Skip to main content

Cardamonin: Advances on Resources, Biosynthesis Pathway, Bioavailability, Bioactivity, and Pharmacology

  • Living reference work entry
  • First Online:
Handbook of Dietary Flavonoids
  • 165 Accesses

Abstract

Cardamonin (2′, 4′-dihydroxy-6′-methoxychalcone) is a naturally occurring flavonoid (chalcone) abundantly present in plants. Cardamonin has been identified in many plant species used in traditional medicine, such as Boesenbergia rotunda, Alpinia raffleflesiana, Elettaria cardamomum, etc. Several studies have documented that cardamonin exerts a broad spectrum of biological activities against many diseases, e.g., type 2-diabetes (T2DM), neurodegenerative diseases, cancer, cardiovascular diseases (CVDs), rheumatoid arthritis, anti-microbial, Sjogren’s syndrome, anti-inflammatory, inflammatory bowel disease (IBD), and others. Moreover, in vitro and in vivo studies have proven the low bioavailability and bioaccessibility of cardamonin. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) of cardamonin also need further study. This current book chapter focuses on cardamonin regarding its resources, biosynthesis pathway, bioavailability, bioactivity, and its proposed role in human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aderogba MA, Kgatle DT, McGaw LJ, Eloff JN (2012) Isolation of antioxidant constituents from Combretum apiculatum subsp. apiculatum. S Afr J Bot 79:125–131

    Article  CAS  Google Scholar 

  • Ali AA, Abd Al Haleem EN, Khaleel SAH, Sallam AS (2017) Protective effect of cardamonin against acetic acid-induced ulcerative colitis in rats. Pharmacol Rep 69(2):268–275

    Article  CAS  PubMed  Google Scholar 

  • Al-Rehaily AJ, Albishi OA, El-Olemy MM, Mossa JS (2008) Flavonoids and terpenoids from Helichrysum forskahlii. Phytochemistry 69(9):1910–1914

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft FM, Rorsman P (2012) Diabetes mellitus and the β cell: the last ten years. Cell 148(6):1160–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atef Y, El-Fayoumi HM, Abdel-Mottaleb Y, Mahmoud MF (2017) Effect of cardamonin on hepatic ischemia reperfusion induced in rats: role of nitric oxide. Eur J Pharmacol 815:446–453

    Article  CAS  PubMed  Google Scholar 

  • Badroon NA, Abdul Majid N, Alshawsh MA (2020a) Antiproliferative and apoptotic effects of cardamonin against hepatocellular carcinoma HepG2 cells. Nutrients 12(6):1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badroon N, Abdul Majid N, Al-Suede FSR, Nazari VM, Giribabu N, Abdul Majid AMS, Alshawsh MA (2020b) Cardamonin exerts antitumor effect on human hepatocellular carcinoma xenografts in athymic nude mice through inhibiting NF-κβ pathway. Biomedicine 8(12):586

    CAS  Google Scholar 

  • Bajgai SP, Prachyawarakorn V, Mahidol C, Ruchirawat S, Kittakoop P (2011) Hybrid flavan-chalcones, aromatase and lipoxygenase inhibitors, from Desmos cochinchinensis. Phytochemistry 72(16):2062–2067

    Article  CAS  PubMed  Google Scholar 

  • Barber K, Mendonca P, Soliman KF (2022) Cardamonin antioxidant effects through the modulation of proteins and genes expressions in LPS-Activated BV-2 microglial cells. FASEB J 36

    Google Scholar 

  • Benchabane S, Belguendouz H, Behairi N, Arroul-Lammali A, Boudjelida A, Youinou P, Touil-Boukoffa C (2018) Cardamonin inhibits pro-inflammatory cytokine production and suppresses NO pathway in PBMCs from patients with primary Sjögren’s syndrome. Immunopharmacol Immunotoxicol 40(2):126–133

    Article  CAS  PubMed  Google Scholar 

  • Berning L, Scharf L, Aplak E, Stucki D, von Montfort C, Reichert AS, Brenneisen P (2019) In vitro selective cytotoxicity of the dietary chalcone cardamonin (CD) on melanoma compared to healthy cells is mediated by apoptosis. PLoS One 14(9):e0222267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bessems JG, Vermeulen NP (2001) Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 31(1):55–138

    Article  CAS  PubMed  Google Scholar 

  • Bikbov B, Purcell CA, Levey AS, Smith M, Abdoli A, Abebe M, Adebayo OM, Afarideh M, Agarwal SK, AgudeloBotero M (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395:709–733

    Article  Google Scholar 

  • Boland MJ, Wong E (1975) Purification and kinetic properties of chalcone-flavanone isomerase from soya bean. Eur J Biochem 50(2):383–389

    Article  CAS  PubMed  Google Scholar 

  • Bommer UA, Thiele BJ (2004) The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol 36(3):379–385

    Article  CAS  PubMed  Google Scholar 

  • Budziak I, Arczewska M, Kamiński DM (2020) Structure and physical properties of cardamonin: a spectroscopic and computational approach. Molecules 25(18):4070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Joshi SK, DiDomenico S, Perner RJ, Mikusa JP, Gauvin DM, Kym PR (2011) Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation. Pain 152(5):1165–1172

    Article  CAS  PubMed  Google Scholar 

  • Cho M, Ryu M, Jeong Y, Chung YH, Kim DE, Cho HS, Oh S (2009) Cardamonin suppresses melanogenesis by inhibition of Wnt/β-catenin signaling. Biochem Biophys Res Commun 390(3):500–505

    Article  CAS  PubMed  Google Scholar 

  • Choi JW, Kim M, Song H, Lee CS, Oh WK, Mook-Jung I, Park KS (2016) DMC (2′, 4′-dihydroxy-6′-methoxy-3′, 5′-dimethylchalcone) improves glucose tolerance as a potent AMPK activator. Metabolism 65(4):533–542

    Article  CAS  PubMed  Google Scholar 

  • Chow YL, Lee KH, Vidyadaran S, Lajis NH, Akhtar MN, Israf DA, Syahida A (2012) Cardamonin from Alpinia rafflesiana inhibits inflammatory responses in IFN-γ/LPS-stimulated BV2 microglia via NF-κB signalling pathway. Int Immunopharmacol 12(4):657–665

    Article  CAS  PubMed  Google Scholar 

  • Clapham DE, Runnels LW, Strübing C (2001) The TRP ion channel family. Nat Rev Neurosci 2(6):387–396

    Article  CAS  PubMed  Google Scholar 

  • Clevers H (2004) At the crossroads of inflammation and cancer. Cell 118(6):671–674

    Article  CAS  PubMed  Google Scholar 

  • Cornec-Le Gall E, Alam A, Perrone RD (2019) Autosomal dominant polycystic kidney disease. Lancet 393(10174):919–935

    Article  PubMed  Google Scholar 

  • Daimary UD, Parama D, Rana V, Banik K, Kumar A, Harsha C, Kunnumakkara AB (2021) Emerging roles of cardamonin, a multitargeted nutraceutical in the prevention and treatment of chronic diseases. Curr Res Pharmacol Drug Discov 2:100008

    Article  PubMed  Google Scholar 

  • de Carvalho LSA, Silva LM, de Souza VC, da Silva MPN, Capriles PV, de Faria Pinto P, Da Silva Filho AA (2021) Cardamonin presents in vivo activity against Schistosoma mansoni and inhibits potato apyrase. Chem Biodivers 18(11):e2100604

    Article  PubMed  Google Scholar 

  • de Castro CC, Costa PS, Laktin GT, de Carvalho PH, Geraldo RB, de Moraes J, Da Silva Filho AA (2015) Cardamonin, a schistosomicidal chalcone from Piper aduncum L.(Piperaceae) that inhibits Schistosoma mansoni ATP diphosphohydrolase. Phytomedicine 22(10):921–928

    Article  PubMed  Google Scholar 

  • Dell’Oglio P, Stabile A, Gandaglia G, Zaffuto E, Fossati N, Bandini M, Briganti A (2017) New surgical approaches for clinically high-risk or metastatic prostate cancer. Expert Rev Anticancer Ther 17(11):1013–1031

    Article  PubMed  Google Scholar 

  • Derita M, Zacchino S (2011) Validation of the ethnopharmacological use of Polygonum persicaria for its antifungal properties. Nat Prod Commun 6(7):1934578X1100600702

    Google Scholar 

  • Dinarello CA (2010) Anti-inflammatory agents: present and future. Cell 140(6):935–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dzoyem JP, NKuete AH, Kuete V, Tala MF, Wabo HK, Guru SK, Tan NH (2012) Cytotoxicity and antimicrobial activity of the methanol extract and compounds from Polygonum limbatum. Planta Med 78(8):787–792

    Article  CAS  PubMed  Google Scholar 

  • Economides C, Adam KP (1998) Lipophilic flavonoids from the fern Woodsia scopulina. Phytochemistry 49(3):859–862

    Article  CAS  Google Scholar 

  • El-Naga RN (2014) Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: impact on NOX-1, inflammation and apoptosis. Toxicol Appl Pharmacol 274(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Fusi F, Cavalli M, Mulholland D, Crouch N, Coombes P, Dawson G, Saponara S (2010) Cardamonin is a bifunctional vasodilator that inhibits Cav1. 2 current and stimulates KCa1. 1 current in rat tail artery myocytes. J Pharmacol Exp Ther 332(2):531–540

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Fei X, Wang M, Chen Q, Zhao N (2022) Cardamomin protects from diabetes-induced kidney damage through modulating PI3K/AKT and JAK/STAT signaling pathways in rats. Int Immunopharmacol 107:108610

    Article  CAS  PubMed  Google Scholar 

  • Goncalves LM, Valente IM, Rodrigues JA (2014) An overview on cardamonin. J Med Food 17(6):633–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenaway W, English S, Whatley FR (1990) Phenolic composition of bud exudates of Populus deltoides. Zeitschrift für Naturforschung C 45(6):587–593

    Article  CAS  Google Scholar 

  • Gregory AR (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392(10159):1736–1788

    Article  Google Scholar 

  • Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB (1988) The flavonoids advances in research since 1980. Springer, Boston

    Book  Google Scholar 

  • Harborne JB, Williams CA (2001) Anthocyanins and other flavonoids. Nat Prod Rep 18(3):310–333

    Article  CAS  PubMed  Google Scholar 

  • Hatziieremia S, Gray AI, Ferro VA, Paul A, Plevin R (2006) The effects of cardamonin on lipopolysaccharide-induced inflammatory protein production and MAP kinase and NFκB signalling pathways in monocytes/macrophages. Br J Pharmacol 149(2):188–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He YQ, Yang L, Liu Y, Zhang JW, Tang J, Su J, Wang ZT (2009) Characterization of cardamonin metabolism by P450 in different species via HPLC-ESI-ion trap and UPLC-ESI-quadrupole mass spectrometry. Acta Pharmacol Sin 30(10):1462–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He W, Hu Z, Yao X, Chen G (2010) Comparison of the interaction of Alpinetin and Cardamonin with human gammaglobulin. Acta Chim Sin 68:679–688

    CAS  Google Scholar 

  • He W, Jiang Y, Zhang X, Zhang Y, Ji H, Zhang N (2014) Anticancer cardamonin analogs suppress the activation of NF-kappaB pathway in lung cancer cells. Mol Cell Biochem 389(1):25–33

    Article  CAS  PubMed  Google Scholar 

  • He J, Zhou H, Meng J, Zhang S, Li X, Wang S, Yang B (2020) Cardamonin retards progression of autosomal dominant polycystic kidney disease via inhibiting renal cyst growth and interstitial fibrosis. Pharmacol Res 155:104751

    Article  CAS  PubMed  Google Scholar 

  • Hossan MS, Break MKB, Bradshaw TD, Collins HM, Wiart C, Khoo TJ, Alafnan A (2021) Novel semi-synthetic cu (Ii)–cardamonin complex exerts potent anticancer activity against triple-negative breast and pancreatic cancer cells via inhibition of the akt signaling pathway. Molecules 26(8):2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867

    Article  CAS  PubMed  Google Scholar 

  • Hou S, Yuan Q, Yu N, Liu B, Huang G, Yuan X (2019) Cardamonin attenuates chronic inflammation and tumorigenesis in colon. Cell Cycle 18(23):3275–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou G, Yuan X, Li Y, Hou G, Liu X (2020) Cardamonin, a natural chalcone, reduces 5-fluorouracil resistance of gastric cancer cells through targeting Wnt/β-catenin signal pathway. Investig New Drugs 38(2):329–339

    Article  CAS  Google Scholar 

  • Hu YC, Zhang Z, Shi WG, Mi TY, Zhou LX, Huang N, Lu YH (2014) 2′, 4′-Dihydroxy-6′-methoxy-3′, 5′-dimethylchalcone promoted glucose uptake and imposed a paradoxical effect on adipocyte differentiation in 3T3-L1 cells. J Agric Food Chem 62(8):1898–1904

    Article  CAS  PubMed  Google Scholar 

  • Huang WZ, Zhang CF, Zhang M, Wang ZT (2007) A new biphenylpropanoid from Alpinia katsumadai. J Chin Chem Soc 54(6):1553–1556

    Article  CAS  Google Scholar 

  • Ilari S, Giancotti LA, Lauro F, Gliozzi M, Malafoglia V, Palma E, Muscoli C (2020) Natural antioxidant control of neuropathic pain-exploring the role of mitochondrial SIRT3 Pathway. Antioxidants 9(11):1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itokawa H, Morita M, Mihashi S (1981) Phenolic compounds from the rhizomes of Alpinia speciosa. Phytochemistry 20(11):2503–2506

    Article  CAS  Google Scholar 

  • Jaiswal S, Sharma A, Shukla M, Lal J (2015) Gender-related pharmacokinetics and bioavailability of a novel anticancer chalcone, cardamonin, in rats determined by liquid chromatography tandem mass spectrometry. J Chromatogr B 986:23–30

    Article  Google Scholar 

  • Jaiswal S, Shukla M, Sharma A, Rangaraj N, Vaghasiya K, Malik MY, Lal J (2017) Preclinical pharmacokinetics and ADME characterization of a novel anticancer chalcone, cardamonin. Drug Test Anal 9(8):1124–1136

    Article  CAS  PubMed  Google Scholar 

  • James S, Aparna JS, Paul AM (2017) Cardamonin inhibits colonic neoplasia through modulation of MicroRNA expression. Sci Rep 7(1):1–16

    Article  Google Scholar 

  • Jantan I, Raweh SM, Sirat HM, Jamil S, Yasin YM, Jalil J, Jamal JA (2008) Inhibitory effect of compounds from Zingiberaceae species on human platelet aggregation. Phytomedicine 15(4):306–309

    Article  CAS  PubMed  Google Scholar 

  • Jia D, Yang W, Li L, Liu H, Tan Y, Ooi S, Wang L (2015) β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer. Cell Death Differ 22(2):298–310

    Article  CAS  PubMed  Google Scholar 

  • Jia D, Tan Y, Liu H, Ooi S, Li L, Wright K, ... Wang L (2016) Cardamonin reduces chemotherapy-enriched breast cancer stem-like cells in vitro and in vivo. Oncotarget 7(1):771

    Google Scholar 

  • Jin XH, Lim J, Shin DH, Maeng J, Lee K (2017) Dimerized translationally controlled tumor protein-binding peptide ameliorates atopic dermatitis in NC/Nga mice. Int J Mol Sci 18(2):256

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin J, Qiu S, Wang P, Liang X, Huang F, Wu H, Wu X (2019) Cardamonin inhibits breast cancer growth by repressing HIF-1α-dependent metabolic reprogramming. J Exp Clin Cancer Res 38(1):1–16

    Article  Google Scholar 

  • Kang K, Pulver SR, Panzano VC, Chang EC, Griffith LC, Theobald DL, Garrity PA (2010) Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 464(7288):597–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaswan NK, Mohammed Izham NAB, Tengku Mohamad TAS, Sulaiman MR, Perimal EK (2021) Cardamonin modulates neuropathic pain through the possible involvement of serotonergic 5-HT1A receptor pathway in CCI-induced neuropathic pain mice model. Molecules 26(12):3677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katerere DR, Gray AI, Kennedy AR, Nash RJ, Waigh RD (2004) Cyclobutanes from Combretum albopunctatum. Phytochemistry 65(4):433–438

    Article  CAS  PubMed  Google Scholar 

  • Kiat TS, Pippen R, Yusof R, Ibrahim H, Khalid N, Abd Rahman N (2006) Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease. Bioorg Med Chem Lett 16(12):3337–3340

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Min HJ, Won HY, Park H, Lee JC, Park HW et al (2009) Dimerization of translationally controlled tumor protein is essential for its cytokine-like activity. PLoS One 4(7):e6464

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Ko H, Park JS, Han IH, Amor EC, Lee JW, Yang HO (2010) Dimethyl cardamonin inhibits lipopolysaccharide-induced inflammatory factors through blocking NF-κB p65 activation. Int Immunopharmacol 10(9):1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Kang KS, Choi KC, Ko H (2015) Cardamonin induces autophagy and an antiproliferative effect through JNK activation in human colorectal carcinoma HCT116 cells. Bioorg Med Chem Lett 25(12):2559–2564

    Article  CAS  PubMed  Google Scholar 

  • Kong W, Li C, Qi Q, Shen J, Chang K (2020) Cardamonin induces G2/M arrest and apoptosis via activation of the JNK–FOXO3a pathway in breast cancer cells. Cell Biol Int 44(1):177–188

    Article  CAS  PubMed  Google Scholar 

  • Koorbanally NA, Randrianarivelojosia M, Mulholland DA, van Ufford LQ, van den Berg AJ (2003) Chalcones from the seed of Cedrelopsis grevei (Ptaeroxylaceae). Phytochemistry 62(8):1225–1229

    Article  CAS  PubMed  Google Scholar 

  • Le HT, Phan MG, Phan TS (2007) Further study on chemical constituents and biological activities of Alpinia conchigera Griff. (Zingiberaceae). Tap Chi Hoa Hoc 45:260–264

    CAS  Google Scholar 

  • Lee JH, Jung HS, Giang PM, Jin X, Lee S, Son PT, Lee JJ (2006) Blockade of nuclear factor-κB signaling pathway and anti-inflammatory activity of cardamomin, a chalcone analog from Alpinia conchigera. J Pharmacol Exp Ther 316(1):271–278

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Hahn D, Sim H, Choo S, Lee S, Lee T, Bae JS (2020) Inhibitory functions of cardamonin against particulate matter-induced lung injury through TLR2, 4-mTOR-autophagy pathways. Fitoterapia 146:104724

    Article  CAS  PubMed  Google Scholar 

  • Li YY, Huang SS, Lee MM, Deng JS, Huang GJ (2015) Anti-inflammatory activities of cardamonin from Alpinia katsumadai through heme oxygenase-1 induction and inhibition of NF-κB and MAPK signaling pathway in the carrageenan-induced paw edema. Int Immunopharmacol 25(2):332–339

    Article  PubMed  Google Scholar 

  • Li W, Wu X, Li M, Wang Z, Li B, Qu X, Chen S (2016) Cardamonin alleviates pressure overload-induced cardiac remodeling and dysfunction through inhibition of oxidative stress. J Cardiovasc Pharmacol 68(6):441–451

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Qin Y, Yang C, Zhang H, Li Y, Wu B, Wu G (2017) Cardamonin induces ROS-mediated G2/M phase arrest and apoptosis through inhibition of NF-κB pathway in nasopharyngeal carcinoma. Cell Death Dis 8(8):e3024–e3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao Q, Shi DH, Zheng W, Xu XJ, Yu YH (2010) Antiproliferation of cardamonin is involved in mTOR on aortic smooth muscle cells in high fructose-induced insulin resistance rats. Eur J Pharmacol 641(2–3):179–186

    Article  CAS  PubMed  Google Scholar 

  • Liao NC, Shih Y-L, Chou J-S (2019) Cardamonin induces cell cycle arrest, apoptosis and alters apoptosis associated gene expression in WEHI-3 mouse leukemia cells. Am J Chin Med 47:635–656

    Article  CAS  PubMed  Google Scholar 

  • Liao NC, Shih YL, Ho MT, Lu TJ, Lee CH, Peng SF, Chung JG (2020) Cardamonin induces immune responses and enhances survival rate in WEHI-3 cell–generated mouse leukemia in vivo. Environ Toxicol 35(4):457–467

    Article  CAS  PubMed  Google Scholar 

  • Lin CT, Senthil Kumar KJ, Tseng YH, Wang ZJ, Pan MY, Xiao JH, Wang SY (2009) Anti-inflammatory activity of Flavokawain B from Alpinia pricei Hayata. J Agric Food Chem 57(14):6060–6065

    Article  CAS  PubMed  Google Scholar 

  • Liu EY, Xu ML, Xia Y, Kong X, Wu Q, Dong TT, Tsim KW (2019) Activation of G protein-coupled receptor 30 by flavonoids leads to expression of acetylcholinesterase in cultured PC12 cells. Chem Biol Interact 306:147–151

    Article  CAS  PubMed  Google Scholar 

  • López SN, Furlan RLE, Zacchino SA (2011) Detection of antifungal compounds in Polygonum ferrugineum Wedd. extracts by bioassay-guided fractionation. Some evidences of their mode of action. J Ethnopharmacol 138(2):633–636

    Article  PubMed  Google Scholar 

  • Lu S, Lin C, Cheng X, Hua H, Xiang T, Huang Y, Huang X (2018) Cardamonin reduces chemotherapy resistance of colon cancer cells via the TSP50/NF-κB pathway in vitro. Oncol Lett 15(6):9641–9646

    PubMed  PubMed Central  Google Scholar 

  • Lu Y, Liu J, Tong A, Lu Y, Lv L (2021) Interconversion and acrolein-trapping capacity of cardamonin/alpinetin and their metabolites in vitro and in vivo. J Agric Food Chem 69(40):11926–11936

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Liu J, Tong A, Zhang C, Duan Y, Song X, Lv L (2022) Dual effects of cardamonin/alpinetin and their acrolein adducts on scavenging acrolein and anti-bacteria from Alpinia katsumadai Hayata as a spice in roasted meat. Food Funct 13:7088–7097

    Google Scholar 

  • MacDonald SM, Rafnar T, Langdon J, Lichtenstein LM (1995) Molecular identification of an IgE-dependent histamine-releasing factor. Science 269(5224):688–690

    Article  CAS  PubMed  Google Scholar 

  • McGovern UB, Francis RE, Peck B, Guest SK, Wang J, Myatt SS, Lam EW (2009) Gefitinib (Iressa) represses FOXM1 expression via FOXO3a in breast cancer. Mol Cancer Ther 8(3):582–591

    Article  CAS  PubMed  Google Scholar 

  • Mehmood A, Zhao L, Wang C, Nadeem M, Raza A, Ali N, Shah AA (2019) Management of hyperuricemia through dietary polyphenols as a natural medicament: a comprehensive review. Crit Rev Food Sci Nutr 59(9):1433–1455

    Article  CAS  PubMed  Google Scholar 

  • Mehmood A, Usman M, Patil P, Zhao L, Wang C (2020) A review on management of cardiovascular diseases by olive polyphenols. Food Sci Nutr 8(9):4639–4655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitin VV, Ivanova EA, Prokhorova PE, Morzherin Y (2016) Chlorophenols in organic synthesis. Chimica Techno Acta 3:164–162

    Article  Google Scholar 

  • Moparthi L, Survery S, Kreir M, Simonsen C, Kjellbom P, Högestätt ED, Zygmunt PM (2014) Human TRPA1 is intrinsically cold-and chemosensitive with and without its N-terminal ankyrin repeat domain. Proc Natl Acad Sci 111(47):16901–16906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawaz J, Rasul A, Shah MA, Hussain G, Riaz A, Sarfraz I, Selamoglu Z (2020) Cardamonin: a new player to fight cancer via multiple cancer signaling pathways. Life Sci 250:117591

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661

    Article  CAS  PubMed  Google Scholar 

  • Ni H, Li J, Zheng J, Zhou B (2022) Cardamonin attenuates cerebral ischemia/reperfusion injury by activating the HIF-1α/VEGFA pathway. Phytother Res 36(4):1736–1747

    Article  CAS  PubMed  Google Scholar 

  • Niu PG, Zhang YX, Shi DH, Liu Y, Chen YY, Deng J (2015) Cardamonin inhibits metastasis of Lewis lung carcinoma cells by decreasing mTOR activity. PLoS One 10(5):e0127778

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu P, Shi D, Zhang S, Zhu Y, Zhou J (2018) Cardamonin enhances the anti-proliferative effect of cisplatin on ovarian cancer. Oncol Lett 15(3):3991–3997

    PubMed  PubMed Central  Google Scholar 

  • Niu P, Li J, Chen H, Zhu Y, Zhou J, Shi D (2020) Anti-proliferative effect of cardamonin on mTOR inhibitor-resistant cancer cells. Mol Med Rep 21(3):1399–1407

    CAS  PubMed  Google Scholar 

  • Ohtsuki T, Kikuchi H, Koyano T, Kowithayakorn T, Sakai T, Ishibashi M (2009) Death receptor 5 promoter-enhancing compounds isolated from Catimbium speciosum and their enhancement effect on TRAIL-induced apoptosis. Bioorg Med Chem 17(18):6748–6754

    Article  CAS  PubMed  Google Scholar 

  • Okuno Y, Marumoto S, Miyazawa M (2019) Antimutagenic activity of flavonoids from Sozuku. Nat Prod Res 33(6):862–865

    Article  CAS  PubMed  Google Scholar 

  • Oliviero F, Scanu A, Zamudio-Cuevas Y, Punzi L, Spinella P (2018) Anti-inflammatory effects of polyphenols in arthritis. J Sci Food Agric 98(5):1653–1659

    Article  CAS  PubMed  Google Scholar 

  • Park S, Gwak J, Han SJ, Oh S (2013) Cardamonin suppresses the proliferation of colon cancer cells by promoting β-catenin degradation. Biol Pharm Bull:b13-00158

    Google Scholar 

  • Park MK, Lee HJ, Choi JK, Kim HJ, Kang JH, Lee EJ, Lee CH (2014) Novel anti-nociceptive effects of cardamonin via blocking expression of cyclooxygenase-2 and transglutaminase-2. Pharmacol Biochem Behav 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Pascoal ACRF, Ehrenfried CA, Lopez BGC, De Araujo TM, Pascoal VDÁB, Gilioli R, Salvador MJ (2014) Antiproliferative activity and induction of apoptosis in PC-3 cells by the chalcone cardamonin from Campomanesia adamantium (Myrtaceae) in a bioactivity-guided study. Molecules 19(2):1843–1855

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng S, Hou Y, Yao J, Fang J (2017) Activation of Nrf2-driven antioxidant enzymes by cardamonin confers neuroprotection of PC12 cells against oxidative damage. Food Funct 8(3):997–1007

    Article  CAS  PubMed  Google Scholar 

  • Peng YJ, Lu JW, Lee CH, Lee HS, Chu YH, Ho YJ, Wang CC (2021) Cardamonin attenuates inflammation and oxidative stress in interleukin-1β-stimulated osteoarthritis chondrocyte through the Nrf2 pathway. Antioxidants 10(6):862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ping CP, Tengku Mohamad TAS, Akhtar MN, Perimal EK, Akira A, Israf Ali DA, Sulaiman MR (2018) Antinociceptive effects of cardamonin in mice: possible involvement of TRPV1, glutamate, and opioid receptors. Molecules 23(9):2237

    Article  PubMed  PubMed Central  Google Scholar 

  • Ping C, Akhtar MN, Israf DA, Perimal EK, Sulaiman MR (2020) Possible participation of ionotropic glutamate receptors and l-arginine-nitric oxide-cyclic guanosine monophosphate-ATP-sensitive K+ channel pathway in the antinociceptive activity of cardamonin in acute pain animal models. Molecules 25(22):5385

    Article  CAS  Google Scholar 

  • Pyun H, Kang U, Seo EK, Lee K (2018) Dehydrocostus lactone, a sesquiterpene from Saussurea Lappa Clarke, suppresses allergic airway inflammation by binding to dimerized translationally controlled tumor protein. Phytomedicine 43:46–54

    Article  CAS  PubMed  Google Scholar 

  • Pyun H, Nam JW, Cho H, Park J, Seo EK, Lee K (2021) Allergic inflammation caused by dimerized translationally controlled tumor protein is attenuated by cardamonin. Front Pharmacol 12

    Google Scholar 

  • Qi W, Boliang W, Xiaoxi T, Guoqiang F, Jianbo X, Gang W (2020) Cardamonin protects against doxorubicin-induced cardiotoxicity in mice by restraining oxidative stress and inflammation associated with Nrf2 signaling. Biomed Pharmacother 122:109547

    Article  PubMed  Google Scholar 

  • Qin Y, Sun CY, Lu FR, Shu XR, Yang D, Chen L, Hu Y (2012) Cardamonin exerts potent activity against multiple myeloma through blockade of NF-κB pathway in vitro. Leuk Res 36(4):514–520

    Article  CAS  PubMed  Google Scholar 

  • Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, … Murray C (2017) Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 70(1):1–25

    Google Scholar 

  • Ruiz C, Haddad M, Alban J, Bourdy G, Reategui R, Castillo D, … Rojas R (2011) Activity-guided isolation of antileishmanial compounds from Piper hispidum. Phytochem Lett 4(3):363–366

    Google Scholar 

  • Sałat K, Filipek B (2015) Antinociceptive activity of transient receptor potential channel TRPV1, TRPA1, and TRPM8 antagonists in neurogenic and neuropathic pain models in mice. J Zhejiang Univ-Sci B 16(3):167–178

    Article  PubMed  PubMed Central  Google Scholar 

  • Salehi B, Quispe C, Chamkhi I, El Omari N, Balahbib A, Sharifi-Rad J, … Les F (2021) Pharmacological properties of chalcones: a review of preclinical including molecular mechanisms and clinical evidence. Front Pharmacol 11:592654

    Google Scholar 

  • Sambasevam Y, Farouk AAO, Mohamad TAST, Sulaiman MR, Bharatham BH, Perimal EK (2017) Cardamonin attenuates hyperalgesia and allodynia in a mouse model of chronic constriction injury-induced neuropathic pain: possible involvement of the opioid system. Eur J Pharmacol 796:32–38

    Article  CAS  PubMed  Google Scholar 

  • Samir SM, Elalfy M, El Nashar EM, Alghamdi MA, Hamza E, Serria MS, Elhadidy MG (2021) Cardamonin exerts a protective effect against autophagy and apoptosis in the testicles of diabetic male rats through the expression of Nrf2 via p62-mediated Keap-1 degradation. Korean J Physiol Pharmacol 25(4):341–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satsu H, Shibata R, Suzuki H, Kimura S, Shimizu M (2021) Inhibitory effect of tangeretin and cardamonin on human intestinal sglt1 activity in vitro and blood glucose levels in mice in vivo. Nutrients 13(10):3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen T, Samanta SK (2014) Medicinal plants, human health and biodiversity: a broad review. Biotechnol Appl Biodivers 147:59–110

    Google Scholar 

  • Sengottuvelu S (2011) Cardamom (Elettaria cardamomum Linn. Maton) seeds in health. In: Nuts and seeds in health and disease prevention. Academic Press, pp 285–291

    Chapter  Google Scholar 

  • Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–1197

    Article  CAS  PubMed  Google Scholar 

  • Shen YJ, Zhu XX, Yang X, Jin B, Lu JJ, Ding B, Chen SH (2014) Cardamonin inhibits angiotensin II-induced vascular smooth muscle cell proliferation and migration by downregulating p38 MAPK, Akt, and ERK phosphorylation. J Nat Med 68(3):623–629

    Article  CAS  PubMed  Google Scholar 

  • Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B (2022) Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem:132531

    Google Scholar 

  • Shi D, Niu P, Heng X, Chen L, Zhu Y, Zhou J (2018a) Autophagy induced by cardamonin is associated with mTORC1 inhibition in SKOV3 cells. Pharmacol Rep 70(5):908–916

    Article  CAS  PubMed  Google Scholar 

  • Shi D, Zhao D, Niu P, Zhu Y, Zhou J, Chen H (2018b) Glycolysis inhibition via mTOR suppression is a key step in cardamonin-induced autophagy in SKOV3 cells. BMC Complement Altern Med 18(1):1–8

    Article  Google Scholar 

  • Shi D, Zhu Y, Niu P, Zhou J, Chen H (2018c) Raptor mediates the antiproliferation of cardamonin by mTORC1 inhibition in SKOV3 cells. Onco Targets Ther 11:757

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrivastava S, Jeengar MK, Thummuri D, Koval A, Katanaev VL, Marepally S, Naidu VGM (2017) Cardamonin, a chalcone, inhibits human triple negative breast cancer cell invasiveness by downregulation of Wnt/β-catenin signaling cascades and reversal of epithelial–mesenchymal transition. Biofactors 43(2):152–169

    Article  CAS  PubMed  Google Scholar 

  • Simirgiotis MJ, Adachi S, To S, Yang H, Reynertson KA, Basile MJ, Kennelly EJ (2008) Cytotoxic chalcones and antioxidants from the fruits of Syzygium samarangense (Wax Jambu). Food Chem 107(2):813–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramaniam S, Selvaduray KR, Radhakrishnan AK (2019) Bioactive compounds: natural defense against cancer? Biomol Ther 9(12):758

    CAS  Google Scholar 

  • Sun H, Zhang N, Jin Y, Xu H (2021) Cardamonin promotes the apoptosis and chemotherapy sensitivity to gemcitabine of pancreatic cancer through modulating the FOXO3a-FOXM1 Axis. Dose-Response 19(4):15593258211042163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Y, Wan HH, Sun MM, Zhang WJ, Dong M, Ge W, Peng H (2021) Cardamonin protects against lipopolysaccharide-induced myocardial contractile dysfunction in mice through Nrf2-regulated mechanism. Acta Pharmacol Sin 42(3):404–413

    Article  CAS  PubMed  Google Scholar 

  • Tasneem S, Liu B, Li B, Choudhary MI, Wang W (2019) Molecular pharmacology of inflammation: medicinal plants as anti-inflammatory agents. Pharmacol Res 139:126–140

    Article  CAS  PubMed  Google Scholar 

  • Tavares EM, Carvalho AM, Gonçalves LM, Valente IM, Moreira MM, Guido LF, Rodrigues JA, Doneux T, Barros AA (2013) Chemical sensing of chalcones by voltammetry: trans-Chalcone, cardamonin and xanthohumol. Electrochim Acta 90:440–444

    Article  CAS  Google Scholar 

  • Teles YC, Souza MSR, Souza MDFVD (2018) Sulphated flavonoids: biosynthesis, structures, and biological activities. Molecules 23(2):480

    Article  PubMed  PubMed Central  Google Scholar 

  • Tewtrakul S, Subhadhirasakul S, Puripattanavong J, Panphadung T (2003) HIV-1 protease inhibitory substances from the rhizomes of Boesenbergia pandurata Holtt. Songklanakarin J Sci Technol 25(4):503–508

    CAS  Google Scholar 

  • Thuy TT, Porzel A, Ripperger H, Van Sung T, Adam G (1998) Chalcones and ecdysteroids from Vitex leptobotrys. Phytochemistry 49(8):2603–2605

    Article  CAS  Google Scholar 

  • Tian SS, Jiang FS, Zhang K, Zhu XX, Jin B, Lu JJ, Ding ZS (2014) Flavonoids from the leaves of Carya cathayensis Sarg. inhibit vascular endothelial growth factor-induced angiogenesis. Fitoterapia 92:34–40

    Article  CAS  PubMed  Google Scholar 

  • Ticona LA, Bermejo P, Guerra JA, Abad MJ, Beltran M, Lázaro RM, Bedoya LM (2020) Ethanolic extract of Artemisia campestris subsp. glutinosa (Besser) Batt. inhibits HIV–1 replication in vitro through the activity of terpenes and flavonoids on viral entry and NF–κB pathway. J Ethnopharmacol 263:113163

    Article  Google Scholar 

  • Tran PL, Kim O, Tran HNK, Tran MH, Min BS, Hwangbo C, Lee JH (2019) Protective effects of extract of Cleistocalyx operculatus flower buds and its isolated major constituent against LPS-induced endotoxic shock by activating the Nrf2/HO-1 pathway. Food Chem Toxicol 129:125–137

    Article  CAS  PubMed  Google Scholar 

  • Tuan Anh HL, Le Ba V, Do TT, Phan VK, Pham Thi HY, Bach LG, Kim YH (2021) Bioactive compounds from Physalis angulata and their anti-inflammatory and cytotoxic activities. J Asian Nat Prod Res 23(8):809–817

    Article  CAS  PubMed  Google Scholar 

  • Verma SK, Jain V, Singh DP (2012) Effect of greater cardamom (Amomum subulatum Roxb.) on blood lipids, fibrinolysis and total antioxidant status in patients with ischemic heart disease. Asian Pacific J Trop Dis 2:S739–S743

    Article  CAS  Google Scholar 

  • Voon FL, Sulaiman MR, Akhtar MN, Idris MF, Akira A, Perimal EK, Ming-Tatt L (2017) Cardamonin (2′, 4′-dihydroxy-6′-methoxychalcone) isolated from Boesenbergia rotunda (L.) Mansf. inhibits CFA-induced rheumatoid arthritis in rats. Eur J Pharmacol 794:127–134

    Article  CAS  PubMed  Google Scholar 

  • Wang ZT, Lau CW, Chan FL, Yao X, Chen ZY, He ZD, Huang Y (2001) Vasorelaxant effects of cardamonin and alpinetin from Alpinia henryi K. Schum. J Cardiovasc Pharmacol 37(5):596–606

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhai C, Zhang Y, Yu Y, Zhang Y, Ma L, Qiao Y (2016) Cardamonin, a novel antagonist of hTRPA1 cation channel, reveals therapeutic mechanism of pathological pain. Molecules 21(9):1145

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Tang X, Wu X, Yang M, Wang W, Wang L, Wang D (2019a) Cardamonin exerts anti-gastric cancer activity via inhibiting LncRNA-PVT1-STAT3 axis. Biosci Rep 39(5)

    Google Scholar 

  • Wang Z, Xu G, Gao Y, Zhan X, Qin N, Fu S, Bai Z (2019b) Cardamonin from a medicinal herb protects against LPS-induced septic shock by suppressing NLRP3 inflammasome. Acta Pharm Sin B 9(4):734–744

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang CC, Lu JW, Peng YJ, Lee CH, Lee HS, Chu YH, Wu CC (2021) Ameliorative effects of cardamonin on monosodium urate-induced gouty arthritis through inhibiting NLRP3 inflammasome mediation. Medicina 57(9):898

    Article  PubMed  PubMed Central  Google Scholar 

  • Webb PM, Jordan SJ (2017) Epidemiology of epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol 41:3–14

    Article  PubMed  Google Scholar 

  • Wei X, Mo X, An F, Ji X, Lu Y (2018) 2′, 4′-Dihydroxy-6′-methoxy-3′, 5′-dimethylchalcone, a potent Nrf2/ARE pathway inhibitor, reverses drug resistance by decreasing glutathione synthesis and drug efflux in BEL-7402/5-FU cells. Food Chem Toxicol 119:252–259

    Article  CAS  PubMed  Google Scholar 

  • Wollenweber E, Walter J, Schilling G (1981) New flavanones and chalcones from the farinose frond exudate of Pityrogramma pallida. Z Pflanzenphysiol 104(2):161–168

    Article  CAS  Google Scholar 

  • World Health Organization (2016) Global report on diabetes. WHO Press, Geneva. http://www.who.int/diabetes/global-report/en/

    Google Scholar 

  • Xiao H, Rao Ravu R, Tekwani BL, Li W, Liu WB, Jacob MR, Wang W (2017) Biological evaluation of phytoconstituents from Polygonum hydropiper. Nat Prod Res 31(17):2053–2057

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Chen L, Xiao Z, Zhu Y, Jiang H, Jin Y, Shen J (2018) Potentiation of the anticancer effect of doxorubicinin drug-resistant gastric cancer cells by tanshinone IIA. Phytomedicine 51:58–67

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Fan Y, Loor JJ, Liang Y, Sun X, Jia H, ... Xu C (2020) Cardamonin reduces acetaminophen-induced acute liver injury in mice via activating autophagy and NFE2L2 signaling. Front Pharmacol 1813

    Google Scholar 

  • Xue Z-G, Niu P-G, Shi D-H et al (2016) Cardamonin inhibits angiogenesis by mTOR downregulation in SKOV3 cells. Planta Med 82(1–2):70–75

    CAS  PubMed  Google Scholar 

  • Yahyaoui M, Bouajila J, Cazaux S, Abderrabba M (2018) The impact of regional locality on chemical composition, anti-oxidant and biological activities of Thymelaea hirsuta L. extracts. Phytomedicine 41:13–23

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Kawabata K, Sawada K, Ueda M, Fukuda I, Kawasaki K, Ashida H (2011) Cardamonin stimulates glucose uptake through translocation of glucose transporter-4 in L6 myotubes. Phytother Res 25(8):1218–1224

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Luo W, Zhang Q, Hong S, Wang Y, Samorodov AV, Liang G (2021) Cardamonin inhibits LPS-induced inflammatory responses and prevents acute lung injury by targeting myeloid differentiation factor 2. Phytomedicine 93:153785

    Article  CAS  PubMed  Google Scholar 

  • Yoo OK, Choi WJ, Keum YS (2020) Cardamonin inhibits oxazolone-induced atopic dermatitis by the induction of NRF2 and the inhibition of Th2 cytokine production. Antioxidants 9(9):834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You W, Wu Z, Ye F, Wu X (2018) Cardamonin protects against adverse cardiac remodeling through mTORC1 inhibition in mice with myocardial infarction. Die Pharmazie-Int J Pharmaceut Sci 73(9):508–512

    CAS  Google Scholar 

  • Youn K, Jun M (2019) Biological evaluation and docking analysis of potent BACE1 inhibitors from Boesenbergia rotunda. Nutrients 11(3):662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu WG, He H, Qian J, Lu YH (2014) Dual role of 2′, 4′-dihydroxy-6′-methoxy-3′, 5′-dimethylchalcone in inhibiting high-mobility group box 1 secretion and blocking its pro-inflammatory activity in hepatic inflammation. J Agric Food Chem 62(49):11949–11956

    Article  CAS  PubMed  Google Scholar 

  • Yu WG, He H, Yao JY, Zhu YX, Lu YH (2015) Dimethyl cardamonin exhibits anti-inflammatory effects via interfering with the PI3K-PDK1-PKCα signaling pathway. Biomol Ther 23(6):549

    Article  CAS  Google Scholar 

  • Yue Y, Liu L, Liu P, Li Y, Lu H, Li Y, Duan X (2020) Cardamonin as a potential treatment for melanoma induces human melanoma cell apoptosis. Oncol Lett 19(2):1393–1399

    CAS  PubMed  Google Scholar 

  • Zhang T, Yamamoto N, Ashida H (2014) Chalcones suppress fatty acid-induced lipid accumulation through a LKB1/AMPK signaling pathway in HepG2 cells. Food Funct 5(6):1134–1141

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Sikka S, Siveen KS, Lee JH, Um JY, Kumar AP, ... Ahn KS (2017) Cardamonin represses proliferation, invasion, and causes apoptosis through the modulation of signal transducer and activator of transcription 3 pathway in prostate cancer. Apoptosis 22(1):158–168

    Google Scholar 

  • Zhou X, Zhou R, Li Q, Jie X, Hong J, Zong Y, ... Wu G (2019) Cardamonin inhibits the proliferation and metastasis of non-small-cell lung cancer cells by suppressing the PI3K/Akt/mTOR pathway. Anti-Cancer Drugs 30(3):241–250

    Google Scholar 

Download references

Acknowledgments

This work was supported by Jiangsu Specially-Appointed Professor Program (19TPJS-002) and Senior Talent Startup Fund of Jiangsu University (4111360002) to X. Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiumin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mehmood, A., Sun, Y., Chen, X. (2023). Cardamonin: Advances on Resources, Biosynthesis Pathway, Bioavailability, Bioactivity, and Pharmacology. In: Xiao, J. (eds) Handbook of Dietary Flavonoids. Springer, Cham. https://doi.org/10.1007/978-3-030-94753-8_93-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94753-8_93-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94753-8

  • Online ISBN: 978-3-030-94753-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics