Skip to main content

Quantum Diffeomorphism Invariance on the Worldline

  • Chapter
  • First Online:
Timeless Quantum Mechanics and the Early Universe

Part of the book series: Springer Theses ((Springer Theses))

  • 304 Accesses

Abstract

We now discuss the quantization of the general theory presented in Chap. 2, and we present a formalism for the construction and interpretation of quantum relational observables by closely following the analogy with the classical theory and, in particular, the HJ formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This chapter is based on [1,2,3].

  2. 2.

    If \(\Lambda \) is considered as a fixed constant, it acquires the status of law in the sense that it defines the constraint \(C_{\Lambda }\), and its value determines which independent initial conditions on the scalars are allowed by the theory.

  3. 3.

    It is also worthwhile to mention Komar’s approach [9], in which the Dirac conditions (3.4) are imposed, but the constraints are not self-adjoint, and the evolution is defined by an operator which is proportional to the Hermitian conjugate of the constraints.

  4. 4.

    We assume that the labels \({\mathbf {k}}\) are independent of \(p_e\) and E.

  5. 5.

    If the spectrum of \(\hat{C}\) is discrete, it may be possible to obtain a formula that is analogous to (3.20), where the integral over \(\tau \) is performed over a finite interval. For example, if E spans the integers, we can integrate \(\tau \) over the interval \((0,2\pi )\).

  6. 6.

    In [22], on-shell operators were considered with a different notation and they were called ‘projected kernels’ (see Eq. 13.32 in [22]).

  7. 7.

    See also [1, 23].

  8. 8.

    The corresponding classical evolution is dictated by the gauge-fixed total Hamiltonian (2.65) with \(\omega \equiv 1\), such that \(H_T^{{\text {gf}}} = C\). This is referred to as the ‘proper-time gauge’.

  9. 9.

    As was mentioned in Footnote 5, it may be possible to obtain a formula similar to (3.33), where the integral is performed over a finite interval if the spectrum of \(\hat{C}\) is discrete. For instance, if E spans the integers, the integral over \(\tau \) may be performed from 0 to \(2\pi \).

  10. 10.

    The abbreviation “h.c.” is a short-hand for “Hermitian conjugate”. Here, the term Hermitian refers to the auxiliary inner product.

  11. 11.

    Specifically, \(\hat{P}_{t = s-\tau } = \sum _{{\mathbf {k}}}\int {\mathrm {d}}t\ \delta (t-s+\tau )|{t,{\mathbf {k}}}\rangle \langle {t,{\mathbf {k}}}|\).

  12. 12.

    Notice that \(T(\tau ) = s\) implies that \(t = s-\tau \), which is the condition enforced by \(\hat{P}_{t = s-\tau }\).

  13. 13.

    Notice that \(\hat{P}_0[\hat{f},\hat{C}]\hat{P}_{t = t_0}\hat{P}_{E = 0} = \hat{P}_0\hat{f}\hat{C}\hat{P}_{t = t_0}\hat{P}_{E = 0}\).

  14. 14.

    In the particular case in which \(\hat{f} = \hat{1}\), the second line of (3.43) coincides with (3.25).

  15. 15.

    Instead of (3.44), one could consider, in principle, a decomposition in which the eigenvalue f also has an explicit dependence on s. This is not discussed here. See, however, the developments of Sect. 3.5.2.

  16. 16.

    It is important to emphasize that the quantum Faddeev–Popov resolution of the identity given in (3.39) or (3.69) is a key feature of our formalism. In this way, we differ, for example, from the other method proposed by Marolf in [23], where invariant extensions were defined in a way that did not invariantly extend the identity operator to the identity in \(\mathcal {H}_{\text {phys}}\), and thus the Faddeev–Popov resolution of the identity was not reproduced. In the case of the relativistic particle (to be analyzed in Chap. 4), the formalism of [23] leads to \(\hat{\mathcal {O}}_{\text {inv}}[1|q^0 = c s] = \mathrm {sgn}(\hat{p_0}) \ne \hat{1}\). It is our opinion that reproducing the Faddeev–Popov resolution of the identity in the quantum theory should be the correct procedure. It is also worthwhile to note that (3.69) heuristically corresponds to “inserting a gauge condition operator” into the (auxiliary) inner product. This is a procedure that was suggested in [22, 24].

  17. 17.

    Notice that the evolution determined by the classical gauge-fixed Hamiltonian (2.65) is given by \(\{f,H_T^{{\text {gf}}}\} = \{f,\omega C\}\) if f only depends on the scalars.

  18. 18.

    Recall that we have made the simplifying assumption that \(\hat{h}\) does not depend on s.

  19. 19.

    Although it is possible to choose more general (phase-space) functions as generalized clocks, the choice of \(\chi (q)\) will be sufficient in the perturbation theory developed in Chaps. 6 and 7.

  20. 20.

    See, however, [27] for a related discussion.

  21. 21.

    Notice that the physical propagator \((\sigma ,{\mathbf {n}};s|\sigma _0,{\mathbf {n}}_0;s_0)\) is a particular case of the matrix \((\sigma _1,{\mathbf {n}}_1;\chi _1|\sigma _2,{\mathbf {n}}_2;\chi _2)\), but one changes the value of the clock instead of switching clocks.

  22. 22.

    These maps are akin to constructions that had been considered earlier in various contexts, such as those of non-Abelian gauge fields in [33] or quantum canonical transformations in [34].

  23. 23.

    After the release of [2] (on which part of this chapter is based) and its submission by the author of this thesis for publication, a generalization of [19] to “relativistic settings” appeared in [51]. The results therein are complementary to the ones presented in [2] and in the beginning of this section (Sect. 3.7), but, in contrast to [2] and Sect. 3.7, they are still restricted to a particular class of gauge choices (which have trivial Faddeev–Popov determinants). In the future, it would be interesting to compare the formalism presented here to the one proposed in [19, 51].

  24. 24.

    We assume that E and \(E_{(1)}\) are labels of the same type (discrete or continuous) and that the equation \(E = E_{(1)}+E_{(>1)}\) can be solved for \(E_{(1)}\). The solution is given by h. For example, if both E and \(E_{(1)}\) are continuous labels, whereas \(E_{(>1)}\) is discrete, then the restriction of h to the case in which \(E = 0\) corresponds to a restriction of h to a set of discrete values given by \(-E_{(>1)}\).

  25. 25.

    The G-twirl operation is also sometimes used for spatial frames of reference (associated with generalized rods) [31].

References

  1. Chataignier L (2020) Phys Rev D 101:086001. https://doi.org/10.1103/PhysRevD.101.086001

    Article  ADS  MathSciNet  Google Scholar 

  2. Chataignier L (2021) Phys Rev D 103:026013. https://doi.org/10.1103/PhysRevD.103.026013

    Article  ADS  MathSciNet  Google Scholar 

  3. Chataignier L, Krämer M (2021) Phys Rev D 103:066005. https://doi.org/10.1103/PhysRevD.103.066005

    Article  ADS  Google Scholar 

  4. Stueckelberg ECG (1941) Helv Phys Acta 14:322; Stueckelberg ECG (1941) Helv Phys Acta 14:588; Stueckelberg ECG (1942) Helv Phys Acta 15:23

    Google Scholar 

  5. Gryb S, Thébault KPY (2019) Class Quant Grav 36:035009. https://doi.org/10.1088/1361-6382/aaf823; Gryb S, Thébault KPY (2019) Class Quant Grav 36:035010. https://doi.org/10.1088/1361-6382/aaf837; Gryb S, Thébault KPY (2018) Phys Lett B 784:324. https://doi.org/10.1016/j.physletb.2018.08.013

  6. Unruh WG, Wald RM (1989) Phys Rev D 40:2598. https://doi.org/10.1103/PhysRevD.40.2598

    Article  ADS  MathSciNet  Google Scholar 

  7. Carlini A, Greensite J (1997) Phys Rev D 55:3514. https://doi.org/10.1103/PhysRevD.55.3514

    Article  ADS  Google Scholar 

  8. Magueijo J, Smolin L (2019) Universe 5:84. https://doi.org/10.3390/universe5030084

    Article  ADS  Google Scholar 

  9. Komar A (1979) Phys Rev D 19:2908. https://doi.org/10.1103/PhysRevD.19.2908

    Article  ADS  Google Scholar 

  10. Nambu Y (1950) Prog Theor Phys 5:82. https://doi.org/10.1143/PTP.5.82

    Article  ADS  Google Scholar 

  11. Feynman RP (1950) Phys Rev 80:440. https://doi.org/10.1103/PhysRev.80.440

    Article  ADS  MathSciNet  Google Scholar 

  12. Rieffel MA (1974) Adv Math 13:176. https://doi.org/10.1016/0001-8708(74)90068-1

    Article  Google Scholar 

  13. Landsman NP (1995) J Geom Phys 15:285. https://doi.org/10.1016/0393-0440(94)00034-2

    Article  ADS  MathSciNet  Google Scholar 

  14. Marolf D. arXiv:gr-qc/0011112

  15. Halliwell JJ, Thorwart J (2001) Phys Rev D 64:124018. https://doi.org/10.1103/PhysRevD.64.124018

    Article  ADS  MathSciNet  Google Scholar 

  16. Halliwell JJ, Thorwart J (2002) Phys Rev D 65:104009. https://doi.org/10.1103/PhysRevD.65.104009

    Article  ADS  MathSciNet  Google Scholar 

  17. Henneaux M, Teitelboim C (1982) Ann Phys (NY) 143:127. https://doi.org/10.1016/0003-4916(82)90216-0

  18. Busch P, Grabowski M, Lahti PJ (1995) Operational quantum physics. Lecture notes in physics monographs, vol 31. Springer, Berlin

    Google Scholar 

  19. Höhn PA, Smith ARH, Lock MPE. Phys. Rev. D 104, 066001 (2021) https://doi.org/10.1103/PhysRevD.104.066001

  20. Loveridge L, Miyadera T, Busch P (2018) Found Phys 48:135. https://doi.org/10.1007/s10701-018-0138-3

    Article  ADS  MathSciNet  Google Scholar 

  21. Busch P, Lahti P, Pellonpää JP, Ylinen K (2016) Quantum measurement. Theoretical and mathematical physics. Springer International Publishing, Switzerland

    Google Scholar 

  22. Henneaux M, Teitelboim C (1992) Quantization of gauge systems. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  23. Marolf D (1995). arXiv:gr-qc/9508015

  24. Woodard RP (1993) Class Quant Grav 10:483. https://doi.org/10.1088/0264-9381/10/3/008

    Article  ADS  Google Scholar 

  25. Barvinsky A (1993) Phys Rept 230:237. https://doi.org/10.1016/0370-1573(93)90032-9

    Article  ADS  Google Scholar 

  26. Greensite J (1989) Report SFSU-TH-89/1. (unpublished); Greensite J (1990) Nucl Phys B342:409. https://doi.org/10.1016/0550-3213(90)90196-K

  27. Tsamis NC, Woodard RP (1985) Class Quant Grav 2:841. https://doi.org/10.1088/0264-9381/2/6/011

    Article  ADS  Google Scholar 

  28. Vanrietvelde A, Höhn PA, Giacomini F, Castro-Ruiz E (2020) Quantum 4:225. https://doi.org/10.22331/q-2020-01-27-225

  29. Höhn PA, Vanrietvelde A (2020) New J Phys 22:123048. https://doit.org/1088/1367-2630/abd1ac

  30. Höhn PA (2019) Universe 5:116. https://doi.org/10.3390/universe5050116

    Article  ADS  Google Scholar 

  31. Bartlett SD, Rudolph T, Spekkens RW (2007) Rev Mod Phys 79:555. https://doi.org/10.1103/RevModPhys.79.555

    Article  ADS  Google Scholar 

  32. Miyadera T, Loveridge L, Busch P (2016) J Phys A: Math Theor 49:185301. https://doi.org/10.1088/1751-8113/49/18/185301

    Article  ADS  Google Scholar 

  33. Creutz M, Muzinich IJ, Tudron TN (1979) Phys Rev D 19:531. https://doi.org/10.1103/PhysRevD.19.531

    Article  ADS  Google Scholar 

  34. Anderson A (1993) Phys Lett B 305:67. https://doi.org/10.1016/0370-2693(93)91106-W

    Article  ADS  Google Scholar 

  35. Page DN, Wootters WK (1983) Phys Rev D 27:2885. https://doi.org/10.1103/PhysRevD.27.2885

    Article  ADS  Google Scholar 

  36. Wootters WK (1984) Int J Theor Phys 23:701. https://doi.org/10.1007/BF02214098

    Article  Google Scholar 

  37. Page DN, NSF-ITP-89-18

    Google Scholar 

  38. Page DN (1994) In: Halliwell JJ, Pérez-Mercader J, Zurek WH (eds) Physical origins of time asymmetry. Cambridge University Press, Cambridge

    Google Scholar 

  39. Page DN (1991) In: Ashtekar A, Stachel J (eds) Conceptual problems of quantum gravity. Birkhauser, Boston

    Google Scholar 

  40. Page DN (1987) In: DeVega H, Sanchez N (eds) String theory, quantum cosmology and quantum gravity: proceedings of the Paris-Meudon colloquium. World Scientific, Singapore

    Google Scholar 

  41. Page DN (1991) In: Mann R, Wesson P (eds) Gravitation: a Banff Summer Institute. World Scientific, Singapore

    Google Scholar 

  42. Dolby CE. arXiv:gr-qc/0406034

  43. Rovelli C (1990) Phys Rev D 42:2638. https://doi.org/10.1103/PhysRevD.42.2638

    Article  ADS  Google Scholar 

  44. Rovelli C (1991) Class Quant Grav 8:297. https://doi.org/10.1088/0264-9381/8/2/011; Rovelli C (1991) Class Quant Grav 8:317. https://doi.org/10.1088/0264-9381/8/2/012

  45. Rovelli C (1991) Phys Rev D 43:442. https://doi.org/10.1103/PhysRevD.43.442

    Article  ADS  MathSciNet  Google Scholar 

  46. Dittrich B (2007) Gen Relativ Gravit 39:1891. https://doi.org/10.1007/s10714-007-0495-2

    Article  ADS  MathSciNet  Google Scholar 

  47. Dittrich B (2006) Class Quant Grav 23:6155. https://doi.org/10.1088/0264-9381/23/22/006

    Article  ADS  MathSciNet  Google Scholar 

  48. Chataignier L (2019) Z Naturforsch A 74:1069. https://doi.org/10.1515/zna-2019-0223

  49. Gambini R, Porto RA, Pullin J, Torterolo S (2009) Phys Rev D 79:041501. https://doi.org/10.1103/PhysRevD.79.041501

    Article  ADS  MathSciNet  Google Scholar 

  50. Hunter G (1975) Int J Quantum Chem 9:237. https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.560090205

  51. Höhn PA, Smith ARH, Lock MPE (2021) Front Phys 9:181. https://doi.org/10.3389/fphy.2021.587083

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Chataignier .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chataignier, L. (2022). Quantum Diffeomorphism Invariance on the Worldline. In: Timeless Quantum Mechanics and the Early Universe. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-94448-3_3

Download citation

Publish with us

Policies and ethics