Skip to main content

Exploiting Approximations in Real-Time Scheduling

  • Chapter
  • First Online:
Approximate Computing Techniques

Abstract

In real-time systems, to provide timing guarantees, pessimistic worst-case bounds are traditionally assumed for computation and communication tasks. In practice, tighter bounds can be established by allowing computation or communication to be dropped or to execute in an approximate or imprecise manner. This creates a fundamental tradeoff between tightness of bounds and degradations in application quality. In this chapter, we present scheduling of computation and communication tasks as a quality optimization problem in terms of computation and communication budget assignments for systems with independent and dependent tasks. For independent tasks, traditional mixed-criticality (MC) systems can be extended to derive the precision of low-criticality tasks such that combined quality degradation is minimized while satisfying schedule admissibility. For dependent tasks, we describe approaches to find an optimized mapping, scheduling, and budgeting of task graphs that maximizes overall quality while meeting end-to-end real-time constraints. We evaluate our proposed approaches on both artificial and real-world task sets and compare them to traditional solutions that do not allow for approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J., & Stenström, P. (2008). The worst-case execution-time problem—overview of methods and survey of tools. ACM Transactions on Embedded Computing Systems (TECS), 7(3), 1–53.

    Article  Google Scholar 

  2. Burns, A., & Davis, R. (2013). Mixed criticality systems - a review. Tech. Rep., Department of Computer Science, University of York.

    Google Scholar 

  3. Derler, P., Feng, T. H., Lee, E. A., Matic, S., Patel, H. D., Zhao, Y., & Zou, J. (2008). PTIDES: A programming model for distributed real-time embedded systems. Tech. Rep. UCB/EECS-2008-72, EECS Department, University of California, Berkeley.

    Google Scholar 

  4. Schmidt, D., & Kuhns, F. (2000). An overview of the real-time CORBA specification. Computer, 33(6), 56–63.

    Article  Google Scholar 

  5. Schulzrinne, H., Casner, S., Frederick, R., & Jacobson, V. (2003). RTP: A transport protocol for real-time applications. RFC 3550. RFC Editor.

    Google Scholar 

  6. Baruah, S., Bonifaci, V., DAngelo, G., Li, H., Marchetti-Spaccamela, A., Van Der Ster, S., & Stougie, L. (2012). The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task systems. In Euromicro Conference on Real-Time Systems (ECRTS).

    Google Scholar 

  7. Liu, C. L., & Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal of the ACM, 20, 46–61.

    Article  MathSciNet  Google Scholar 

  8. Baruah, S., Chattopadhyay, B., Li, H., & Shin, I. (2014). Mixed-criticality scheduling on multiprocessors. Real-Time Systems, 50(1), 142–177.

    Article  Google Scholar 

  9. Baruah, S. (2004). Optimal utilization bounds for the fixed-priority scheduling of periodic task systems on identical multiprocessors. IEEE Transactions on Computers (TC), 53(6), 781–784.

    Article  Google Scholar 

  10. Li, H., & Baruah, S. (2012). Global mixed-criticality scheduling on multiprocessors. In Euromicro Conference on Real-Time Systems (ECRTS).

    Google Scholar 

  11. Funk, S., Levin, G., Sadowski, C., Pye, I., & Brandt, S. (2011). DP-Fair: A unifying theory for optimal hard real-time multiprocessor scheduling. Real-Time Systems, 47(5), 389–429.

    Article  Google Scholar 

  12. Lee, J., Phan, K.-M., Gu, X., Lee, J., Easwaran, A., Shin, I., & Lee, I. (2014). MC-Fluid: fluid model-based mixed-criticality scheduling on multiprocessors. In Real-Time Systems Symposium (RTSS).

    Google Scholar 

  13. Han, J., & Orshansky, M. (2013). Approximate computing: an emerging paradigm for energy-efficient design. In IEEE European Test Symposium (ETS).

    Google Scholar 

  14. Liu, J. W.-S., Lin, K.-J., Shih, W. K., Yu, A. C.-S., Chung, J.-Y., & Zhao, W. (1991). Algorithms for scheduling imprecise computations (pp. 203–249). New York: Springer.

    Google Scholar 

  15. Liu, D., Spasic, J., Guan, N., Chen, G., Liu, S., Stefanov, T., & Yi, W. (2016). EDF-VD scheduling of mixed-criticality systems with degraded quality guarantees. In Real-Time Systems Symposium (RTSS).

    Google Scholar 

  16. Burns, A., & Baruah, S. (2013). Towards a more practical model for mixed criticality systems. In Workshop on Mixed-Criticality Systems.

    Google Scholar 

  17. Baruah, S., Burns, A., & Guo, Z. (2016). Scheduling mixed-criticality systems to guarantee some service under all non-erroneous behaviors. In Euromicro Conference on Real-Time Systems (ECRTS).

    Google Scholar 

  18. Pathan, R. M. (2017). Improving the quality-of-service for scheduling mixed-criticality systems on multiprocessors. In LIPIcs-Leibniz International Proceedings in Informatics (vol. 76).

    Google Scholar 

  19. Huang, L., Hou, I., Sapatnekar, S. S., & Hu, J. (2018). Graceful degradation of low-criticality tasks in multiprocessor dual-criticality systems. In International Conference on Real-Time Networks and Systems (RTNS).

    Google Scholar 

  20. Barijough, K. M., Zhao, Z., & Gerstlauer, A. (2019). Quality/latency-aware real-time scheduling of distributed streaming IoT applications. ACM Transactions on Embedded Computer Systems (TECS), 18, 83:1–83:23.

    Google Scholar 

  21. Francis, S., & Gerstlauer, A. (2017). A reactive and adaptive data flow model for network-of-system specification. IEEE Embedded System Letters (ESL), 9, 121–124.

    Article  Google Scholar 

  22. Bovy, C., Mertodimedjo, H., Hooghiemstra, G., Uijterwaal, H., & Van Mieghem, P. (2002). Analysis of end-to-end delay measurements in internet. In The Passive and Active Measurement Workshop (PAM).

    Google Scholar 

  23. Lee, S., Lee, D., Han, K., Kim, T., Shriver, E., John, L. K., & Gerstlauer, A. (2016). Statistical quality modeling of approximate hardware. In IEEE International Symposium on Quality Electronic Design (ISQED).

    Google Scholar 

  24. Lee, S., & Gerstlauer, A. (2013). Fine grain word length optimization for dynamic precision scaling in DSP systems. In IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC).

    Google Scholar 

  25. ArtyZe. (2018). Image segmentation in darknet. Retrieved 15 Nov, 2020, from https://github.com/ArtyZe/yolo_segmentation

  26. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: unified, real-time object detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

    Google Scholar 

  27. Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv:1804.02767.

    Google Scholar 

  28. Zhao, Z., Barijough, K. M., & Gerstlauer, A. (2018). DeepThings: distributed adaptive deep learning inference on resource-constrained IoT edge clusters. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(11), 2348–2359.

    Article  Google Scholar 

  29. Majdik, A. L., Till, C., & Scaramuzza, D. (2017). The Zurich urban micro aerial vehicle dataset. The International Journal of Robotics Research, 36(3), 269–273.

    Article  Google Scholar 

  30. Ahrenholz, J. (2010). Comparison of core network emulation platforms. In Military Communications Conference (Milcom) (pp. 166–171). Piscataway: IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Gerstlauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barijough, K.M., Huang, L., Hou, IH., Sapatnekar, S.S., Hu, J., Gerstlauer, A. (2022). Exploiting Approximations in Real-Time Scheduling. In: Bosio, A., Ménard, D., Sentieys, O. (eds) Approximate Computing Techniques. Springer, Cham. https://doi.org/10.1007/978-3-030-94705-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94705-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94704-0

  • Online ISBN: 978-3-030-94705-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics