Skip to main content

Mathematical Modelling of Mechanical Structures and Assembly Processes of Complex Technical Systems

  • Conference paper
  • First Online:
Advances in Automation III (RusAutoCon 2021)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 857))

Included in the following conference series:

Abstract

The paper discusses a hypergraph model of the mechanical structure of a technical system. The model describes the coordination of parts during assembly of a product, obtained by basing on design bases. This model correctly describes the operations and assembly processes of products that have the properties of sequentiality and coherence. The sequential and coherent assembly operations are prevalent in the assembly of modern technical systems: machines and mechanical devices. In terms of this model, the assembly operation is represented as a normal contraction of an edge. The sequence of contractions that transforms the hypergraph into a point is a mathematical description of the assembly process. A theorem on the necessary conditions for contractibility of hypergraphs is presented. It is shown that the necessary conditions are not sufficient. An important theorem on sufficient conditions of contractibility is proved. The concept of an ns-hypergraph is introduced. Ns-hypergraph is a mathematical model of the mechanical structure that cannot be assembled due to structural defects. Computational experiment was carried out to enumerate the ns-hypergraphs of various orders. The proposed apparatus can be used in computer-aided design systems for structural analysis of complex projects and computer-aided planning of assembly processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghandi, S., Masehian, E.: Review and taxonomies of assembly and disassembly path planning problems and approaches. Comput. Aided Des. 67, 58–86 (2015)

    Article  Google Scholar 

  2. Delchambre, A.: Computer-Aided Assembly Planning. Springer, Dordrecht (1992). https://doi.org/10.1007/978-94-011-2322-8

    Book  Google Scholar 

  3. Bourjault, A.: Methodology of assembly automation: a new approach. In: Radharamanan, R. (ed.) Robotics and Factories of the Future 1887, pp. 37–45. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-642-73890-6_6

    Chapter  Google Scholar 

  4. De Fazio, T., Whitney, D.: Simplified generation of all mechanical assembly sequences. IEEE J. Robot. Autom. 3(6), 640–658 (1987)

    Article  Google Scholar 

  5. Wilson, R.: Minimizing user queries in interactive assembly planning. IEEE Trans. Robot. Autom. 11, 308–312 (1995)

    Article  Google Scholar 

  6. Sambhoos, K., Koc, B., Nagi, R.: Extracting assembly mating graphs for assembly variant design. J. Comput. Inf. Sci. Eng. 9(3), 034501 (2009)

    Article  Google Scholar 

  7. Cho, D., Cho, H.S.: Inference on robotic assembly precedence constraints using a part contact level graph. Robotica 11, 173–183 (1993)

    Article  Google Scholar 

  8. Irfan, M.A., Bohez, E.: Assembly features: definition, classification and instantiation. In: International Conference on Emerging Technologies. IEEE (2006)

    Google Scholar 

  9. Gu, P., Yan, X.: CAD-directed automatic assembly sequence planning. Int. J. Prod. Res. 33, 3069–3100 (1995)

    Article  Google Scholar 

  10. Floriani, L., Nagy, G.: A graph model for face-to-face assembly. In: 1989 Proceedings of the International Conference on Robotics and Automation. IEEE (1989)

    Google Scholar 

  11. Shpitalni, M., Elber, G., Lenz, E.: Automatic assembly of three-dimensional structures via connectivity graphs. CIRP Ann. 38, 25–28 (1989)

    Article  Google Scholar 

  12. Lin, A.C., Chang, T.C.: An integrated approach to automated assembly planning for three-dimensional mechanical products. Int. J. Prod. Res. 31(5), 1201–1227 (1993)

    Article  Google Scholar 

  13. Heedong, K., Lee, K.: Automatic assembling procedure generation from mating conditions. Comput. Aided Des. 19(1), 3–10 (1987)

    Article  Google Scholar 

  14. Park, H.-S., Park, J.-W., Park, M.-W., Kim, J.-K.: Development of automatic assembly sequence generating system based on the new type of parts liaison graph. In: Bernard, A., Rivest, L., Dutta, D. (eds.) PLM 2013. IAICT, vol. 409, pp. 540–549. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41501-2_54

