Skip to main content

Chemistry and Microstructure

  • Chapter
  • First Online:
Dental Ceramics

Abstract

In this chapter, we will draw attention to the importance of the chemistry and microstructural features of the different classes of dental ceramics for the subsequent understanding of local interactions to the growing crack, which ultimately governs the mechanical behavior of materials at larger scales. For that, one cannot disentangle aspects related to the different fabrication processes, such as powder synthesis and compaction, compositional deviations from stoichiometry, sintering parameters, glass melting, nucleation and crystallization, etc. The material as it is commercialized, and the changes it undergoes following mandatory heat treatments are addressed by seizing on methods for the characterization of crystalline phases. Those analytical techniques supply valuable information for better grasping phase diagrams and crystallization reactions, unveiling individual roles of particular oxides. Having the perspective of materials science will ease one to establish important relationships to mechanical properties, failure modes, and clinical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thompson LM, Stebbins JF. Non-bridging oxygen and high-coordinated aluminum in meta- luminous and peraluminous calcium and potassium aluminosilicate glasses: high-resolution 17O and 27Al MAS NMR results. Am Mineral Am Mineral. 2011;96:841–53.

    Article  Google Scholar 

  2. Quinn JB, Sundar V, Lloyd IK. Influence of microstructure and chemistry on the fracture toughness of dental ceramics. Dent Mater. 2003;19:603–11.

    Article  PubMed  Google Scholar 

  3. Scherrer SS, Kelly JR, Quinn GD, Xu K. Fracture toughness (K-Ic) of a dental porcelain determined by fractographic analysis. J Dent Res. 1998;77:656.

    Google Scholar 

  4. Belli R, Wendler M, Petschelt A, Lube T, Lohbauer U. Fracture toughness testing of biomedical ceramic-based materials using beams, plates and discs. J Eur Ceram Soc. 2018;38:5533–44.

    Article  Google Scholar 

  5. Mackert JR Jr, Butts MB, Fairhurst CW. The effect of the leucite transformation on dental porcelain expansion. Dent Mater. 1986;2:32–6.

    Article  PubMed  Google Scholar 

  6. Zhang Y, Rao PG, Lu M, Wu JQ. Mechanical properties of dental porcelain with different leucite particle sizes. J Am Ceram Soc. 2008;91:527–34.

    Article  Google Scholar 

  7. Zhang Y, Qu C, Rao PG, Lu MC, Wu JQ. Nanocrystalline seeding effect on the crystallization of two leucite precusors. J Am Ceram Soc. 2007;90:2390–8.

    Article  Google Scholar 

  8. Cattell MJ, Patzig C, Bissasu S, Tsoutsos A, Karpukhina N. Nucleation efficacy and flexural strength of novel leucite glass-ceramics. Dent Mater. 2020;36:592–602.

    Article  PubMed  Google Scholar 

  9. Denry IL, Mackert JR Jr, Holloway JA, Rosenstiel SF. Effect of cubic leucite stabilization on the flexural strength of feldspathic dental porcelain. J Dent Res. 1996;75:1928–35.

    Article  PubMed  Google Scholar 

  10. Cesar PF, Yoshimura HN, Miranda Junior WG, Okada CY. Correlation between fracture toughness and leucite content in dental porcelains. J Dent. 2005;33:721–9.

    Article  PubMed  Google Scholar 

  11. Lee HH, Kon M, Asaoka K. Influence of modification of Na2O in a glass matrix on the strength of leucite-containing porcelains. Dent Mater J. 1997;16:134–43.

    Article  PubMed  Google Scholar 

  12. Kon M, Kawano F, Asaoka K, Matsumoto N. Effect of leucite crystals on the strength of glassy porcelain. Dent Mater J. 1994;13:138–47.

    Article  PubMed  Google Scholar 

  13. Belli R, Petschelt A, Hofner B, Hajto J, Scherrer SS, Lohbauer U. Fracture rates and lifetime estimations of CAD/CAM all-ceramic restorations. J Dent Res. 2016;95:67–73.

    Article  PubMed  Google Scholar 

  14. Belli R, Wendler M, Cicconi MR, de Ligny D, Petschelt A, Werbach K, et al. Fracture anisotropy in texturized lithium disilicate glass-ceramics. J Non-Cryst Solids. 2018;481:457–69.

    Article  Google Scholar 

  15. Huang SF, Li Y, Wei SH, Huang ZH, Gao W, Cao P. A novel high-strength lithium disilicate glass-ceramic featuring a highly intertwined microstructure. J Eur Ceram Soc. 2017;37:1083–94.

    Article  Google Scholar 

  16. Zanotto ED. A bright future for glass-ceramics. Am Ceram Soc Bull. 2010;89:19–27.

    Google Scholar 

  17. Beall GH. Dr. S. Donald (Don) Stookey (1915-2014): pioneering researcher and adventurer. Front Mater. 2016;3:37.

    Article  Google Scholar 

  18. Lubauer J, Belli R, Peterlik H, Hurle K, Lohbauer U. Grasping the lithium hype: insights into modern lithium silicate glass-ceramics. Dental Mater. 2021;38(2):318–32.

    Google Scholar 

  19. Soares PC, Zanotto ED, Fokin VM, Jain H. TEM and XRD study of early crystallization of lithium disilicate glasses. J Non-Cryst Solids. 2003;331:217–27.

    Article  Google Scholar 

  20. Gaddam A, Fernandes HR, Tulyaganov DU, Ribeiro MJ, Ferreira JMF. The roles of P2O5 and SiO2/Li2O ratio on the network structure and crystallization kinetics of non-stoichiometric lithium disilicate based glasses. J Non-Cryst Solids. 2018;481:512–21.

    Article  Google Scholar 

  21. Ortiz AL, Rodrigues CS, Guiberteau F, Zhang Y. An in situ and ex situ study of the microstructural evolution of a novel lithium silicate glass-ceramic during crystallization firing. Dent Mater. 2020;36:645–59.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lubauer J, Hurle K, Cicconi MR, Petschelt A, Peterlik H, Lohbauer U. Toughening by revitrification of Li2SiO3 crystals in Obsidian dental glass-ceramic. J Mech Behav Biomed Mater. 2021;124:104739.

    Article  PubMed  Google Scholar 

  23. Hurle K, Belli R, Götz-Neunhoeffer F, Lohbauer U. Phase characterization of lithium silicate biomedical glass-ceramics produced by two-stage crystallization. J Non-Cryst Solids. 2019;510:42–50.

    Article  Google Scholar 

  24. Belli R, Wendler M, de Ligny D, Cicconi MR, Petschelt A, Peterlik H, et al. Chairside CAD/CAM materials. Part 1: measurement of elastic constants and microstructural characterization. Dent Mater. 2017;33:84–98.

    Article  PubMed  Google Scholar 

  25. Lin CC, Shen PY, Chang HM, Yang YJ. Composition dependent structure and elasticity of lithium silicate glasses: effect of ZrO2 additive and the combination of alkali silicate glasses. J Eur Ceram Soc. 2006;26:3613–20.

    Article  Google Scholar 

  26. Kruger S, Deubener J, Ritzberger C, Holand W. Nucleation kinetics of lithium metasilicate in ZrO2-bearing lithium Disilicate glasses for dental application. Int J Appl Glas Sci. 2013;4:9–19.

    Article  Google Scholar 

  27. Thieme K, Russel C. Nucleation and growth kinetics and phase analysis in zirconia-containing lithium disilicate glass. J Mater Sci. 2015;50:1488–99.

    Article  Google Scholar 

  28. Matusita K, Sakka S, Maki T, Tashiro M. Study on crystallization of glass by differential thermal-analysis—effect of added oxide on crystallization of Li2o-Sio2 glasses. J Mater Sci. 1975;10:94–100.

    Article  Google Scholar 

  29. Fernandes HR, Tulyaganov DU, Ferreira JMF. The role of P2O5, TiO2 and ZrO2 as nucleating agents on microstructure and crystallization behaviour of lithium disilicate-based glass. J Mater Sci. 2013;48:765–73.

    Article  Google Scholar 

  30. Apel E, van’t Hoen C, Rheinberger V, Holand W. Influence of ZrO2 on the crystallization and properties of lithium disilicate glass-ceramics derived from a multi-component system. J Eur Ceram Soc. 2007;27:1571–7.

    Article  Google Scholar 

  31. Huang X, Zheng X, Zhao G, Zhong B, Zhang X, Wen G. Microstructure and mechanical properties of zirconia-toughened lithium disilicate glass-ceramic composites. Mater Chem Phys. 2014;143:845–52.

    Article  Google Scholar 

  32. Zanotto ED, Leite MLG. The nucleation mechanism of lithium disilicate glass revisited. J Non-Cryst. Solids 1996;202:145–52.

    Google Scholar 

  33. Iqbal Y, Lee WE, Holland D, James PF. Metastable phase formation in the early stage crystallisation of lithium disilicate glass. J Non-Cryst Solids. 1998;224:1–16.

    Article  Google Scholar 

  34. Zanotto ED. Metastable phases in lithium disilicate glasses. J Non-Cryst Solids. 1997;219:42–8.

    Article  Google Scholar 

  35. Deubener J, Bruckner R, Sternitzke M. Induction time analysis of nucleation and crystal-growth in disilicate and metasilicate glasses. J Non-Cryst Solids. 1993;163:1–12.

    Article  Google Scholar 

  36. Huang SF, Huang ZH, Gao W, Cao P. Structural response of lithium disilicate in glass crystallization. Cryst Growth Des. 2014;14:5144–51.

    Article  Google Scholar 

  37. Bischoff C, Eckert H, Apel E, Rheinberger VM, Holand W. Phase evolution in lithium disilicate glass-ceramics based on non-stoichiometric compositions of a multi-component system: structural studies by Si-29 single and double resonance solid state NMR. Phys Chem Chem Phys. 2011;13:4540–51.

    Article  PubMed  Google Scholar 

  38. Hesse KF. Refinement of the crystal structure of lithium polysilicate. Acta Crystallogr. 1977;B33:901–2.

    Article  Google Scholar 

  39. De Jong BHWS, Super HTJ, Spek AL, Veldman N, Nachtegaal G, Fischer JC. Mixed alkali systems: structure and Si-29 MASNMR of Li2Si2O5 and K2Si2O5. Acta Crystallogr B. 1998;54:568–77.

    Article  Google Scholar 

  40. Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr. 2011;44:1272–6.

    Article  Google Scholar 

  41. Lubauer J, Belli R, Petschelt A, Cicconi MR, Hurle K, Lohbauer U. Concurrent kinetics of crystallization and toughening in multicomponent biomedical SiO2-Li2O-P2O5-ZrO2 glass-ceramics. J Non-Cryst Solids. 2021;554:120607.

    Article  Google Scholar 

  42. Belli R, Lohbauer U, Goetz-Neunhoeffer F, Hurle K. Crack-healing during two-stage crystallization of biomedical lithium (di)silicate glass-ceramics. Dent Mater. 2019;35:1130–45.

    Article  PubMed  Google Scholar 

  43. Wendler M, Belli R, Petschelt A, Mevec D, Harrer W, Lube T, et al. Chairside CAD/CAM materials. Part 2: flexural strength testing. Dent Mater. 2017;33:99–109.

    Article  PubMed  Google Scholar 

  44. Santos GG, Serbena FC, Fokin VM, Zanotto ED. Microstructure and mechanical properties of nucleant-free Li2O-CaO-SiO2 glass-ceramics. Acta Mater. 2017;130:347–60.

    Article  Google Scholar 

  45. Mastelaro VR, Zanotto ED. Anisotropic residual stresses in partially crystallized Li2=-2SiO2 glass-ceramics. J Non-Cryst Solids. 1999;247:79–86.

    Article  Google Scholar 

  46. Villas-Boas MOC, Serbena FC, Soares VO, Mathias I, Zanotto ED. Residual stress effect on the fracture toughness of lithium disilicate glass-ceramics. J Am Ceram Soc. 2020;103:465–79.

    Article  Google Scholar 

  47. Oh W-S, Zhang N-Z, Anusavice KJ. Effect of heat treatment on fracture toughness (KIc) and microstructure of a fluorcanasite-based glass-ceramic. J Prosthodont. 2007;16:439–44.

    Article  PubMed  Google Scholar 

  48. Yoshimura HN, Cesar PF, Miranda WG, Gonzaga CC, Okada CY, Goldenstein H. Fracture toughness of dental porcelains evaluated by IF, SCF, and SEPB methods. J Am Ceram Soc. 2005;88:1680–3.

    Article  Google Scholar 

  49. Serbena FC, Mathias I, Foester CE, Zanotto ED. Crystallization toughening of a model glass-ceramic. Acta Mater. 2015;86:216–28.

    Article  Google Scholar 

  50. Belli R, Wendler M, Zorzin JI, Lohbauer U. Practical and theoretical considerations on the fracture toughness testing of dental restorative materials. Dent Mater. 2018;34:97–119.

    Article  PubMed  Google Scholar 

  51. Quinn GD, Swab JJ, Patel P. Fracture toughness of modern and ancient glasses and glass ceramics as measured by the SEPB method. Ceram Eng Sci Proc. 2018;39:1–11.

    Google Scholar 

  52. Soares VO, Serbena FC, Mathias I, Crovace MC, Zanotto ED. New, tough and strong lithium metasilicate dental glass-ceramic. Ceramics International. 2020;47(2):2793–801.

    Article  Google Scholar 

  53. Kirsten J, Belli R, Wendler M, Petschelt A, Hurle K, Lohbauer U. Crack growth rates in lithium disilicates with bulk (mis)alignment of the Li2Si2O5 phase in the [001] direction. J Non-Cryst Solids. 2020;532:119877.

    Article  Google Scholar 

  54. Gonzaga CC, Okada CY, Cesar PF, Miranda WG Jr, Yoshimura HN. Effect of processing induced particle alignment on the fracture toughness and fracture behavior of multiphase dental ceramics. Dent Mater. 2009;25:1293–301.

    Article  PubMed  Google Scholar 

  55. Albakry M, Guazzato M, Swain MV. Influence of hot-pressing on the microstructure and fracture toughness of two pressable dental glass-ceramics. J Biomed Mater Res B Appl Biomater. 2004;71B:99–107.

    Article  Google Scholar 

  56. Belli R, Wendler M, Petschelt A, Lohbauer U. Mixed-mode fracture toughness of texturized LS2 glass-ceramics using the three-point bending with eccentric notch test. Dent Mater. 2017;33:1473–7.

    Article  PubMed  Google Scholar 

  57. Belli R, Wendler W, Zorzin JI, da Silva LH, Petschelt A, Lohbauer U. Fracture toughness mode mixity at the connectors of monolithic 3Y.TZP and LS2 dental bridge constructs. J Eur Ceram Soc. 2015;35:3701–11.

    Article  Google Scholar 

  58. Curran P, Cattani-Lorente M, Wiskott HWA, Durual S, Scherrer SS. Grinding damage assessment for CAD-CAM restorative materials. Dent Mater. 2017;33:294–308.

    Article  PubMed  Google Scholar 

  59. Lohbauer U, Muller FA, Petschelt A. Influence of surface roughness on mechanical strength of resin composite versus glass ceramic materials. Dent Mater. 2008;24:250–6.

    Article  PubMed  Google Scholar 

  60. Belli R, Volkl H, Csato S, Tremmel S, Wartzack S, Lohbauer U. Development of a hoop-strength test for model sphero-cylindrical dental ceramic crowns: FEA and fractography. J Eur Ceram Soc. 2020;40:4753–64.

    Article  Google Scholar 

  61. Tanaka S, Chia-Pin C, Kato Z, Uematsu K. Effect of internal binder on microstructure in compacts made from granules. J Eur Ceram Soc. 2007;27:873–7.

    Article  Google Scholar 

  62. Tanaka S, Pin CC, Uematsu K. Effect of organic binder segregation on sintered strength of dry-pressed alumina. J Am Ceram Soc. 2006;89:1903–7.

    Article  Google Scholar 

  63. Zhang Y, Suga T, Kawasaki M, Tang XX, Uchida N, Uematsu K. Effect of poly(vinyl alcohol) adsorption on binder segregation during drying. J Am Ceram Soc. 1996;79:435–40.

    Article  Google Scholar 

  64. Hondo T, Yasuda K, Wakai F, Tanaka S. Influence of binder layer of spray-dried granules on occurrence and evolution of coarse defects in alumina ceramics during sintering. J Eur Ceram Soc. 2018;38:1846–52.

    Article  Google Scholar 

  65. Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent Mater. 2008;24:289–98.

    Article  PubMed  Google Scholar 

  66. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008;24:299–307.

    Article  PubMed  Google Scholar 

  67. Li P, Chen IW. Effect of dopants on zirconia stabilization—an X-Ray-absorption study. 2. Tetravalent dopants. J Am Ceram Soc. 1994;77:1281–8.

    Article  Google Scholar 

  68. Li P, Chen IW, Pennerhahn JE. Effect of dopants on zirconia stabilization—an X-ray-absorption study. 1. Trivalent dopants. J Am Ceram Soc. 1994;77:118–28.

    Article  Google Scholar 

  69. Guo X. Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules. Chem Mater. 2004;16:3988–94.

    Article  Google Scholar 

  70. Fabris S, Paxton AT, Finnis MW. A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Mater. 2002;50:5171–8.

    Article  Google Scholar 

  71. Kawata K, Maekawa H, Nemoto T, Yamamura T. Local structure analysis of YSZ by Y-89 MAS-NMR. Solid State Ionics. 2006;177:1687–90.

    Article  Google Scholar 

  72. Fabrichnaya O, Aldinger F. Assessment of thermodynamic parameters in the system ZrO2-Y2O3-Al2O3. Z Metallkunde. 2004;95:27–39.

    Article  Google Scholar 

  73. Lakiza S, Fabrichnaya O, Zinkevich M, Aldinger F. On the phase relations in the ZrO2-YO1.5-AlO1.5 system. J Alloys Compd. 2006;420:237–45.

    Article  Google Scholar 

  74. Kilo M, Taylor MA, Argirusis C, Borchardt G, Lesage B, Weber S, et al. Cation self-diffusion of ca-44, Y-88, and Zr-96 in single-crystalline calcia- and yttria-doped zirconia. J Appl Phys. 2003;94:7547–52.

    Article  Google Scholar 

  75. Lanteri V, Chaim R, Heuer AH. On the microstructures resulting from the diffusionless cubic—tetragonal transformation in Zro2-Y2o3 alloys. J Am Ceram Soc. 1986;69:C258–C61.

    Article  Google Scholar 

  76. Scott HG. Phase relationships in zirconia-Yttria system. J Mater Sci. 1975;10:1527–35.

    Article  Google Scholar 

  77. Virkar AV, Matsumoto RLK. Ferroelastic domain switching as a toughening mechanism in tetragonal zirconia. J Am Ceram Soc. 1986;69:C224–C6.

    Article  Google Scholar 

  78. Yashima M, Ishizawa N, Yoshimura M. High temperature x-ray diffraction study on cubic-tetragonal phase transition in the ZrO2-RO1.5 systems (R: rare earths). In: Badwal SPS, Bannister MJ, Hannink RHJ, editors. Science and Technology of Zirconia. Lancaster: Technomic; 1993. p. 125–35.

    Google Scholar 

  79. Krogstad JA, Lepple M, Gao Y, Lipkin DM, Levi CG. Effect of Yttria content on the zirconia unit cell parameters. J Am Ceram Soc. 2011;94:4548–55.

    Article  Google Scholar 

  80. Krogstad JA, Kramer S, Lipkin DM, Johnson CA, Mitchell DRG, Cairney JM, et al. Phase stability of t′-zirconia-based thermal barrier coatings: mechanistic insights. J Am Ceram Soc. 2011;94:S168–S77.

    Article  Google Scholar 

  81. Lipkin DM, Krogstad JA, Gao Y, Johnson CA, Nelson WA, Levi CG. Phase evolution upon aging of air-plasma sprayed t′-zirconia coatings: I-Synchrotron X-ray diffraction. J Am Ceram Soc. 2013;96:290–8.

    Article  Google Scholar 

  82. Krogstad JA, Gao Y, Bai JM, Wang J, Lipkin DM, Levi CG. In situ diffraction study of the high-temperature decomposition of t′-zirconia. J Am Ceram Soc. 2015;98:247–54.

    Article  Google Scholar 

  83. Inokoshi M, Shimizu H, Nozaki K, Takagaki T, Yoshihara K, Nagaoka N, et al. Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia. Dent Mater. 2018;34:508–18.

    Article  PubMed  Google Scholar 

  84. Camposilvan E, Leone R, Gremillard L, Sorrentino R, Zarone F, Ferrari M, et al. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent Mater. 2018;34:879–90.

    Article  PubMed  Google Scholar 

  85. Kolakarnprasert N, Kaizer MR, Kim DK, Zhang Y. New multi-layered zirconias: composition, microstructure and translucency. Dent Mater. 2019;35:797–806.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater. 2016;32:e327–e37.

    Article  PubMed  Google Scholar 

  87. Krogstad JA, Leckie RM, Kramer S, Cairney JM, Lipkin DM, Johnson CA, et al. Phase evolution upon aging of air plasma sprayed t-zirconia coatings: II-microstructure evolution. J Am Ceram Soc. 2013;96:299–307.

    Article  Google Scholar 

  88. Belli R, Hurle K, Schürrlein J, Petschelt A, Werbach K, Peterlik H, et al. Relationships between fracture toughness, Y2O3 fraction and phases content in modern Yttria-doped zirconias. J Eur Ceram Soc. 2021;41(15):771–7782.

    Google Scholar 

  89. Grigore A, Spallek S, Petschelt A, Butz B, Spiecker E, Lohbauer U. Microstructure of veneered zirconia after surface treatments: a TEM study. Dent Mater. 2013;29:1098–107.

    Article  PubMed  Google Scholar 

  90. Zhang F, Reveron H, Spies BC, Van Meerbeek B, Chevalier J. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta Biomater. 2019;91:24–34.

    Article  PubMed  Google Scholar 

  91. Lange FF. Transformation Toughening. 3. Experimental-observations in the Zro2-Y2o3 system. J Mater Sci. 1982;17:240–6.

    Article  Google Scholar 

  92. Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater. 2014;30:1195–203.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hannink RHJ, Kelly PM, Muddle BC. Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc. 2000;83:461–87.

    Article  Google Scholar 

  94. Kailer A, Stephan M. On the feasibility of the Chevron Notch Beam method to measure fracture toughness of fine-grained zirconia ceramics. Dent Mater. 2016;32:1256–62.

    Article  PubMed  Google Scholar 

  95. Miyazaki H, Yoshizawa Y. A reinvestigation of the validity of the indentation fracture (IF) method as applied to ceramics. J Eur Ceram Soc. 2017;37:4437–41.

    Article  Google Scholar 

  96. Mercer C, Williams JR, Clarke DR, Evans AG. On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime (t′) yttria-stabilized zirconia. Proc R Soc A. 2007;463:1393–408.

    Article  Google Scholar 

  97. Basu B, Vleugels J, Van der Biest O. Toughness tailoring of yttria-doped zirconia ceramics. Mater Sci Eng A. 2004;380:215–21.

    Article  Google Scholar 

  98. Smirnov A, Kurland HD, Grabow J, Muller FA, Bartolome JF. Microstructure, mechanical properties and low temperature degradation resistance of 2Y-TZP ceramic materials derived from nanopowders prepared by laser vaporization. J Eur Ceram Soc. 2015;35:2685–91.

    Article  Google Scholar 

  99. Chevalier J, Taddei P, Gremillard L, Deville S, Fantozzi G, Bartolome JF, et al. Reliability assessment in advanced nanocomposite materials for orthopaedic applications. J Mech Behav Biomed Mater. 2011;4:303–14.

    Article  PubMed  Google Scholar 

  100. Belli R, Lohbauer U. The breakdown of the Weibull behavior in dental zirconias. J Am Ceram Soc. 2021;104(9):4819–28.

    Article  Google Scholar 

  101. Scherrer SS, Cattani-Lorente M, Yoon S, Karvonen L, Pokrant S, Rothbrust F, et al. Post-hot isostatic pressing: a healing treatment for process related defects and laboratory grinding damage of dental zirconia? Dent Mater. 2013;29:E180–E90.

    Article  PubMed  Google Scholar 

  102. Scherrer S, Cesar PF, Lohbauer U, Belli R. Zirconia as a biomaterial in implant dentistry. Forum Implantol. 2018;14:6–17.

    Google Scholar 

  103. Boursier A, d’Esdra GG, Lintingre E, Fretigny C, Lequeux F, Talini L. Cold compression of ceramic spray-dried granules: role of the spatial distribution of the binder. Ceram Int. 2020;46:9680–90.

    Article  Google Scholar 

  104. Inokoshi M, Shimizubata M, Nozaki K, Takagaki T, Yoshihara K, Minakuchi S, et al. Impact of sandblasting on the flexural strength of highly translucent zirconia. J Mech Behav Biomed Mater. 2021;115:104268.

    Article  PubMed  Google Scholar 

  105. Caravaca CF, Flamant Q, Anglada M, Gremillard L, Chevalier J. Impact of sandblasting on the mechanical properties and aging resistance of alumina and zirconia based ceramics. J Eur Ceram Soc. 2018;38:915–25.

    Article  Google Scholar 

  106. Sailer I, Pjetursson BE, Zwahlen M, Hammerle CHF. A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part II: fixed dental prostheses. Clin Oral Implan Res. 2007;18:86–96.

    Article  Google Scholar 

  107. Sailer I, Feher A, Filser F, Gauckler LJ, Luthy H, Hammerle CHF. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont. 2007;20:383–8.

    PubMed  Google Scholar 

  108. Sailer I, Gottner J, Kanel S, Hammerle CHF. Randomized controlled clinical trial of zirconia-ceramic and metal-ceramic posterior fixed dental prostheses: a 3-year follow-up. Int J Prosthodont. 2009;22:553–60.

    PubMed  Google Scholar 

  109. Swain MV. Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures. Acta Biomater. 2009;5:1668–77.

    Article  PubMed  Google Scholar 

  110. Belli R, Monteiro S, Baratieri LN, Katte H, Petschelt A, Lohbauer U. A Photoelastic assessment of residual stresses in zirconia-veneer crowns. J Dent Res. 2012;91:316–20.

    Article  PubMed  Google Scholar 

  111. Wendler M, Belli R, Petschelt A, Lohbauer U. Characterization of residual stresses in zirconia veneered bilayers assessed via sharp and blunt indentation. Dent Mater. 2015;31:948–57.

    Article  PubMed  Google Scholar 

  112. Choi JE, Waddell JN, Swain MV. Pressed ceramics onto zirconia. Part 2: indentation fracture and influence of cooling rate on residual stresses. Dent Mater. 2011;27:1111–8.

    Article  PubMed  Google Scholar 

  113. Wendler M, Belli R, Petschelt A, Lohbauer U. Spatial distribution of residual stresses in glass-ZrO2 sphero-cylindrical bilayers. J Mech Behav Biomed Mater. 2016;60:535–46.

    Article  PubMed  Google Scholar 

  114. Mainjot AK, Schajer GS, Vanheusden AJ, Sadoun MJ. Influence of cooling rate on residual stress profile in veneering ceramic: measurement by hole-drilling. Dent Mater. 2011;27:906–14.

    Article  PubMed  Google Scholar 

  115. Belli R, Petschelt A, Lohbauer U. Thermal-induced residual stresses affect the fractographic patterns of zirconia-veneer dental prostheses. J Mech Behav Biomed Mater. 2013;21:167–77.

    Article  PubMed  Google Scholar 

  116. Mainjot AK, Schajer GS, Vanheusden AJ, Sadoun MJ. Residual stress measurement in veneering ceramic by hole-drilling. Dent Mater. 2011;27:439–44.

    Article  PubMed  Google Scholar 

  117. Belli R, Frankenberger R, Appelt A, Schmitt J, Baratieri LN, Greil P, et al. Thermal-induced residual stresses affect the lifetime of zirconia-veneer crowns. Dent Mater. 2013;29:181–90.

    Article  PubMed  Google Scholar 

  118. Tholey MJ, Swain MV, Thiel N. SEM observations of porcelain Y-TZP interface. Dent Mater. 2009;25:857–62.

    Article  PubMed  Google Scholar 

  119. Chevalier J, Gremillard L, Virkar AV, Clarke DR. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc. 2009;92:1901–20.

    Article  Google Scholar 

  120. Chevalier J, Cales B, Drouin JM. Low-temperature aging of Y-TZP ceramics. J Am Ceram Soc. 1999;82:2150–4.

    Article  Google Scholar 

  121. Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res. 2007;37:1–32.

    Article  Google Scholar 

  122. Marro FG, Mesta A, Anglada M. Weibull strength statistics of hydrothermally aged 3 Mol% yttria-stabilised tetragonal zirconia. Ceram Int. 2014;40:12777–82.

    Article  Google Scholar 

  123. Siarampi E, Kontonasaki E, Andrikopoulos KS, Kantiranis N, Voyiatzis GA, Zorba T, et al. Effect of in vitro aging on the flexural strength and probability to fracture of Y-TZP zirconia ceramics for all-ceramic restorations. Dent Mater. 2014;30:E306–E16.

    Article  PubMed  Google Scholar 

  124. Kim HT, Han JS, Yang JH, Lee JB, Kim SH. The effect of low temperature on the mechanical property and phase stability of Y-TZP ceramics. J Adv Prosthodont. 2009;1:113–7.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Virkar AV, Huang JL, Cutler RA. Strengthening of oxide ceramics by transformation-induced stresses. J Am Ceram Soc. 1987;70:164–70.

    Article  Google Scholar 

  126. Sanon C, Chevalier J, Douillard T, Kohal RJ, Coelho PG, Hjerppe J, et al. Low temperature degradation and reliability of one-piece ceramic oral implants with a porous surface. Dent Mater. 2013;29:389–97.

    Article  PubMed  Google Scholar 

  127. Caravaca CF, Flamant Q, Anglada M, Gremillard L, Chevalier J. Impact of sandblasting on the mechanical properties and aging resistance of alumina and zirconia based ceramics. J Eur Ceram Soc. 2018;38(3):15–925.

    Google Scholar 

  128. Li JF, Watanabe R. Phase transformation in Y2O3-partially-stabilized ZrO2 polycrystals of various grain sizes during low-temperature aging in water. J Am Ceram Soc. 1998;81:2687–91.

    Article  Google Scholar 

  129. Cotic J, Jevnikar P, Kocjan A, Kosmac T. Complexity of the relationships between the sintering-temperature-dependent grain size, airborne-particle abrasion, ageing and strength of 3Y-TZP ceramics. Dent Mater. 2016;32:510–8.

    Article  PubMed  Google Scholar 

  130. Hallmann L, Mehl A, Ulmer P, Reusser E, Stadler J, Zenobi R, et al. The influence of grain size on low-temperature degradation of dental zirconia. J Biomed Mater Res B. 2012;100b:447–56.

    Article  Google Scholar 

  131. Tsubakino H, Sonoda K, Nozato R. Martensite-transformation behavior during isothermal aging in partially-stabilized zirconia with and without alumina addition. J Mater Sci Lett. 1993;12:196–8.

    Article  Google Scholar 

  132. Palmero P, Fornabaio M, Montanaro L, Reveron H, Esnouf C, Chevalier J. Towards long lasting zirconia-based composites for dental implants. Part I: innovative synthesis, microstructural characterization and in vitro stability. Biomaterials. 2015;50:38–46.

    Article  PubMed  Google Scholar 

  133. Zhang F, Vanmeensel K, Inokoshi M, Batuk M, Hadermann J, Van Meerbeek B, et al. 3Y-TZP ceramics with improved hydrothermal degradation resistance and fracture toughness. J Eur Ceram Soc. 2014;34:2453–63.

    Article  Google Scholar 

  134. Hallmann L, Ulmer P, Reusser E, Louvel M, Hammerle CHF. Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP-zirconia. J Eur Ceram Soc. 2012;32:4091–104.

    Article  Google Scholar 

  135. Cattani-Lorente M, Scherrer SS, Durual S, Sanon C, Douillard T, Gremillard L, et al. Effect of different surface treatments on the hydrothermal degradation of a 3Y-TZP ceramic for dental implants. Dent Mater. 2014;30:1136–46.

    Article  PubMed  Google Scholar 

  136. Deville S, Chevalier J, Gremillard L. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials. 2006;27:2186–92.

    Article  PubMed  Google Scholar 

  137. Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: a critical review of the relevant aspects in dentistry. Dent Mater. 2010;26:807–20.

    Article  PubMed  Google Scholar 

  138. Oblak C, Verdenik I, Swain MV, Kosmac T. Survival-rate analysis of surface treated dental zirconia (Y-TZP) ceramics. J Mater Sci. 2014;25:2255–64.

    Google Scholar 

  139. Kosmac T, Oblak C, Marion L. The effects of dental grinding and sandblasting on ageing and fatigue behavior of dental zirconia (Y-TZP) ceramics. J Eur Ceram Soc. 2008;28:1085–90.

    Article  Google Scholar 

  140. Belli R, Loher C, Petschelt A, Cicconi MR, de Ligny D, Anglada M, et al. Low-temperature degradation increases the cyclic fatigue resistance of 3Y-TZP in bending. Dent Mater. 2020;36:1086–95.

    Article  PubMed  Google Scholar 

  141. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent Mater. 2004;20:441–8.

    Article  PubMed  Google Scholar 

  142. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent Mater. 2004;20:449–56.

    Article  PubMed  Google Scholar 

  143. Canneto JJ, Cattani-Lorente M, Durual S, Wiskott AHW, Scherrer SS. Grinding damage assessment on four high-strength ceramics. Dent Mater. 2016;32:171–82.

    Article  PubMed  Google Scholar 

  144. Lohbauer U, Petschelt A, Greil P. Lifetime prediction of CAD/CAM dental ceramics. J Biomed Mater Res. 2002;63:780–5.

    Article  PubMed  Google Scholar 

  145. Swain MV, Coldea A, Bilkhair A, Guess PC. Interpenetrating network ceramic-resin composite dental restorative materials. Dent Mater. 2016;32:34–42.

    Article  PubMed  Google Scholar 

  146. Belli R, Zorzin JI, Petschelt A, Lohbauer U, Rocca GT. Crack growth behavior of a biomedical polymer-ceramic interpenetrating scaffolds composite in the subcritical regimen. Eng Fract Mech. 2020;231:107014.

    Article  Google Scholar 

  147. Wendler M, Kaizer MR, Belli R, Lohbauer U, Zhang Y. Sliding contact wear and subsurface damage of CAD/CAM materials against zirconia. Dental Mater. 2020;36:387–401.

    Article  Google Scholar 

  148. Della Bona A, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated ceramic-network material. Dent Mater. 2014;30:564–9.

    Article  PubMed  Google Scholar 

  149. Quinn GD, Swab JJ, Patel P. Fracture toughness of modern and ancient glasses and glass ceramics as measured by the SEPB method. Hoboken: Wiley; 2019.

    Book  Google Scholar 

  150. Quinn GD. On edge chipping testing and some personal perspectives on the state of the art of mechanical testing. Dent Mater. 2015;31:26–36.

    Article  PubMed  Google Scholar 

  151. Lubauer J, Belli R, Schünemann FH, Matta RE, Wichmann M, Wartzack S, et al. Inner marginal strength of CAD/CAM materials is not affected by machining protocol. Biomater Invest Dent. 2021;8:119–28.

    Google Scholar 

  152. Coldea A, Fischer J, Swain MV, Thiel N. Damage tolerance of indirect restorative materials (including PICN) after simulated bur adjustments. Dent Mater. 2015;31:684–94.

    Article  PubMed  Google Scholar 

  153. Coldea A, Swain MV, Thiel N. In-vitro strength degradation of dental ceramics and novel PICN material by sharp indentation. J Mech Behav Biomed Mater. 2013;26:34–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Lohbauer .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lohbauer, U., Belli, R. (2022). Chemistry and Microstructure. In: Dental Ceramics. Springer, Cham. https://doi.org/10.1007/978-3-030-94687-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94687-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94686-9

  • Online ISBN: 978-3-030-94687-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics