors and preventions of breast cancer. Int J Biol Sci 13(11):1387–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabar L, Dean PB, Chen TH, Yen AM, Chen SL, Fann JC et al (2019) The incidence of fatal breast cancer measures the increased effectiveness of therapy in women participating in mammography screening. Cancer 125(4):515–523

    Article  PubMed  Google Scholar 

  • Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB et al (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312

    Article  PubMed  Google Scholar 

  • Thompson AM, Moulder-Thompson SL (2012) Neoadjuvant treatment of breast cancer. Ann Oncol 23(Suppl 10):x231–x236

    Article  PubMed  PubMed Central  Google Scholar 

  • Thrall JH, Li X, Li Q, Cruz C, Do S, Dreyer K et al (2018) Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol 15(3 Pt B):504–508

    Article  PubMed  Google Scholar 

  • Tosteson AN, Fryback DG, Hammond CS, Hanna LG, Grove MR, Brown M et al (2014) Consequences of false-positive screening mammograms. JAMA Intern Med 174(6):954–961

    Article  PubMed  PubMed Central  Google Scholar 

  • Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C (2019) Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI. Radiology 290(2):290–297

    Article  PubMed  Google Scholar 

  • van Zelst JCM, Tan T, Clauser P, Domingo A, Dorrius MD, Drieling D et al (2018) Dedicated computer-aided detection software for automated 3D breast ultrasound; an efficient tool for the radiologist in supplemental screening of women with dense breasts. Eur Radiol 28(7):2996–3006

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Miao J, Yang X, Li R, Zhou G, Huang Y et al (eds) (2020) Auto-weighting for breast cancer classification in multimodal ultrasound. International conference on medical image computing and computer-assisted intervention. Springer, New York

    Google Scholar 

  • Winsberg F, Elkin M, Macy J Jr, Bordaz V, Weymouth W (1967) Detection of radiographic abnormalities in mammograms by means of optical scanning and computer analysis. Radiology 89(2):211–215

    Article  Google Scholar 

  • Wu N, Phang J, Park J, Shen Y, Huang Z, Zorin M et al (2020) Deep neural networks improve radiologists’ performance in breast cancer screening. IEEE Trans Med Imaging 39(4):1184–1194

    Article  PubMed  Google Scholar 

  • Xu X, Bao L, Tan Y, Zhu L, Kong F, Wang W (2018) 1000-Case reader study of radiologists’ performance in interpretation of automated breast volume scanner images with a computer-aided detection system. Ultrasound Med Biol 44(8):1694–1702

    Article  PubMed  Google Scholar 

  • Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R (2019a) A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 292(1):60–66

    Article  PubMed  Google Scholar 

  • Yala A, Schuster T, Miles R, Barzilay R, Lehman C (2019b) A deep learning model to triage screening mammograms: a simulation study. Radiology 293(1):38–46

    Article  PubMed  Google Scholar 

  • Yala A, Mikhael PG, Strand F, Lin G, Smith K, Wan YL et al (2021) Toward robust mammography-based models for breast cancer risk. Sci Transl Med 13(578):eaba4373

    Article  PubMed  Google Scholar 

  • Yap MH, Pons G, Marti J, Ganau S, Sentis M, Zwiggelaar R et al (2017) Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Health Inform 22(4):1218–1226

    Article  PubMed  Google Scholar 

  • Yosinski J, Clune J, Nguyen A, Fuchs T, Lipson H (2015) Understanding neural networks through deep visualization. arXiv preprint arXiv:06579

    Google Scholar 

  • Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. European conference on computer vision. Springer, New York

    Google Scholar 

  • Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A, editors. Learning deep features for discriminative localization. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016

    Google Scholar 

  • Zhou J, Zhang Y, Chang KT, Lee KE, Wang O, Li J et al (2020) Diagnosis of benign and malignant breast lesions on DCE-MRI by using radiomics and deep learning with consideration of peritumor tissue. J Magn Reson Imaging 51(3):798–809

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritse M. Mann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X., Moriakov, N., Gao, Y., Zhang, T., Han, L., Mann, R.M. (2022). Artificial Intelligence in Breast Imaging. In: Fuchsjäger, M., Morris, E., Helbich, T. (eds) Breast Imaging . Medical Radiology(). Springer, Cham. https://doi.org/10.1007/978-3-030-94918-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94918-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94917-4

  • Online ISBN: 978-3-030-94918-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics