Skip to main content

Genomic Imprinting: A Paradigm for Epigenetics of Human Diseases

  • Chapter
  • First Online:
Epigenetic Epidemiology

Abstract

Genomic imprinting is a remarkable phenomenon through which certain genes show monoallelic expression depending on their parent of origin. While imprinting may have evolved for viviparity and potentially as a mechanism to balance resource allocation in mammals, functional haploidy presents a clear risk to human health. Both epigenetic and genetic and aberrations at imprinted loci contribute to genomic imprinting disorders, such as Beckwith–Wiedemann, Silver–Russell, Prader–Willi and Angelman syndromes. Beyond these well-documented disorders, changes in the tissue-specific expression levels of imprinted genes may contribute far more widely to human disease. The expression of imprinted genes can be disrupted at the level of a single gene, at the level of an imprinted domain or through changes in imprinted gene networks. Importantly, imprinted genes can respond to prenatal adversity leading to persistent changes in gene expression. Consequently, in addition to identifying the functions of individual imprinted genes, it is important to understand the mechanisms through which imprints are established, maintained and erased, with erasure critical to ensure comprehensive erasure of epimutations in the germline. We review the critical aspects of genomic imprinting and imprinted human diseases as a paradigm for future studies on epigenetics of human development and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5hmC:

5-Hydroxymethylcytosine

5mC:

5-Methylcytosine

Airn :

Antisense Of Igf2R non-protein coding RNA

Ascl2 :

Achaete-scute family bHLH transcription factor 2

BWS:

Beckwith–Wiedemann Syndrome

Cdkn1c :

Cyclin-dependent kinase inhibitor 1c

CpG:

Dinucleotide CG

CTCF:

CCCTC-binding factor

Dio3 :

Iodothyronine Deiodinase 3

Dlk1 :

Delta Like Non-Canonical Notch Ligand 1

DNMT1:

DNA methyltransferase 1

DNMT3A:

DNA methyltransferase 3A

DNMT3B:

DNA methyltransferase 3B

DNMT3L:

DNA methyltransferase 3L

(E):

Embryonic

ERVK:

Endogenous retrovirus-K

gDMR:

Germline differentially methylated region

Gnas :

GNAS (guanine nucleotide binding protein, alpha stimulating) complex locus

Grb10 :

Growth factor receptor-bound protein 10

H19 :

H19 gene

H3K27me3:

Histone H3 lysine 27 trimethylation

H3K36me2/3:

Histone H3 di/trimethylated at lysine 36

H3K4me2/3:

Histone H3 di/trimethylated at lysine 4

HELL2:

Helicase, lymphoid specific

HELLP:

Haemolysis, elevated liver enzymes and low platelet count

IC:

Imprinting centre

Igf2 :

Insulin-like growth factor 2

Igf2r :

Insulin-like growth factor 2 receptor

IGN:

Imprinted gene network

IMAGe:

Intrauterine growth retardation, metaphyseal dysplasia, adrenal hypoplasia congenita, and genital anomalies

Inpp5f-v2 :

Inositol polyphosphate-5-phosphatase F variant 2

Ins2 :

Insulin 2

Kcnq1ot1 :

Kcnq1 opposite strand/antisense transcript 1 (non-protein coding) gene

KvDMR:

DMR in the Kcnq1ot1 locus

LBW:

Low birth weight

LTR:

Long terminal repeat

Mcts2 :

Malignant T cell amplified sequence

Meg3 (aka Gtl2):

Maternally expressed 3

Mest (aka Peg1):

Mesoderm-specific transcript

MLID:

Multilocus imprinting disorders

Nap1l5 :

Nucleosome assembly protein 1-like 5

NLRP5:

NLR family pyrin domain containing 5

NSD1:

Nuclear receptor binding SET domain protein 1

Peg1 :

Paternally expressed gene-1

Peg3 :

Paternally expressed gene-3

PGCs:

Primordial germ cells

Phlda2 :

Pleckstrin homology-like domain, family A, member 2 gene

PIWI:

P-element induced Wimpy testis

Plag1 (aka Zac1):

Pleiomorphic adenoma gene-like 1

Rasgrf1 :

Ras protein-specific guanine nucleotide releasing factor 1

sDMR:

Somatic differentially methylated region

SETD2:

SET domain containing 2, histone lysine methyltransferase

SETDB1:

SET domain bifurcated histone lysine methyltransferase 1

Slc22a18 :

Solute carrier family 22, member 18

Slc22a2 :

Solute carrier family 22 member 2

Slc22a3 :

Solute carrier family 22 member 3

Slc38a4 :

Solute carrier family 38 member 4

Snrpn :

Small nuclear ribonucleoprotein polypeptide N

SRS:

Silver–Russell Syndrome

TAD:

Topologically associating domain

Tet:

Ten-eleven translocation protein

TNDM:

Transient neonatal diabetes mellitus

TRIM28:

Tripartite motif containing 28

UHRF1:

Ubiquitin like with PHD and ring finger domains 1

UPD:

Uniparental disomy

ZFP:

Zinc-finger protein

Zrsr1 (aka U2af1-rs1):

Zinc finger (CCCH type), RNA binding motif and serine/arginine rich 1

References

  1. Surani MA (1998) Imprinting and the initiation of gene silencing in the germ line. Cell 93(3):309–312

    Article  CAS  PubMed  Google Scholar 

  2. Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2(1):21–32. https://doi.org/10.1038/35047554

    Article  CAS  PubMed  Google Scholar 

  3. Ferguson-Smith AC, Surani MA (2001) Imprinting and the epigenetic asymmetry between parental genomes. Science 293(5532):1086–1089

    Article  CAS  PubMed  Google Scholar 

  4. Surani MA, Barton SC (1983) Development of gynogenetic eggs in the mouse: implications for parthenogenetic embryos. Science 222(4627):1034–1036. https://doi.org/10.1126/science.6648518

    Article  CAS  PubMed  Google Scholar 

  5. McGrath J, Solter D (1983) Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220(4603):1300–1302. https://doi.org/10.1126/science.6857250

    Article  CAS  PubMed  Google Scholar 

  6. McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the materal and paternal genomes. Cell 37:179–183

    Article  CAS  PubMed  Google Scholar 

  7. Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308(5959):548–550

    Article  CAS  PubMed  Google Scholar 

  8. Barton SC, Surani MA, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311:374–376

    Article  CAS  PubMed  Google Scholar 

  9. Solter D, Aronson J, Gilbert SF, McGrath J (1985) Nuclear transfer in mouse embryos: activation of the embryonic genome. Cold Spring Harb Symp Quant Biol 50:45–50

    Article  CAS  PubMed  Google Scholar 

  10. Surani MA, Barton SC, Norris ML (1987) Influence of parental chromosomes on spatial specificity in androgenetic-parthenogenetic chimaeras in the mouse. Nature 326:395–397

    Article  CAS  PubMed  Google Scholar 

  11. Thomson JA, Solter D (1988) The developmental fate of androgenetic, parthenogenetic and gynogenetic cells in chimeric gastrulating mouse embryos. Genes Dev 2:1344–1351

    Article  CAS  PubMed  Google Scholar 

  12. Cattanach BM, Kirk M (1985) Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315(6019):496–498

    Article  CAS  PubMed  Google Scholar 

  13. Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12(8):565–575. https://doi.org/10.1038/nrg3032

    Article  CAS  PubMed  Google Scholar 

  14. Barlow DP, Bartolomei MS (2014) Genomic imprinting in mammals. Cold Spring Harb Perspect Biol 6(2). https://doi.org/10.1101/cshperspect.a018382

  15. Ferguson-Smith AC, Bourc’his D (2018) The discovery and importance of genomic imprinting. Elife 7. https://doi.org/10.7554/eLife.42368

  16. Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. TIG 7(2):45–49

    Article  CAS  PubMed  Google Scholar 

  17. Haig D, Graham C (1991) Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64(6):1045–1046

    Article  CAS  PubMed  Google Scholar 

  18. Wolf JB, Hager R (2006) A maternal-offspring coadaptation theory for the evolution of genomic imprinting. PLoS Biol 4(12):e380. https://doi.org/10.1371/journal.pbio.0040380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Strahan R (1983) Complete book of Australian mammals. Angus and Robertson

    Google Scholar 

  20. Van de Pette M, Abbas A, Feytout A, McNamara G, Bruno L, To WK, Dimond A, Sardini A, Webster Z, McGinty J, Paul EJ, Ungless MA, French PMW, Withers DJ, Uren A, Ferguson-Smith AC, Merkenschlager M, John RM, Fisher AG (2017) Visualizing changes in cdkn1c expression links early-life adversity to imprint mis-regulation in adults. Cell Rep 18(5):1090–1099. https://doi.org/10.1016/j.celrep.2017.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. SanMiguel JM, Bartolomei MS (2018) DNA methylation dynamics of genomic imprinting in mouse development. Biol Reprod 99(1):252–262. https://doi.org/10.1093/biolre/ioy036

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC, Erice Imprinting G (2019) Genomic imprinting and physiological processes in mammals. Cell 176(5):952–965. https://doi.org/10.1016/j.cell.2019.01.043

    Article  CAS  PubMed  Google Scholar 

  23. Li JY, Lees-Murdock DJ, Xu GL, Walsh CP (2004) Timing of establishment of paternal methylation imprints in the mouse. Genomics 84(6):952–960. https://doi.org/10.1016/j.ygeno.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  24. Kato Y, Kaneda M, Hata K, Kumaki K, Hisano M, Kohara Y, Okano M, Li E, Nozaki M, Sasaki H (2007) Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet 16(19):2272–2280. https://doi.org/10.1093/hmg/ddm179

    Article  CAS  PubMed  Google Scholar 

  25. Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, Popp C, Thienpont B, Dean W, Reik W (2012) The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 48(6):849–862. https://doi.org/10.1016/j.molcel.2012.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, Sato S, Nakabayashi K, Hata K, Sotomaru Y, Suzuki Y, Kono T (2012) Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet 8(1):e1002440. https://doi.org/10.1371/journal.pgen.1002440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Henckel A, Chebli K, Kota SK, Arnaud P, Feil R (2012) Transcription and histone methylation changes correlate with imprint acquisition in male germ cells. EMBO J 31(3):606–615. https://doi.org/10.1038/emboj.2011.425

    Article  CAS  PubMed  Google Scholar 

  28. Hata K, Okano M, Lei H, Li E (2002) Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129(8):1983–1993

    Article  CAS  PubMed  Google Scholar 

  29. Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294(5551):2536–2539. https://doi.org/10.1126/science.1065848

    Article  PubMed  Google Scholar 

  30. Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429(6994):900–903. https://doi.org/10.1038/nature02633

    Article  CAS  PubMed  Google Scholar 

  31. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    Article  CAS  PubMed  Google Scholar 

  32. Watanabe T, Tomizawa S, Mitsuya K, Totoki Y, Yamamoto Y, Kuramochi-Miyagawa S, Iida N, Hoki Y, Murphy PJ, Toyoda A, Gotoh K, Hiura H, Arima T, Fujiyama A, Sado T, Shibata T, Nakano T, Lin H, Ichiyanagi K, Soloway PD, Sasaki H (2011) Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332(6031):848–852. https://doi.org/10.1126/science.1203919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shirane K, Miura F, Ito T, Lorincz MC (2020) NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing. Nat Genet 52(10):1088–1098. https://doi.org/10.1038/s41588-020-0689-z

    Article  CAS  PubMed  Google Scholar 

  34. Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, Sato S, Hata K, Andrews SR, Kelsey G (2011) Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 43(8):811–814. https://doi.org/10.1038/ng.864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shirane K, Toh H, Kobayashi H, Miura F, Chiba H, Ito T, Kono T, Sasaki H (2013) Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet 9(4):e1003439. https://doi.org/10.1371/journal.pgen.1003439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stewart KR, Veselovska L, Kim J, Huang J, Saadeh H, Tomizawa S, Smallwood SA, Chen T, Kelsey G (2015) Dynamic changes in histone modifications precede de novo DNA methylation in oocytes. Genes Dev 29(23):2449–2462. https://doi.org/10.1101/gad.271353.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu Q, Xiang Y, Wang Q, Wang L, Brind’Amour J, Bogutz AB, Zhang Y, Zhang B, Yu G, Xia W, Du Z, Huang C, Ma J, Zheng H, Li Y, Liu C, Walker CL, Jonasch E, Lefebvre L, Wu M, Lorincz MC, Li W, Li L, Xie W (2019) SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development. Nat Genet 51(5):844–856. https://doi.org/10.1038/s41588-019-0398-7

    Article  CAS  PubMed  Google Scholar 

  38. Sun XJ, Wei J, Wu XY, Hu M, Wang L, Wang HH, Zhang QH, Chen SJ, Huang QH, Chen Z (2005) Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J Biol Chem 280(42):35261–35271. https://doi.org/10.1074/jbc.M504012200

    Article  CAS  PubMed  Google Scholar 

  39. Chedin F, Lieber MR, Hsieh CL (2002) The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A 99(26):16916–16921. https://doi.org/10.1073/pnas.262443999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Suetake I, Shinozaki F, Miyagawa J, Takeshima H, Tajima S (2004) DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem 279(26):27816–27823. https://doi.org/10.1074/jbc.M400181200

    Article  CAS  PubMed  Google Scholar 

  41. Kaneda M, Hirasawa R, Chiba H, Okano M, Li E, Sasaki H (2010) Genetic evidence for Dnmt3a-dependent imprinting during oocyte growth obtained by conditional knockout with Zp3-Cre and complete exclusion of Dnmt3b by chimera formation. Genes Cells. https://doi.org/10.1111/j.1365-2443.2009.01374.x

  42. Veselovska L, Smallwood SA, Saadeh H, Stewart KR, Krueger F, Maupetit-Mehouas S, Arnaud P, Tomizawa S, Andrews S, Kelsey G (2015) Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape. Genome Biol 16(1):209. https://doi.org/10.1186/s13059-015-0769-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bourc’his D, Bestor TH (2006) Origins of extreme sexual dimorphism in genomic imprinting. Cytogenet Genome Res 113(1–4):36–40. https://doi.org/10.1159/000090813

    Article  CAS  PubMed  Google Scholar 

  44. Chotalia M, Smallwood SA, Ruf N, Dawson C, Lucifero D, Frontera M, James K, Dean W, Kelsey G (2009) Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev 23(1):105–117. https://doi.org/10.1101/gad.495809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smith EY, Futtner CR, Chamberlain SJ, Johnstone KA, Resnick JL (2011) Transcription is required to establish maternal imprinting at the Prader-Willi syndrome and Angelman syndrome locus. PLoS Genet 7(12):e1002422. https://doi.org/10.1371/journal.pgen.1002422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Singh VB, Sribenja S, Wilson KE, Attwood KM, Hillman JC, Pathak S, Higgins MJ (2017) Blocked transcription through KvDMR1 results in absence of methylation and gene silencing resembling Beckwith-Wiedemann syndrome. Development 144(10):1820–1830. https://doi.org/10.1242/dev.145136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bretz CL, Kim J (2017) Transcription-driven DNA methylation setting on the mouse Peg3 locus. Epigenetics 12(11):945–952. https://doi.org/10.1080/15592294.2017.1377869

    Article  PubMed  PubMed Central  Google Scholar 

  48. Joh K, Matsuhisa F, Kitajima S, Nishioka K, Higashimoto K, Yatsuki H, Kono T, Koseki H, Soejima H (2018) Growing oocyte-specific transcription-dependent de novo DNA methylation at the imprinted Zrsr1-DMR. Epigenetics Chromatin 11(1):28. https://doi.org/10.1186/s13072-018-0200-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, Yang L, Zhang J, Li G, Ci W, Li W, Zhou Q, Aluru N, Tang F, He C, Huang X, Liu J (2014) Programming and inheritance of parental DNA methylomes in mammals. Cell 157(4):979–991. https://doi.org/10.1016/j.cell.2014.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takahashi N, Coluccio A, Thorball CW, Planet E, Shi H, Offner S, Turelli P, Imbeault M, Ferguson-Smith AC, Trono D (2019) ZNF445 is a primary regulator of genomic imprinting. Genes Dev 33(1–2):49–54. https://doi.org/10.1101/gad.320069.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Messerschmidt DM, de Vries W, Ito M, Solter D, Ferguson-Smith A, Knowles BB (2012) Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science 335(6075):1499–1502. https://doi.org/10.1126/science.1216154

    Article  CAS  PubMed  Google Scholar 

  52. Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, Ferguson-Smith AC (2008) A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 15(4):547–557. https://doi.org/10.1016/j.devcel.2008.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner S, Baglivo I, Pedone PV, Grimaldi G, Riccio A, Trono D (2011) In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell 44(3):361–372. https://doi.org/10.1016/j.molcel.2011.08.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shi H, Strogantsev R, Takahashi N, Kazachenka A, Lorincz MC, Hemberger M, Ferguson-Smith AC (2019) ZFP57 regulation of transposable elements and gene expression within and beyond imprinted domains. Epigenetics Chromatin 12(1):49. https://doi.org/10.1186/s13072-019-0295-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Howell CY, Bestor TH, Ding F, Latham KE, Mertineit C, Trasler JM, Chaillet JR (2001) Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104(6):829–838. https://doi.org/10.1016/s0092-8674(01)00280-x

    Article  CAS  PubMed  Google Scholar 

  56. Hirasawa R, Chiba H, Kaneda M, Tajima S, Li E, Jaenisch R, Sasaki H (2008) Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev 22(12):1607–1616. https://doi.org/10.1101/gad.1667008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Weaver JR, Sarkisian G, Krapp C, Mager J, Mann MR, Bartolomei MS (2010) Domain-specific response of imprinted genes to reduced DNMT1. Mol Cell Biol 30(16):3916–3928. https://doi.org/10.1128/MCB.01278-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Toyoda T, Okamura K, Tajima S, Mitsuya K, Okano M, Koseki H (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450(7171):908–912. https://doi.org/10.1038/nature06397

    Article  CAS  PubMed  Google Scholar 

  59. Hanna CW, Kelsey G (2014) The specification of imprints in mammals. Heredity 113(2):176–183. https://doi.org/10.1038/hdy.2014.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. White CR, MacDonald WA, Mann MR (2016) Conservation of DNA methylation programming between mouse and human gametes and preimplantation embryos. Biol Reprod 95(3):61. https://doi.org/10.1095/biolreprod.116.140319

    Article  CAS  PubMed  Google Scholar 

  61. Bogutz AB, Brind’Amour J, Kobayashi H, Jensen KN, Nakabayashi K, Imai H, Lorincz MC, Lefebvre L (2019) Evolution of imprinting via lineage-specific insertion of retroviral promoters. Nat Commun 10(1):5674. https://doi.org/10.1038/s41467-019-13662-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wutz A, Smrzka OW, Schweifer N, Schellander K, Wagner EF, Barlow DP (1997) Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389(6652):745–749

    Article  CAS  PubMed  Google Scholar 

  63. Thorvaldsen JL, Duran KL, Bartolomei MS (1998) Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev 12(23):3693–3702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bielinska B, Blaydes SM, Buiting K, Yang T, Krajewska-Walasek M, Horsthemke B, Brannan CI (2000) De novo deletions of SNRPN exon 1 in early human and mouse embryos result in a paternal to maternal imprint switch. Nat Genet 25(1):74–78. https://doi.org/10.1038/75629

    Article  CAS  PubMed  Google Scholar 

  65. Fitzpatrick GV, Soloway PD, Higgins MJ (2002) Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet 32(3):426–431

    Article  CAS  PubMed  Google Scholar 

  66. Lin SP, Youngson N, Takada S, Seitz H, Reik W, Paulsen M, Cavaille J, Ferguson-Smith AC (2003) Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat Genet 35(1):97–102

    Article  CAS  PubMed  Google Scholar 

  67. Williamson CM, Turner MD, Ball ST, Nottingham WT, Glenister P, Fray M, Tymowska-Lalanne Z, Plagge A, Powles-Glover N, Kelsey G, Maconochie M, Peters J (2006) Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. Nat Genet 38(3):350–355

    Article  CAS  PubMed  Google Scholar 

  68. MacDonald WA, Mann MRW (2020) Long noncoding RNA functionality in imprinted domain regulation. PLoS Genet 16(8):e1008930. https://doi.org/10.1371/journal.pgen.1008930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sleutels F, Zwart R, Barlow DP (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415(6873):810–813. https://doi.org/10.1038/415810a

    Article  CAS  PubMed  Google Scholar 

  70. Santoro F, Mayer D, Klement RM, Warczok KE, Stukalov A, Barlow DP, Pauler FM (2013) Imprinted Igf2r silencing depends on continuous Airn lncRNA expression and is not restricted to a developmental window. Development 140(6):1184–1195. https://doi.org/10.1242/dev.088849

    Article  CAS  PubMed  Google Scholar 

  71. Kota SK, Lleres D, Bouschet T, Hirasawa R, Marchand A, Begon-Pescia C, Sanli I, Arnaud P, Journot L, Girardot M, Feil R (2014) ICR noncoding RNA expression controls imprinting and DNA replication at the Dlk1-Dio3 domain. Dev Cell 31(1):19–33. https://doi.org/10.1016/j.devcel.2014.08.009

    Article  CAS  PubMed  Google Scholar 

  72. Tibbit CJ, Williamson CM, Mehta S, Ball ST, Chotalia M, Nottingham WT, Eaton SA, Quwailid MM, Teboul L, Kelsey G, Peters J (2015) Antisense activity across the nesp promoter is required for nespas-mediated silencing in the imprinted gnas cluster. Noncoding RNA 1(3):246–265. https://doi.org/10.3390/ncrna1030246

    Article  PubMed  PubMed Central  Google Scholar 

  73. Latos PA, Pauler FM, Koerner MV, Senergin HB, Hudson QJ, Stocsits RR, Allhoff W, Stricker SH, Klement RM, Warczok KE, Aumayr K, Pasierbek P, Barlow DP (2012) Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338(6113):1469–1472. https://doi.org/10.1126/science.1228110

    Article  CAS  PubMed  Google Scholar 

  74. Meng L, Person RE, Huang W, Zhu PJ, Costa-Mattioli M, Beaudet AL (2013) Truncation of Ube3a-ATS unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model. PLoS Genet 9(12):e1004039. https://doi.org/10.1371/journal.pgen.1004039

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mancini-Dinardo D, Steele SJ, Levorse JM, Ingram RS, Tilghman SM (2006) Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev 20(10):1268–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shin JY, Fitzpatrick GV, Higgins MJ (2008) Two distinct mechanisms of silencing by the KvDMR1 imprinting control region. EMBO J 27(1):168–178

    Article  CAS  PubMed  Google Scholar 

  77. Keshavarz M, Tautz D (2021) The imprinted lncRNA Peg13 regulates sexual preference and the sex-specific brain transcriptome in mice. Proc Natl Acad Sci U S A 118(10). https://doi.org/10.1073/pnas.2022172118

  78. Kobayashi H, Sakurai T, Miura F, Imai M, Mochiduki K, Yanagisawa E, Sakashita A, Wakai T, Suzuki Y, Ito T, Matsui Y, Kono T (2013) High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice. Genome Res 23(4):616–627. https://doi.org/10.1101/gr.148023.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117(1–2):15–23

    Article  CAS  PubMed  Google Scholar 

  80. Yamaguchi S, Hong K, Liu R, Inoue A, Shen L, Zhang K, Zhang Y (2013) Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming. Cell Res 23(3):329–339. https://doi.org/10.1038/cr.2013.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dawlaty MM, Breiling A, Le T, Raddatz G, Barrasa MI, Cheng AW, Gao Q, Powell BE, Li Z, Xu M, Faull KF, Lyko F, Jaenisch R (2013) Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell 24(3):310–323. https://doi.org/10.1016/j.devcel.2012.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, Surani MA (2013) Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339(6118):448–452. https://doi.org/10.1126/science.1229277

    Article  CAS  PubMed  Google Scholar 

  83. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935. https://doi.org/10.1126/science.1170116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gkountela S, Zhang KX, Shafiq TA, Liao WW, Hargan-Calvopina J, Chen PY, Clark AT (2015) DNA demethylation dynamics in the human prenatal germline. Cell 161(6):1425–1436. https://doi.org/10.1016/j.cell.2015.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yamaguchi S, Shen L, Liu Y, Sendler D, Zhang Y (2013) Role of Tet1 in erasure of genomic imprinting. Nature 504(7480):460–464. https://doi.org/10.1038/nature12805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. SanMiguel JM, Abramowitz LK, Bartolomei MS (2018) Imprinted gene dysregulation in a Tet1 null mouse model is stochastic and variable in the germline and offspring. Development 145(7). https://doi.org/10.1242/dev.160622

  87. Ferguson-Smith AC, Cattanach BM, Barton SC, Beechey CV, Surani MA (1991) Molecular and embryological investigations of parental imprinting on mouse chromosome 7. Nature 351:667–670

    Article  CAS  PubMed  Google Scholar 

  88. Searle AG, Beechey CV (1990) Genome imprinting phenomena on mouse chromosome 7. Genet Res (Cambridge) 56:237–244

    Article  CAS  Google Scholar 

  89. McLaughlin KJ, Solter D, Mann J (1997) Developmental consequences of two paternal copies of imprinted chromosome region distal 7 in mice. J Cell Physiol 173(2):242–246. https://doi.org/10.1002/(SICI)1097-4652(199711)173:2<242::AID-JCP29>3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  90. McLaughlin KJ, Szabò P, Haegel H, Mann JR (1996) Mouse embryos with paternal duplication of an imprinted chromosome 7 region die around midgestation and lack placental spongiotrophoblast. Development 122:265–270

    Article  CAS  PubMed  Google Scholar 

  91. DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64(4):849–859

    Article  CAS  PubMed  Google Scholar 

  92. Deltour L, Montagutelli X, Guenet J-L, Jami J, Paldi A (1995) Tissue and developmental stage-specific imprinting of the mouse proinsulin gene, Ins-2. Dev Biol 168:686–688

    Article  CAS  PubMed  Google Scholar 

  93. Bartolomei MS, Zemei S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351:153–155

    Article  CAS  PubMed  Google Scholar 

  94. Cai X, Cullen BR (2007) The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA (New York, NY) 13(3):313–316. https://doi.org/10.1261/rna.351707

    Article  CAS  Google Scholar 

  95. Ferguson-Smith AC, Sasaki H, Cattanach BM, Surani MA (1993) Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 362(6422):751–755. https://doi.org/10.1038/362751a0

    Article  CAS  PubMed  Google Scholar 

  96. John RM, Lefebvre L (2011) Developmental regulation of somatic imprints. Differentiation 81(5):270–280. https://doi.org/10.1016/j.diff.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  97. Leighton PA, Saam JR, Ingram RS, Stewart CL, Tilghman SM (1995) An enhancer deletion affects both H19 and Igf2 expression. Genes Dev 9(17):2079–2089

    Article  CAS  PubMed  Google Scholar 

  98. Bell AC, Felsenfeld G (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405(6785):482–485. https://doi.org/10.1038/35013100

    Article  CAS  PubMed  Google Scholar 

  99. Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405(6785):486–489. https://doi.org/10.1038/35013106

    Article  CAS  PubMed  Google Scholar 

  100. Kanduri C, Pant V, Loukinov D, Pugacheva E, Qi CF, Wolffe A, Ohlsson R, Lobanenkov VV (2000) Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol 10(14):853–856. https://doi.org/10.1016/s0960-9822(00)00597-2

    Article  CAS  PubMed  Google Scholar 

  101. Engel N, Raval AK, Thorvaldsen JL, Bartolomei SM (2008) Three-dimensional conformation at the H19/Igf2 locus supports a model of enhancer tracking. Hum Mol Genet 17(19):3021–3029. https://doi.org/10.1093/hmg/ddn200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kurukuti S, Tiwari VK, Tavoosidana G, Pugacheva E, Murrell A, Zhao Z, Lobanenkov V, Reik W, Ohlsson R (2006) CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci U S A 103(28):10684–10689. https://doi.org/10.1073/pnas.0600326103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li T, Hu JF, Qiu X, Ling J, Chen H, Wang S, Hou A, Vu TH, Hoffman AR (2008) CTCF regulates allelic expression of Igf2 by orchestrating a promoter-polycomb repressive complex 2 intrachromosomal loop. Mol Cell Biol 28(20):6473–6482. https://doi.org/10.1128/MCB.00204-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Qiu X, Vu TH, Lu Q, Ling JQ, Li T, Hou A, Wang SK, Chen HL, Hu JF, Hoffman AR (2008) A complex deoxyribonucleic acid looping configuration associated with the silencing of the maternal Igf2 allele. Mol Endocrinol 22(6):1476–1488. https://doi.org/10.1210/me.2007-0474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Murrell A, Heeson S, Reik W (2004) Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet 36(8):889–893. https://doi.org/10.1038/ng1402

    Article  CAS  PubMed  Google Scholar 

  106. Court F, Baniol M, Hagege H, Petit JS, Lelay-Taha MN, Carbonell F, Weber M, Cathala G, Forne T (2011) Long-range chromatin interactions at the mouse Igf2/H19 locus reveal a novel paternally expressed long non-coding RNA. Nucleic Acids Res 39(14):5893–5906. https://doi.org/10.1093/nar/gkr209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lleres D, Moindrot B, Pathak R, Piras V, Matelot M, Pignard B, Marchand A, Poncelet M, Perrin A, Tellier V, Feil R, Noordermeer D (2019) CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains. Genome Biol 20(1):272. https://doi.org/10.1186/s13059-019-1896-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Qian N, Frank D, O’Keefe D, Dao D, Zhao L, Yuan L, Wang Q, Keating M, Walsh C, Tycko B (1997) The IPL gene on chromosome 11p15.5 is imprinted in humans and mice and is similar to TDAG51, implicated in Fas expression and apoptosis. Hum Mol Genet 6(12):2021–2029

    Article  CAS  PubMed  Google Scholar 

  109. Hatada I, Mukai T (1995) Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse. Nat Genet 11(2):204–206

    Article  CAS  PubMed  Google Scholar 

  110. Guillemot F, Caspary T, Tilghman SM, Copeland NG, Gilbert DJ, Jenkins NA, Anderson DJ, Joyner AL, Rossant J, Nagy A (1995) Genomic imprinting of Mash2, a mouse gene required for trophoblast development. Nat Genet 9:235–242

    Article  CAS  PubMed  Google Scholar 

  111. Smilinich NJ, Day CD, Fitzpatrick GV, Caldwell GM, Lossie AC, Cooper PR, Smallwood AC, Joyce JA, Schofield PN, Reik W, Nicholls RD, Weksberg R, Driscoll DJ, Maher ER, Shows TB, Higgins MJ (1999) A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc Natl Acad Sci U S A 96(14):8064–8069. https://doi.org/10.1073/pnas.96.14.8064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Engemann S, Strodicke M, Paulsen M, Franck O, Reinhardt R, Lane N, Reik W, Walter J (2000) Sequence and functional comparison in the beckwith-wiedemann region: implications for a novel imprinting centre and extended imprinting. Hum Mol Genet 9(18):2691–2706

    Article  CAS  PubMed  Google Scholar 

  113. Lewis A, Mitsuya K, Umlauf D, Smith P, Dean W, Walter J, Higgins M, Feil R, Reik W (2004) Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat Genet 36(12):1291–1295

    Article  CAS  PubMed  Google Scholar 

  114. Terranova R, Yokobayashi S, Stadler MB, Otte AP, van Lohuizen M, Orkin SH, Peters AH (2008) Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell 15(5):668–679

    Article  CAS  PubMed  Google Scholar 

  115. Umlauf D, Goto Y, Cao R, Cerqueira F, Wagschal A, Zhang Y, Feil R (2004) Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet 36(12):1296–1300

    Article  CAS  PubMed  Google Scholar 

  116. Kato Y, Iii WM, Hilton K, Barton SC, Tsunoda Y, Surani MA (1999) Developmental potential of mouse primordial germ cells. Development 126(9):1823–1832

    Article  CAS  PubMed  Google Scholar 

  117. Tada T, Tada M, Hilton K, Barton SC, Sado T, Takagi N, Surani MA (1998) Epigenotype switching of imprintable loci in embryonic germ cells. Dev Genes Evol 207(8):551–561

    Article  CAS  PubMed  Google Scholar 

  118. Kono T, Obata Y, Yoshimzu T, Nakahara T, Carroll J (1996) Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nat Genet 13:91–94

    Article  CAS  PubMed  Google Scholar 

  119. Obata Y, Kaneko-Ishino T, Koide T, Takai Y, Ueda T, Domeki I, Shiroishi T, Ishino F, Kono T (1998) Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development 125(8):1553–1560

    Article  CAS  PubMed  Google Scholar 

  120. Bhogal B, Arnaudo A, Dymkowski A, Best A, Davis TL (2004) Methylation at mouse Cdkn1c is acquired during postimplantation development and functions to maintain imprinted expression. Genomics 84(6):961–970

    Article  CAS  PubMed  Google Scholar 

  121. Fan T, Hagan JP, Kozlov SV, Stewart CL, Muegge K (2005) Lsh controls silencing of the imprinted Cdkn1c gene. Development 132(4):635–644

    Article  CAS  PubMed  Google Scholar 

  122. Caspary T, Cleary MA, Baker CC, Guan XJ, Tilghman SM (1998) Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster. Mol Cell Biol 18(6):3466–3474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wood MD, Hiura H, Tunster S, Arima T, Shin JY, Higgins M, John RM (2010) Autonomous silencing of the imprinted Cdkn1c gene in stem cells. Epigenetics 5(3)

    Google Scholar 

  124. Pauler FM, Koerner MV, Barlow DP (2007) Silencing by imprinted noncoding RNAs: is transcription the answer? Trends Genet 23(6):284–292. https://doi.org/10.1016/j.tig.2007.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Andergassen D, Muckenhuber M, Bammer PC, Kulinski TM, Theussl HC, Shimizu T, Penninger JM, Pauler FM, Hudson QJ (2019) The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes. PLoS Genet 15(7):e1008268. https://doi.org/10.1371/journal.pgen.1008268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. John RM, Ainscough JF, Barton SC, Surani MA (2001) Distant cis-elements regulate imprinted expression of the mouse p57 (Kip2) (Cdkn1c) gene: implications for the human disorder, Beckwith—Wiedemann syndrome. Hum Mol Genet 10(15):1601–1609

    Article  CAS  PubMed  Google Scholar 

  127. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32(2):232–246. https://doi.org/10.1016/j.molcel.2008.08.022

    Article  CAS  PubMed  Google Scholar 

  128. Redrup L, Branco MR, Perdeaux ER, Krueger C, Lewis A, Santos F, Nagano T, Cobb BS, Fraser P, Reik W (2009) The long noncoding RNA Kcnq1ot1 organises a lineage-specific nuclear domain for epigenetic gene silencing. Development 136(4):525–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Schertzer MD, Braceros KCA, Starmer J, Cherney RE, Lee DM, Salazar G, Justice M, Bischoff SR, Cowley DO, Ariel P, Zylka MJ, Dowen JM, Magnuson T, Calabrese JM (2019) lncRNA-induced spread of polycomb controlled by genome architecture, RNA abundance, and CpG Island DNA. Mol Cell 75(3):523–537. https://doi.org/10.1016/j.molcel.2019.05.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mohammad F, Pandey RR, Nagano T, Chakalova L, Mondal T, Fraser P, Kanduri C (2008) Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region. Mol Cell Biol 28(11):3713–3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fedoriw AM, Calabrese JM, Mu W, Yee D, Magnuson T (2012) Differentiation-driven nucleolar association of the mouse imprinted Kcnq1 locus. G3 (Bethesda) 2(12):1521–1528. https://doi.org/10.1534/g3.112.004226

    Article  CAS  Google Scholar 

  132. Sachani SS, Landschoot LS, Zhang L, White CR, MacDonald WA, Golding MC, Mann MRW (2018) Nucleoporin 107, 62 and 153 mediate Kcnq1ot1 imprinted domain regulation in extraembryonic endoderm stem cells. Nat Commun 9(1):2795. https://doi.org/10.1038/s41467-018-05208-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Golding MC, Magri LS, Zhang L, Lalone SA, Higgins MJ, Mann MR (2011) Depletion of Kcnq1ot1 non-coding RNA does not affect imprinting maintenance in stem cells. Development 138(17):3667–3678. https://doi.org/10.1242/dev.057778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mohammad F, Pandey GK, Mondal T, Enroth S, Redrup L, Gyllensten U, Kanduri C (2012) Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing. Development 139(15):2792–2803. https://doi.org/10.1242/dev.079566

    Article  CAS  PubMed  Google Scholar 

  135. DeVeale B, van der Kooy D, Babak T (2012) Critical evaluation of imprinted gene expression by RNA-Seq: a new perspective. PLoS Genet 8(3):e1002600. https://doi.org/10.1371/journal.pgen.1002600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kelsey G, Bartolomei MS (2012) Imprinted genes … and the number is? PLoS Genet 8(3):e1002601. https://doi.org/10.1371/journal.pgen.1002601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y (2017) Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547(7664):419–424. https://doi.org/10.1038/nature23262

    Article  CAS  PubMed  Google Scholar 

  138. Hanna CW, Perez-Palacios R, Gahurova L, Schubert M, Krueger F, Biggins L, Andrews S, Colome-Tatche M, Bourc’his D, Dean W, Kelsey G (2019) Endogenous retroviral insertions drive non-canonical imprinting in extra-embryonic tissues. Genome Biol 20(1):225. https://doi.org/10.1186/s13059-019-1833-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen Z, Yin Q, Inoue A, Zhang C, Zhang Y (2019) Allelic H3K27me3 to allelic DNA methylation switch maintains noncanonical imprinting in extraembryonic cells. Sci Adv 5(12):eaay7246. https://doi.org/10.1126/sciadv.aay7246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang W, Chen Z, Yin Q, Zhang D, Racowsky C, Zhang Y (2019) Maternal-biased H3K27me3 correlates with paternal-specific gene expression in the human morula. Genes Dev 33(7–8):382–387. https://doi.org/10.1101/gad.323105.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xia W, Xu J, Yu G, Yao G, Xu K, Ma X, Zhang N, Liu B, Li T, Lin Z, Chen X, Li L, Wang Q, Shi D, Shi S, Zhang Y, Song W, Jin H, Hu L, Bu Z, Wang Y, Na J, Xie W, Sun YP (2019) Resetting histone modifications during human parental-to-zygotic transition. Science 365(6451):353–360. https://doi.org/10.1126/science.aaw5118

    Article  CAS  PubMed  Google Scholar 

  142. Gehring M (2013) Genomic imprinting: insights from plants. Annu Rev Genet 47:187–208. https://doi.org/10.1146/annurev-genet-110711-155527

    Article  CAS  PubMed  Google Scholar 

  143. Renfree MB, Hore TA, Shaw G, Graves JA, Pask AJ (2009) Evolution of genomic imprinting: insights from marsupials and monotremes. Annu Rev Genomics Hum Genet 10:241–262. https://doi.org/10.1146/annurev-genom-082908-150026

    Article  CAS  PubMed  Google Scholar 

  144. Renfree MB, Ager EI, Shaw G, Pask AJ (2008) Genomic imprinting in marsupial placentation. Reproduction 136(5):523–531

    Article  CAS  PubMed  Google Scholar 

  145. Nabetani A, Hatada I, Morisaki H, Oshimura M, Mukai T (1997) Mouse U2af1-rs1 is a neomorphic imprinted gene. Mol Cell Biol 17(2):789–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Choi JD, Underkoffler LA, Wood AJ, Collins JN, Williams PT, Golden JA, Schuster EF Jr, Loomes KM, Oakey RJ (2005) A novel variant of Inpp5f is imprinted in brain, and its expression is correlated with differential methylation of an internal CpG island. Mol Cell Biol 25(13):5514–5522. https://doi.org/10.1128/MCB.25.13.5514-5522.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wood AJ, Roberts RG, Monk D, Moore GE, Schulz R, Oakey RJ (2007) A screen for retrotransposed imprinted genes reveals an association between X chromosome homology and maternal germ-line methylation. PLoS Genet 3(2):e20. https://doi.org/10.1371/journal.pgen.0030020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. McCole RB, Loughran NB, Chahal M, Fernandes LP, Roberts RG, Fraternali F, O’Connell MJ, Oakey RJ (2011) A case-by-case evolutionary analysis of four imprinted retrogenes. Evolution 65(5):1413–1427. https://doi.org/10.1111/j.1558-5646.2010.01213.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Brind’Amour J, Kobayashi H, Richard Albert J, Shirane K, Sakashita A, Kamio A, Bogutz A, Koike T, Karimi MM, Lefebvre L, Kono T, Lorincz MC (2018) LTR retrotransposons transcribed in oocytes drive species-specific and heritable changes in DNA methylation. Nat Commun 9(1):3331. https://doi.org/10.1038/s41467-018-05841-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Proudhon C, Duffie R, Ajjan S, Cowley M, Iranzo J, Carbajosa G, Saadeh H, Holland ML, Oakey RJ, Rakyan VK, Schulz R, Bourc’his D (2012) Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes. Mol Cell 47(6):909–920. https://doi.org/10.1016/j.molcel.2012.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Smith FM, Garfield AS, Ward A (2006) Regulation of growth and metabolism by imprinted genes. Cytogenet Genome Res 113(1–4):279–291

    Article  CAS  PubMed  Google Scholar 

  152. Peters J (2014) The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet 15(8):517–530. https://doi.org/10.1038/nrg3766

    Article  CAS  PubMed  Google Scholar 

  153. Cleaton MA, Edwards CA, Ferguson-Smith AC (2014) Phenotypic outcomes of imprinted gene models in mice: elucidation of pre- and postnatal functions of imprinted genes. Annu Rev Genomics Hum Genet 15:93–126. https://doi.org/10.1146/annurev-genom-091212-153441

    Article  CAS  PubMed  Google Scholar 

  154. Creeth HDJ, McNamara GI, Isles AR, John RM (2019) Imprinted genes influencing the quality of maternal care. Front Neuroendocrinol 53:100732. https://doi.org/10.1016/j.yfrne.2018.12.003

    Article  CAS  PubMed  Google Scholar 

  155. Kaneko-Ishino T, Ishino F (2019) Evolution of viviparity in mammals: what genomic imprinting tells us about mammalian placental evolution. Reprod Fertil Dev 31(7):1219–1227. https://doi.org/10.1071/RD18127

    Article  PubMed  Google Scholar 

  156. Hanin G, Ferguson-Smith AC (2020) The evolution of genomic imprinting: Epigenetic control of mammary gland development and postnatal resource control. Wiley Interdiscip Rev Syst Biol Med 12(3):e1476. https://doi.org/10.1002/wsbm.1476

    Article  PubMed  Google Scholar 

  157. Barlow DP, Stoger R, Herrmann BG, Saito K, Schweifer N (1991) The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349(6304):84–87. https://doi.org/10.1038/349084a0

    Article  CAS  PubMed  Google Scholar 

  158. Morgan DO, Edman JC, Standring DN, Fried VA, Smith MC, Roth R, Rutter WJ (1987) Insulin-like growth factor II receptor as a multifunctional binding protein. Nature 329:301–307

    Article  CAS  PubMed  Google Scholar 

  159. Ripoche M-A, Kress C, Poirier F, Dandolo L (1997) Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev 11:1596–1604

    Article  CAS  PubMed  Google Scholar 

  160. John R, Hemberger M (2012) A placenta for life. Reprod Biomed Online 25(1):5–11. https://doi.org/10.1016/j.rbmo.2012.03.018

    Article  CAS  PubMed  Google Scholar 

  161. Coan PM, Fowden AL, Constancia M, Ferguson-Smith AC, Burton GJ, Sibley CP (2008) Disproportional effects of Igf2 knockout on placental morphology and diffusional exchange characteristics in the mouse. J Physiol 586(Pt 20):5023–5032. https://doi.org/10.1113/jphysiol.2008.157313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Esquiliano DR, Guo W, Liang L, Dikkes P, Lopez MF (2009) Placental glycogen stores are increased in mice with H19 null mutations but not in those with insulin or IGF type 1 receptor mutations. Placenta 30(8):693–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Brannan CI, Dees EC, Ingram RS, Tilghman SM (1990) The product of the H19 gene may function as an RNA. Mol Cell Biol 10:28–36

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Jones BK, Levorse JM, Tilghman SM (1998) Igf2 imprinting does not require its own DNA methylation or H19 RNA. Genes Dev 12(14):2200–2207. https://doi.org/10.1101/gad.12.14.2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yoshimizu T, Miroglio A, Ripoche MA, Gabory A, Vernucci M, Riccio A, Colnot S, Godard C, Terris B, Jammes H, Dandolo L (2008) The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci U S A 105(34):12417–12422. https://doi.org/10.1073/pnas.0801540105

    Article  PubMed  PubMed Central  Google Scholar 

  166. Mineno J, Okamoto S, Ando T, Sato M, Chono H, Izu H, Takayama M, Asada K, Mirochnitchenko O, Inouye M, Kato I (2006) The expression profile of microRNAs in mouse embryos. Nucleic Acids Res 34(6):1765–1771. https://doi.org/10.1093/nar/gkl096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, Reik W (2012) The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 14(7):659–665. https://doi.org/10.1038/ncb2521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Duvillie B, Cordonnier N, Deltour L, Dandoy-Dron F, Itier JM, Monthioux E, Jami J, Joshi RL, Bucchini D (1997) Phenotypic alterations in insulin-deficient mutant mice. Proc Natl Acad Sci U S A 94(10):5137–5140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Leroux L, Desbois P, Lamotte L, Duvillie B, Cordonnier N, Jackerott M, Jami J, Bucchini D, Joshi RL (2001) Compensatory responses in mice carrying a null mutation for Ins1 or Ins2. Diabetes 50(Suppl 1):S150–S153. https://doi.org/10.2337/diabetes.50.2007.s150

    Article  CAS  PubMed  Google Scholar 

  170. Zhang P, Liegeois NJ, Wong C, Finegold M, Hou H, Thompson JC, Silverman A, Harper JW, DePinho RA, Elledge SJ (1997) Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 387(6629):151–158

    Article  CAS  PubMed  Google Scholar 

  171. Yan Y, Frisen J, Lee MH, Massague J, Barbacid M (1997) Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev 11(8):973–983

    Article  CAS  PubMed  Google Scholar 

  172. Takahashi K, Kobayashi T, Kanayama N (2000) p57(Kip2) regulates the proper development of labyrinthine and spongiotrophoblasts. Mol Hum Reprod 6(11):1019–1025

    Article  CAS  PubMed  Google Scholar 

  173. Takahashi K, Nakayama K, Nakayama K (2000) Mice lacking a CDK inhibitor, p57Kip2, exhibit skeletal abnormalities and growth retardation. J Biochem (Tokyo) 127(1):73–83

    Article  CAS  Google Scholar 

  174. Kanayama N, Takahashi K, Matsuura T, Sugimura M, Kobayashi T, Moniwa N, Tomita M, Nakayama K (2002) Deficiency in p57Kip2 expression induces preeclampsia-like symptoms in mice. Mol Hum Reprod 8(12):1129–1135

    Article  CAS  PubMed  Google Scholar 

  175. Tunster SJ, Van de Pette M, John RM (2011) Fetal overgrowth in the Cdkn1c mouse model of Beckwith-Wiedemann syndrome. Dis Model Mech 4(6):814–821. https://doi.org/10.1242/dmm.007328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Andrews SC, Wood MD, Tunster SJ, Barton SC, Surani MA, John RM (2007) Cdkn1c (p57Kip2) is the major regulator of embryonic growth within its imprinted domain on mouse distal chromosome 7. BMC Dev Biol 7:53. https://doi.org/10.1186/1471-213X-7-53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Frank D, Mendelsohn CL, Ciccone E, Svensson K, Ohlsson R, Tycko B (1999) A novel pleckstrin homology-related gene family defined by Ipl/Tssc3, TDAG51, and Tih1: tissue-specific expression, chromosomal location, and parental imprinting. Mamm Genome 10(12):1150–1159

    Article  CAS  PubMed  Google Scholar 

  178. Frank D, Fortino W, Clark L, Musalo R, Wang W, Saxena A, Li CM, Reik W, Ludwig T, Tycko B (2002) Placental overgrowth in mice lacking the imprinted gene Ipl. Proc Natl Acad Sci U S A 99(11):7490–7495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Salas M, John R, Saxena A, Barton S, Frank D, Fitzpatrick G, Higgins MJ, Tycko B (2004) Placental growth retardation due to loss of imprinting of Phlda2. Mech Dev 121(10):1199–1210

    Article  CAS  PubMed  Google Scholar 

  180. Tunster SJ, Tycko B, John RM (2010) The imprinted Phlda2 gene regulates extraembryonic energy stores. Mol Cell Biol 30(1):295–306. https://doi.org/10.1128/MCB.00662-09

    Article  CAS  PubMed  Google Scholar 

  181. Tunster SJ, Creeth HD, John RM (2016) The imprinted Phlda2 gene modulates a major endocrine compartment of the placenta to regulate placental demands for maternal resources. Dev Biol 409(1):251–260. https://doi.org/10.1016/j.ydbio.2015.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Tunster SJ, Van De Pette M, John RM (2014) Isolating the role of elevated Phlda2 in asymmetric late fetal growth restriction in mice. Dis Model Mech 7(10):1185–1191. https://doi.org/10.1242/dmm.017079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Creeth HDJ, McNamara GI, Tunster SJ, Boque-Sastre R, Allen B, Sumption L, Eddy JB, Isles AR, John RM (2018) Maternal care boosted by paternal imprinting in mammals. PLoS Biol 16(7):e2006599. https://doi.org/10.1371/journal.pbio.2006599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lefebvre L, Viville S, Barton SC, Ishino F, Keverne EB, Surani MA (1998) Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest [see comments]. Nat Genet 20(2):163–169

    Article  CAS  PubMed  Google Scholar 

  185. Li L, Keverne EB, Aparicio SA, Ishino F, Barton SC, Surani MA (1999) Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science 284(5412):330–333

    Article  CAS  PubMed  Google Scholar 

  186. Harrison DJ, Creeth HDJ, Tyson HR, Boque-Sastre R, Hunter S, Dwyer DM, Isles AR, John RM (2021) Placental endocrine insufficiency programs anxiety, deficits in cognition and atypical social behaviour in offspring. Hum Mol Genet. https://doi.org/10.1093/hmg/ddab154

  187. Guillemot F, Nagy A, Auerbach A, Rossant J, Joyner AL (1994) Essential role of Mash-2 in extraembryonic development. Nature 371(6495):333–336

    Article  CAS  PubMed  Google Scholar 

  188. Tanaka M, Gertsenstein M, Rossant J, Nagy A (1997) Mash2 acts cell autonomously in mouse spongiotrophoblast development. Dev Biol 190(1):55–65

    Article  CAS  PubMed  Google Scholar 

  189. Oh-McGinnis R, Bogutz AB, Lefebvre L (2011) Partial loss of Ascl2 function affects all three layers of the mature placenta and causes intrauterine growth restriction. Dev Biol 351(2):277–286. https://doi.org/10.1016/j.ydbio.2011.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bogutz AB, Oh-McGinnis R, Jacob KJ, Ho-Lau R, Gu T, Gertsenstein M, Nagy A, Lefebvre L (2018) Transcription factor ASCL2 is required for development of the glycogen trophoblast cell lineage. PLoS Genet 14(8):e1007587. https://doi.org/10.1371/journal.pgen.1007587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Tunster SJ, McNamara GI, Creeth HD, John RM (2016) Increased dosage of the imprinted Ascl2 gene restrains two key endocrine lineages of the mouse Placenta. Dev Biol 418(1):55–65. https://doi.org/10.1016/j.ydbio.2016.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. John RM (2017) Imprinted genes and the regulation of placental endocrine function: Pregnancy and beyond. Placenta 56:86–90. https://doi.org/10.1016/j.placenta.2017.01.099

    Article  CAS  PubMed  Google Scholar 

  193. Millership SJ, Van de Pette M, Withers DJ (2019) Genomic imprinting and its effects on postnatal growth and adult metabolism. Cell Mol Life Sci 76(20):4009–4021. https://doi.org/10.1007/s00018-019-03197-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ferron SR, Radford EJ, Domingo-Muelas A, Kleine I, Ramme A, Gray D, Sandovici I, Constancia M, Ward A, Menheniott TR, Ferguson-Smith AC (2015) Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis. Nat Commun 6:8265. https://doi.org/10.1038/ncomms9265

    Article  CAS  PubMed  Google Scholar 

  195. Furutachi S, Matsumoto A, Nakayama KI, Gotoh Y (2013) p57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis. EMBO J. https://doi.org/10.1038/emboj.2013.50

  196. Joseph B, Wallen-Mackenzie A, Benoit G, Murata T, Joodmardi E, Okret S, Perlmann T (2003) p57(Kip2) cooperates with Nurr1 in developing dopamine cells. Proc Natl Acad Sci U S A 100(26):15619–15624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. McNamara GI, Davis BA, Dwyer DM, John RM, Isles AR (2016) Behavioural abnormalities in a novel mouse model for Silver Russell Syndrome. Hum Mol Genet. https://doi.org/10.1093/hmg/ddw357

  198. McNamara GI, John RM, Isles AR (2018) Territorial behavior and social stability in the mouse require correct expression of imprinted Cdkn1c. Front Behav Neurosci 12:28. https://doi.org/10.3389/fnbeh.2018.00028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. McNamara GI, Davis BA, Browne M, Humby T, Dalley JW, Xia J, John RM, Isles AR (2018) Dopaminergic and behavioural changes in a loss-of-imprinting model of Cdkn1c. Genes Brain Behav 17(2):149–157. https://doi.org/10.1111/gbb.12422

    Article  CAS  PubMed  Google Scholar 

  200. Chen DY, Stern SA, Garcia-Osta A, Saunier-Rebori B, Pollonini G, Bambah-Mukku D, Blitzer RD, Alberini CM (2011) A critical role for IGF-II in memory consolidation and enhancement. Nature 469(7331):491–497. https://doi.org/10.1038/nature09667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Charalambous M, Menheniott TR, Bennett WR, Kelly SM, Dell G, Dandolo L, Ward A (2004) An enhancer element at the Igf2/H19 locus drives gene expression in both imprinted and non-imprinted tissues. Dev Biol 271(2):488–497. https://doi.org/10.1016/j.ydbio.2004.04.022

    Article  CAS  PubMed  Google Scholar 

  202. Imaizumi Y, Furutachi S, Watanabe T, Miya H, Kawaguchi D, Gotoh Y (2020) Role of the imprinted allele of the Cdkn1c gene in mouse neocortical development. Sci Rep 10(1):1884. https://doi.org/10.1038/s41598-020-58629-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Scagliotti V, Costa Fernandes Esse R, Willis TL, Howard M, Carrus I, Lodge E, Andoniadou CL, Charalambous M (2021) Dynamic expression of imprinted genes in the developing and postnatal pituitary gland. Genes (Basel) 12(4). https://doi.org/10.3390/genes12040509

  204. Bilodeau S, Roussel-Gervais A, Drouin J (2009) Distinct developmental roles of cell cycle inhibitors p57Kip2 and p27Kip1 distinguish pituitary progenitor cell cycle exit from cell cycle reentry of differentiated cells. Mol Cell Biol 29(7):1895–1908. https://doi.org/10.1128/MCB.01885-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Borensztein M, Viengchareun S, Montarras D, Journot L, Binart N, Lombes M, Dandolo L (2012) Double Myod and Igf2 inactivation promotes brown adipose tissue development by increasing Prdm16 expression. FASEB J 26(11):4584–4591. https://doi.org/10.1096/fj.12-208496

    Article  CAS  PubMed  Google Scholar 

  206. Van De Pette M, Tunster SJ, McNamara GI, Shelkovnikova T, Millership S, Benson L, Peirson S, Christian M, Vidal-Puig A, John RM (2016) Cdkn1c boosts the development of brown adipose tissue in a murine model of silver russell syndrome. PLoS Genet 12(3):e1005916. https://doi.org/10.1371/journal.pgen.1005916

    Article  CAS  Google Scholar 

  207. Hammerle CM, Sandovici I, Brierley GV, Smith NM, Zimmer WE, Zvetkova I, Prosser HM, Sekita Y, Lam BYH, Ma M, Cooper WN, Vidal-Puig A, Ozanne SE, Medina-Gomez G, Constancia M (2020) Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. PLoS Genet 16(10):e1009069. https://doi.org/10.1371/journal.pgen.1009069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Georgia S, Soliz R, Li M, Zhang P, Bhushan A (2006) p57 and Hes1 coordinate cell cycle exit with self-renewal of pancreatic progenitors. Dev Biol 298(1):22–31. https://doi.org/10.1016/j.ydbio.2006.05.036

    Article  CAS  PubMed  Google Scholar 

  209. Eggermann T, Perez de Nanclares G, Maher ER, Temple IK, Tumer Z, Monk D, Mackay DJ, Gronskov K, Riccio A, Linglart A, Netchine I (2015) Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. Clin Epigenetics 7:123. https://doi.org/10.1186/s13148-015-0143-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Eggermann T, Davies JH, Tauber M, van den Akker E, Hokken-Koelega A, Johansson G, Netchine I (2021) Growth restriction and genomic imprinting-overlapping phenotypes support the concept of an imprinting network. Genes (Basel) 12(4). https://doi.org/10.3390/genes12040585

  211. Weksberg R, Shuman C, Beckwith JB (2010) Beckwith-Wiedemann syndrome. Eur J Hum Genet 18(1):8–14. https://doi.org/10.1038/ejhg.2009.106

    Article  PubMed  Google Scholar 

  212. Wangler MF, Chang AS, Moley KH, Feinberg AP, Debaun MR (2005) Factors associated with preterm delivery in mothers of children with Beckwith-Wiedemann syndrome: a case cohort study from the BWS registry. Am J Med Genet A 134A(2):187–191. https://doi.org/10.1002/ajmg.a.30595

    Article  PubMed  Google Scholar 

  213. Romanelli V, Belinchon A, Campos-Barros A, Heath KE, Garcia-Minaur S, Martinez-Glez V, Palomo R, Mercado G, Gracia R, Lapunzina P (2009) CDKN1C mutations in HELLP/preeclamptic mothers of Beckwith-Wiedemann Syndrome (BWS) patients. Placenta 30(6):551–554. https://doi.org/10.1016/j.placenta.2009.03.013

    Article  CAS  PubMed  Google Scholar 

  214. Valente FM, Sparago A, Freschi A, Hill-Harfe K, Maas SM, Frints SGM, Alders M, Pignata L, Franzese M, Angelini C, Carli D, Mussa A, Gazzin A, Gabbarini F, Acurzio B, Ferrero GB, Bliek J, Williams CA, Riccio A, Cerrato F (2019) Transcription alterations of KCNQ1 associated with imprinted methylation defects in the Beckwith-Wiedemann locus. Genet Med 21(8):1808–1820. https://doi.org/10.1038/s41436-018-0416-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Beygo J, Burger J, Strom TM, Kaya S, Buiting K (2019) Disruption of KCNQ1 prevents methylation of the ICR2 and supports the hypothesis that its transcription is necessary for imprint establishment. Eur J Hum Genet 27(6):903–908. https://doi.org/10.1038/s41431-019-0365-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Beygo J, Joksic I, Strom TM, Ludecke HJ, Kolarova J, Siebert R, Mikovic Z, Horsthemke B, Buiting K (2016) A maternal deletion upstream of the imprint control region 2 in 11p15 causes loss of methylation and familial Beckwith-Wiedemann syndrome. Eur J Hum Genet 24(9):1280–1286. https://doi.org/10.1038/ejhg.2016.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Essinger C, Karch S, Moog U, Fekete G, Lengyel A, Pinti E, Eggermann T, Begemann M (2020) Frequency of KCNQ1 variants causing loss of methylation of Imprinting Centre 2 in Beckwith-Wiedemann syndrome. Clin Epigenetics 12(1):63. https://doi.org/10.1186/s13148-020-00856-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Hatada I, Ohashi H, Fukushima Y, Kaneko Y, Inoue M, Komoto Y, Okada A, Ohishi S, Nabetani A, Morisaki H, Nakayama M, Niikawa N, Mukai T (1996) An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nat Genet 14(2):171–173. https://doi.org/10.1038/ng1096-171

    Article  CAS  PubMed  Google Scholar 

  219. O’Keefe D, Dao D, Zhao L, Sanderson R, Warburton D, Weiss L, Anyane-Yeboa K, Tycko B (1997) Coding mutations in p57KIP2 are present in some cases of Beckwith-Wiedemann syndrome but are rare or absent in Wilms tumors. Am J Hum Genet 61(2):295–303

    Article  PubMed  PubMed Central  Google Scholar 

  220. Chang S, Bartolomei MS (2020) Modeling human epigenetic disorders in mice: Beckwith-Wiedemann Syndrome and Silver-Russell Syndrome. Dis Model Mech. https://doi.org/10.1242/dmm.044123

  221. Wakeling EL, Brioude F, Lokulo-Sodipe O, O’Connell SM, Salem J, Bliek J, Canton AP, Chrzanowska KH, Davies JH, Dias RP, Dubern B, Elbracht M, Giabicani E, Grimberg A, Gronskov K, Hokken-Koelega AC, Jorge AA, Kagami M, Linglart A, Maghnie M, Mohnike K, Monk D, Moore GE, Murray PG, Ogata T, Petit IO, Russo S, Said E, Toumba M, Tumer Z, Binder G, Eggermann T, Harbison MD, Temple IK, Mackay DJ, Netchine I (2017) Diagnosis and management of Silver-Russell syndrome: first international consensus statement. Nat Rev 13(2):105–124. https://doi.org/10.1038/nrendo.2016.138

    Article  CAS  Google Scholar 

  222. Lai KY, Skuse D, Stanhope R, Hindmarsh P (1994) Cognitive abilities associated with the Silver-Russell syndrome. Arch Dis Child 71(6):490–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Noeker M, Wollmann HA (2004) Cognitive development in Silver-Russell syndrome: a sibling-controlled study. Dev Med Child Neurol 46(5):340–346

    Article  PubMed  Google Scholar 

  224. Plotts CA, Livermore CL (2007) Russell-Silver syndrome and nonverbal learning disability: a case study. Appl Neuropsychol 14(2):124–134. https://doi.org/10.1080/09084280701322684

    Article  PubMed  Google Scholar 

  225. Saal HM, Pagon RA, Pepin MG (1985) Reevaluation of Russell-Silver syndrome. J Pediatr 107(5):733–737

    Article  CAS  PubMed  Google Scholar 

  226. Russell A (1954) A syndrome of intra-uterine dwarfism recognizable at birth with cranio-facial dysostosis, disproportionately short arms, and other anomalies (5 examples). Proc R Soc Med 47(12):1040–1044

    CAS  PubMed  Google Scholar 

  227. Vardi O, Davidovitch M, Vinkler C, Michelson M, Lerman-Sagie T, Lev D (2012) Autistic regression in a child with Silver-Russell syndrome and maternal UPD 7. Eur J Paediatr Neurol 16(1):95–98. https://doi.org/10.1016/j.ejpn.2011.05.009

    Article  PubMed  Google Scholar 

  228. Azcona C, Stanhope R (2005) Hypoglycaemia and Russell-Silver syndrome. J Pediatr Endocrinol Metab 18(7):663–670

    Article  CAS  PubMed  Google Scholar 

  229. Blissett J, Harris G, Kirk J (2001) Feeding problems in Silver-Russell syndrome. Dev Med Child Neurol 43(1):39–44

    Article  CAS  PubMed  Google Scholar 

  230. Marsaud C, Rossignol S, Tounian P, Netchine I, Dubern B (2015) Prevalence and management of gastrointestinal manifestations in Silver-Russell syndrome. Arch Dis Child 100(4):353–358. https://doi.org/10.1136/archdischild-2013-305864

    Article  PubMed  Google Scholar 

  231. Netchine I, Rossignol S, Dufourg MN, Azzi S, Rousseau A, Perin L, Houang M, Steunou V, Esteva B, Thibaud N, Demay MC, Danton F, Petriczko E, Bertrand AM, Heinrichs C, Carel JC, Loeuille GA, Pinto G, Jacquemont ML, Gicquel C, Cabrol S, Le Bouc Y (2007) 11p15 imprinting center region 1 loss of methylation is a common and specific cause of typical Russell-Silver syndrome: clinical scoring system and epigenetic-phenotypic correlations. J Clin Endocrinol Metab 92(8):3148–3154. https://doi.org/10.1210/jc.2007-0354

    Article  CAS  PubMed  Google Scholar 

  232. Charalambous M, Smith FM, Bennett WR, Crew TE, Mackenzie F, Ward A (2003) Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an Igf2-independent mechanism. Proc Natl Acad Sci U S A 100(14):8292–8297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Garfield AS, Cowley M, Smith FM, Moorwood K, Stewart-Cox JE, Gilroy K, Baker S, Xia J, Dalley JW, Hurst LD, Wilkinson LS, Isles AR, Ward A (2011) Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature 469(7331):534–538. https://doi.org/10.1038/nature09651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Schonherr N, Meyer E, Roos A, Schmidt A, Wollmann HA, Eggermann T (2007) The centromeric 11p15 imprinting centre is also involved in Silver-Russell syndrome. J Med Genet 44(1):59–63. https://doi.org/10.1136/jmg.2006.044370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Bonaldi A, Mazzeu JF, Costa SS, Honjo RS, Bertola DR, Albano LM, Furquim IM, Kim CA, Vianna-Morgante AM (2011) Microduplication of the ICR2 domain at chromosome 11p15 and familial Silver-Russell syndrome. Am J Med Genet A 155A(10):2479–2483. https://doi.org/10.1002/ajmg.a.34023

    Article  CAS  PubMed  Google Scholar 

  236. Nakashima S, Kato F, Kosho T, Nagasaki K, Kikuchi T, Kagami M, Fukami M, Ogata T (2015) Silver-Russell syndrome without body asymmetry in three patients with duplications of maternally derived chromosome 11p15 involving CDKN1C. J Hum Genet 60(2):91–95. https://doi.org/10.1038/jhg.2014.100

    Article  CAS  PubMed  Google Scholar 

  237. Brioude F, Oliver-Petit I, Blaise A, Praz F, Rossignol S, Le Jule M, Thibaud N, Faussat AM, Tauber M, Le Bouc Y, Netchine I (2013) CDKN1C mutation affecting the PCNA-binding domain as a cause of familial Russell Silver syndrome. J Med Genet 50(12):823–830. https://doi.org/10.1136/jmedgenet-2013-101691

    Article  CAS  PubMed  Google Scholar 

  238. Kerns SL, Guevara-Aguirre J, Andrew S, Geng J, Guevara C, Guevara-Aguirre M, Guo M, Oddoux C, Shen Y, Zurita A, Rosenfeld RG, Ostrer H, Hwa V, Dauber A (2014) A novel variant in CDKN1C is associated with intrauterine growth restriction, short stature, and early-adulthood-onset diabetes. J Clin Endocrinol Metab 99(10):E2117–E2122. https://doi.org/10.1210/jc.2014-1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Sabir AH, Ryan G, Mohammed Z, Kirk J, Kiely N, Thyagarajan M, Cole T (2019) Familial Russell-Silver syndrome like phenotype in the PCNA domain of the CDKN1C gene, a further case. Case Rep Genet 2019:1398250. https://doi.org/10.1155/2019/1398250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Arboleda VA, Lee H, Parnaik R, Fleming A, Banerjee A, Ferraz-de-Souza B, Delot EC, Rodriguez-Fernandez IA, Braslavsky D, Bergada I, Dell’angelica EC, Nelson SF, Martinez-Agosto JA, Achermann JC, Vilain E (2012) Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome. Nat Genet. https://doi.org/10.1038/ng.2275

  241. Cabrera-Salcedo C, Kumar P, Hwa V, Dauber A (2017) IMAGe and related undergrowth syndromes: the complex spectrum of gain-of-function CDKN1C mutations. Pediatr Endocrinol Rev 14(3):289–297. https://doi.org/10.17458/per.vol14.2017.SKHD.imageandrelatedundergrowth

    Article  PubMed  Google Scholar 

  242. Van de Pette M, Tunster SJ, John RM (2018) Loss of imprinting of Cdkn1c protects against age and diet-induced obesity. Int J Mol Sci 19(9). https://doi.org/10.3390/ijms19092734

  243. Arima T, Kamikihara T, Hayashida T, Kato K, Inoue T, Shirayoshi Y, Oshimura M, Soejima H, Mukai T, Wake N (2005) ZAC, LIT1 (KCNQ1OT1) and p57KIP2 (CDKN1C) are in an imprinted gene network that may play a role in Beckwith-Wiedemann syndrome. Nucleic Acids Res 33(8):2650–2660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Mackay DJ, Eggermann T, Buiting K, Garin I, Netchine I, Linglart A, de Nanclares GP (2015) Multilocus methylation defects in imprinting disorders. Biomol Concepts 6(1):47–57. https://doi.org/10.1515/bmc-2014-0037

    Article  CAS  PubMed  Google Scholar 

  245. Eggermann T, Heilsberg AK, Bens S, Siebert R, Beygo J, Buiting K, Begemann M, Soellner L (2014) Additional molecular findings in 11p15-associated imprinting disorders: an urgent need for multi-locus testing. J Mol Med (Berl) 92(7):769–777. https://doi.org/10.1007/s00109-014-1141-6

    Article  Google Scholar 

  246. Sanchez-Delgado M, Riccio A, Eggermann T, Maher ER, Lapunzina P, Mackay D, Monk D (2016) Causes and consequences of multi-locus imprinting disturbances in humans. Trends Genet 32(7):444–455. https://doi.org/10.1016/j.tig.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  247. Mackay DJ, Callaway JL, Marks SM, White HE, Acerini CL, Boonen SE, Dayanikli P, Firth HV, Goodship JA, Haemers AP, Hahnemann JM, Kordonouri O, Masoud AF, Oestergaard E, Storr J, Ellard S, Hattersley AT, Robinson DO, Temple IK (2008) Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet 40(8):949–951. https://doi.org/10.1038/ng.187

    Article  CAS  PubMed  Google Scholar 

  248. Boonen SE, Hahnemann JM, Mackay D, Tommerup N, Brondum-Nielsen K, Tumer Z, Gronskov K (2012) No evidence for pathogenic variants or maternal effect of ZFP57 as the cause of Beckwith-Wiedemann Syndrome. Eur J Hum Genet 20(1):119–121. https://doi.org/10.1038/ejhg.2011.140

    Article  CAS  PubMed  Google Scholar 

  249. Spengler S, Gogiel M, Schonherr N, Binder G, Eggermann T (2009) Screening for genomic variants in ZFP57 in Silver-Russell syndrome patients with 11p15 epimutations. Eur J Med Genet 52(6):415–416. https://doi.org/10.1016/j.ejmg.2009.07.005

    Article  PubMed  Google Scholar 

  250. Meyer E, Lim D, Pasha S, Tee LJ, Rahman F, Yates JR, Woods CG, Reik W, Maher ER (2009) Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith-Wiedemann Syndrome). PLoS Genet 5(3):e1000423. https://doi.org/10.1371/journal.pgen.1000423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Docherty LE, Rezwan FI, Poole RL, Turner CL, Kivuva E, Maher ER, Smithson SF, Hamilton-Shield JP, Patalan M, Gizewska M, Peregud-Pogorzelski J, Beygo J, Buiting K, Horsthemke B, Soellner L, Begemann M, Eggermann T, Baple E, Mansour S, Temple IK, Mackay DJ (2015) Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans. Nat Commun 6:8086. https://doi.org/10.1038/ncomms9086

    Article  PubMed  Google Scholar 

  252. Valero De Bernabe J, Soriano T, Albaladejo R, Juarranz M, Calle ME, Martinez D, Dominguez-Rojas V (2004) Risk factors for low birth weight: a review. Eur J Obstet Gynecol Reprod Biol 116(1):3–15. https://doi.org/10.1016/j.ejogrb.2004.03.007

    Article  PubMed  Google Scholar 

  253. DeChiara TM, Efstratiadis A, Robertson EJ (1990) A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345:78–80

    Article  CAS  PubMed  Google Scholar 

  254. Kappil MA, Green BB, Armstrong DA, Sharp AJ, Lambertini L, Marsit CJ, Chen J (2015) Placental expression profile of imprinted genes impacts birth weight. Epigenetics 10(9):842–849. https://doi.org/10.1080/15592294.2015.1073881

    Article  PubMed  PubMed Central  Google Scholar 

  255. Su R, Wang C, Feng H, Lin L, Liu X, Wei Y, Yang H (2016) Alteration in expression and methylation of IGF2/H19 in placenta and umbilical cord blood are associated with macrosomia exposed to intrauterine hyperglycemia. PLoS One 11(2):e0148399. https://doi.org/10.1371/journal.pone.0148399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Xing Y, Liu H, Cui Y, Wang X, Tong X (2019) Abundances of placental imprinted genes CDKN1C, PHLDA2 and IGF-2 are related to low birth weight and early catch-up growth in full-term infants born small for gestational age. PLoS One 14(6):e0218278. https://doi.org/10.1371/journal.pone.0218278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Demetriou C, Abu-Amero S, Thomas AC, Ishida M, Aggarwal R, Al-Olabi L, Leon LJ, Stafford JL, Syngelaki A, Peebles D, Nicolaides KH, Regan L, Stanier P, Moore GE (2014) Paternally expressed, imprinted insulin-like growth factor-2 in chorionic villi correlates significantly with birth weight. PLoS One 9(1):e85454. https://doi.org/10.1371/journal.pone.0085454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Boonen SE, Freschi A, Christensen R, Valente FM, Lildballe DL, Perone L, Palumbo O, Carella M, Uldbjerg N, Sparago A, Riccio A, Cerrato F (2016) Two maternal duplications involving the CDKN1C gene are associated with contrasting growth phenotypes. Clin Epigenetics 8:69. https://doi.org/10.1186/s13148-016-0236-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Xue Y, Shankar S, Cornell K, Dai Z, Wang CE, Rudd MK, Coffee B (2015) Paternal duplication of the 11p15 centromeric imprinting control region is associated with increased expression of CDKN1C in a child with Russell-Silver syndrome. Am J Med Genet A 167A(12):3229–3233. https://doi.org/10.1002/ajmg.a.37371

    Article  PubMed  Google Scholar 

  260. López-Abad M, Iglesias-Platas I, Monk D (2016) Epigenetic characterization of CDKN1C in placenta samples from non-syndromic intrauterine growth restriction. Front Genet 7:62. https://doi.org/10.3389/fgene.2016.00062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Jensen AB, Tunster SJ, John RM (2014) The significance of elevated placental PHLDA2 in human growth restricted pregnancies. Placenta 35(8):528–532. https://doi.org/10.1016/j.placenta.2014.04.018

    Article  CAS  PubMed  Google Scholar 

  262. McMinn J, Wei M, Schupf N, Cusmai J, Johnson EB, Smith AC, Weksberg R, Thaker HM, Tycko B (2006) Unbalanced placental expression of imprinted genes in human intrauterine growth restriction. Placenta 27(6–7):540–549

    Article  CAS  PubMed  Google Scholar 

  263. Petry CJ, Evans ML, Wingate DL, Ong KK, Reik W, Constancia M, Dunger DB (2010) Raised late pregnancy glucose concentrations in mice carrying pups with targeted disruption of H19delta13. Diabetes 59(1):282–286. https://doi.org/10.2337/db09-0757

    Article  CAS  PubMed  Google Scholar 

  264. Janssen AB, Capron LE, O’Donnell K, Tunster SJ, Ramchandani PG, Heazell AE, Glover V, John RM (2016) Maternal prenatal depression is associated with decreased placental expression of the imprinted gene PEG3. Psychol Med 46(14):2999–3011. https://doi.org/10.1017/S0033291716001598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Patten MM, Cowley M, Oakey RJ, Feil R (2016) Regulatory links between imprinted genes: evolutionary predictions and consequences. Proc Biol Sci 283(1824). https://doi.org/10.1098/rspb.2015.2760

  266. Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S, Aknin C, Severac D, Chotard L, Kahli M, Le Digarcher A, Pavlidis P, Journot L (2006) Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell 11(5):711–722. https://doi.org/10.1016/j.devcel.2006.09.003

    Article  CAS  PubMed  Google Scholar 

  267. Gabory A, Ripoche MA, Le Digarcher A, Watrin F, Ziyyat A, Forne T, Jammes H, Ainscough JF, Surani MA, Journot L, Dandolo L (2009) H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development 136(20):3413–3421. https://doi.org/10.1242/dev.036061

    Article  CAS  PubMed  Google Scholar 

  268. Dalgaard K, Landgraf K, Heyne S, Lempradl A, Longinotto J, Gossens K, Ruf M, Orthofer M, Strogantsev R, Selvaraj M, Lu TT, Casas E, Teperino R, Surani MA, Zvetkova I, Rimmington D, Tung YC, Lam B, Larder R, Yeo GS, O’Rahilly S, Vavouri T, Whitelaw E, Penninger JM, Jenuwein T, Cheung CL, Ferguson-Smith AC, Coll AP, Korner A, Pospisilik JA (2016) Trim28 haploinsufficiency triggers bi-stable epigenetic obesity. Cell 164(3):353–364. https://doi.org/10.1016/j.cell.2015.12.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Barker DJ (1990) The fetal and infant origins of adult disease. BMJ 301(6761):1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Gluckman PDaH M (2006) Developmental origins of health and disease, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  271. Ivanova E, Chen JH, Segonds-Pichon A, Ozanne SE, Kelsey G (2012) DNA methylation at differentially methylated regions of imprinted genes is resistant to developmental programming by maternal nutrition. Epigenetics 7(10):1200–1210. https://doi.org/10.4161/epi.22141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Radford EJ, Isganaitis E, Jimenez-Chillaron J, Schroeder J, Molla M, Andrews S, Didier N, Charalambous M, McEwen K, Marazzi G, Sassoon D, Patti ME, Ferguson-Smith AC (2012) An unbiased assessment of the role of imprinted genes in an intergenerational model of developmental programming. PLoS Genet 8(4):e1002605. https://doi.org/10.1371/journal.pgen.1002605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

M.A.S. is supported by Wellcome Trust grant 209475/Z/17/Z, L.L. is supported by CIHR grant PJT-165992 and R.M.J is supported by BBSRC grant BB/V008684/1. The authors are grateful to the wider imprinting community—both those whose work is directly covered and the many studies which we have not been able to include due to space constraints. Help with Fig. 8.1 from F. M. John.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Surani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

John, R.M., Lefebvre, L., Surani, M.A. (2022). Genomic Imprinting: A Paradigm for Epigenetics of Human Diseases. In: Michels, K.B. (eds) Epigenetic Epidemiology. Springer, Cham. https://doi.org/10.1007/978-3-030-94475-9_8

Download citation

Publish with us

Policies and ethics