    Chapter  Google Scholar 

  15. Lee, D.H., Kang, J.G., Xirouchakis, P.: Disassembly planning and scheduling: review and further research. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 215(5), 695–709 (2001)

    Article  Google Scholar 

  16. Mascle, C., Xing, K.: A liaison model for disassembly-reassembly product eco-design. Int. J. Des. Eng. (IJDE) 2(3), 346–368 (2009)

    Google Scholar 

  17. Roy, U., Banerjee, P., Liu, C.R.: Design of an automated assembly environment. Comput. Aided Des. 21(9), 561–569 (1989)

    Article  Google Scholar 

  18. Cao, Y., Kou, X., Cao, S.: A sub-assembly identification algorithm for assembly sequence planning. In: International Industrial Informatics and Computer Engineering Conference (2015)

    Google Scholar 

  19. Vigano, R., Gomez, G.: Assembly planning with automated retrieval of assembly sequences from CAD model information. Assembly Autom. 32(4), 347–360 (2012)

    Article  Google Scholar 

  20. Luiz, S., de Mello, H., Sanderson, A.C.: A basic algorithm for the generation of mechanical assembly sequences. In: Luiz, S., de Mello, H., Lee, S. (eds.) Computer-Aided Mechanical Assembly Planning, vol. 148, pp. 163–190. Springer, Boston (1991). https://doi.org/10.1007/978-1-4615-4038-0_7

    Chapter  Google Scholar 

  21. Homem de Mello, L., Sanderson, A.: A correct and complete algorithm for the generation of mechanical assembly sequences. IEEE Trans. Robot. Autom. 7(2), 228–240 (1991)

    Article  Google Scholar 

  22. Seth, A., Vance, J.M., Oliver, J.H.: Virtual reality for assembly methods prototyping: a review. Virtual Reality 15(1), 5–20 (2011). https://doi.org/10.1007/s10055-009-0153-y

    Article  Google Scholar 

  23. Holland, W., Bronsvoort, W.: Assembly features in modeling and planning. Robot. Comput.-Integr. Manuf. 16, 277–294 (2000)

    Article  Google Scholar 

  24. Naphade, K., Storer, R., Wu, S.D.: Graph-theoretic generation of assembly plans, part I: correct generation of precedence graphs (1999). https://www.researchgate.net/profile/Robert_Storer/publication/. Accessed 25 Nov 2020

  25. Naphade, K., Storer, R., Wu, S.D.: Graph-theoretic generation of assembly plans, part II: problem decomposition and optimization algorithms (1999). https://www.researchgate.net/publication/2447296. Accessed 25 Nov 2020

  26. Bozhko, A: Math modeling of sequential coherent and linear assembly plans in CAD systems. In: 2018 Global Smart Industry Conference (GloSIC), pp. 1–5 (2018)

    Google Scholar 

  27. Bozhko, A.N.: Hypergraph model for assembly sequence problem. In: IOP Conference Series: Materials Science and Engineering, vol. 560, no. 1, p. 012010. IOP Publishing (2019)

    Google Scholar 

  28. Natarajan, B.K.: On planning assemblies. In: Proceedings of the Fourth Annual Symposium on Computational Geometry, pp. 299–308 (1988)

    Google Scholar 

  29. Whitney, D.E.: Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development. Oxford University Press, New York (2004)

    Google Scholar 

  30. Karpenko, A.P., Leshchev, I.A.: Advanced cat swarm optimization algorithm in group robotics problem. Procedia Comput. Sci. 150, 95–101 (2018). 13th International Symposium “Intelligent Systems - 2018” (INTELS 2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bozhko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bozhko, A. (2022). Mathematical Modelling of Mechanical Structures and Assembly Processes of Complex Technical Systems. In: Radionov, A.A., Gasiyarov, V.R. (eds) Advances in Automation III. RusAutoCon 2021. Lecture Notes in Electrical Engineering, vol 857. Springer, Cham. https://doi.org/10.1007/978-3-030-94202-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94202-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94201-4

  • Online ISBN: 978-3-030-94202-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics