Skip to main content

Humboldt, Biogeography, and the Dimension of Time

  • Chapter
  • First Online:
Alexander von Humboldt

Abstract

In the nineteenth century, Alexander von Humboldt and Alfred Russel Wallace laid out the basis for the field of biogeography, the discipline that studies the relation between organisms and their geographic distribution. Almost in parallel with the birth of biogeography, the foundations of geology were laid out, providing a dimension of time to spatial changes of the landscape. In this paper, we review the historical context of the early biogeographers and explore what the lasting significance of the nineteenth-century holistic research approach is in present research. We also discuss the historical context in which biogeography and geology developed, and how the concept of deep time, plate tectonics, and mountain building provided a broader perspective to biogeography. To illustrate the benefits of integrating geological and biological methods, we focus on the genesis and chronology of the elevational gradient, core to Humboldt’s work. In particular, we use as example the evolution of two mountain systems, the Andes in South America, and the Tibet-Himalaya-Hengduan region in Asia. We conclude that in the nineteenth century, an interdisciplinary approach and progress in the different scientific fields led to a paradigm shift in the understanding of drivers of biogeography. Implementing such integrative vision today, and aided by advances in molecular phylogenetics and geology, has enabled biogeographers to form new, and more accurate, models of mountain building, climate, and species evolution. These models are particularly relevant in view of present scenarios of climate change and conservation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson VJ, Saylor JE, Shanahan TM, Horton BK (2015) Paleoelevation records from lipid biomarkers: Application to the tropical Andes. GSA Bull 127:1604–1616

    Article  Google Scholar 

  • Antonelli A, Nylander JAA, Persson C, Sanmartin I (2009) Tracing the impact of the Andean uplift on Neotropical plant evolution. Proc Natl Acad Sci USA 106:9749–9754

    Article  Google Scholar 

  • Antonelli A, Zizka A, Carvalho FA, Scharn R, Bacon CD, Silvestro D, Condamine FL (2018) Amazonia is the primary source of Neotropical biodiversity. Proc Natl Acad Sci USA 115:6034–6039

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: the History and Formation of Species. Harvard University Press, Cambridge, Mass

    Book  Google Scholar 

  • Bacon CD, Velásquez-Puentes FJ, Hoorn C, Antonelli A (2018) Iriarteeae palms tracked the uplift of Andean Cordilleras. J Biogeogr 45:1653–1663

    Article  Google Scholar 

  • Bartholomew JG (1902) The philosophy of map-making and the evolution of the great german atlas. Scott Geogr Mag 18:34–39

    Google Scholar 

  • Becquerel H (1896a) Sur les radiations invisibles émises par les corps phosphorescents. Comptes rendus de l’Academie des Sciences, Paris 122:501–503 [séance du 2 March 1896]

    Google Scholar 

  • Becquerel H (1896b) Emission de radiations nouvelles par l’uranium metallique. Comptes rendus de l’Academie des Sciences, Paris [séance du 18 May 1896]

    Google Scholar 

  • Bermúdez MA, Hoorn C, Bernet M, Carrillo E, Van Der Beek, PA, Garver JI, Mora JL, Mehrkian K (2017) The detrital record of late-Miocene to Pliocene surface uplift and exhumation of the Venezuelan Andes in the Maracaibo and Barinas foreland basins. Basin Res 29:370–395

    Article  Google Scholar 

  • Bicudo TC, Sacek V, de Almeida RP, Bates JM, Ribas CC (2019) Andean tectonics and mantle dynamics as a pervasive influence on Amazonian ecosystem. Sci Rep 9:1–11

    Article  Google Scholar 

  • Biermann KR (1985) Goethe in vertraulichen Briefen Alexanders von Humboldt. Goethe-Jahrbuch 102:16

    Google Scholar 

  • Bijl PK, Schouten S, Sluijs A, Reichart GJ, Zachos JC, Brinkhuis H (2009) Early Palaeogene temperature evolution of the southwest Pacific Ocean. Nature 461:776–779

    Article  Google Scholar 

  • Böhme K, Müller-Wille S (2013) In der Jungfernheide hinterm Pulvermagazin frequens. NTM 21:93–106

    Article  Google Scholar 

  • Böttcher JC (2020) Beobachtung als Lebensart. Praktiken der Wissensproduktion bei Forschungsreisen im 18. Jahrhundert. Franz Steiner Verlag, Stuttgart

    Google Scholar 

  • Braterman PS (2013) How science figured out the age of Earth. In: Determining the age of the Earth, Scientific American Geochronology

    Google Scholar 

  • Browne J (1983) The secular ark: studies in the history of biogeography. Yale University Press

    Book  Google Scholar 

  • Brundin L (1966) Transantarctic relationships and their significance, as evidenced by chironomid midges: with a monograph of the subfamilies Podonominae and Aphroteniinae and the Austral Heptagyiae. Kungl Svens Vetenskapakad Handl 11:1–472

    Google Scholar 

  • Buffon G (1749) Histoire Naturelle Générale et Particulière, Tome III. L’Imprimerie Royale, Paris

    Google Scholar 

  • Buffon G (1756) Les animaux sauvages (de l’Histoire Naturelle Générale et Particulière, Tome VI). In: Œuvres. Gallimard, Paris, pp 703–707

    Google Scholar 

  • Buffon G (1761) Histoire Naturelle Générale et Particulière, Tome IX. L’Imprimerie Royale, Paris

    Google Scholar 

  • Buffon G (1766) Histoire Naturelle Générale et Particulière, Tome XIV. L’Imprimerie Royale, Paris

    Google Scholar 

  • Buffon G (1778) Les époques de la nature. Muséum National de Histoire Naturelle, Paris

    Google Scholar 

  • Buttimer A (2001) Beyond Humboldtian science and Goethe’s way of science: Challenges of Alexander von Humboldt’s geography (Jenseits Humboldtianischer Wissenschaft und Goethes Wissenschaftsverständnis: Herausforderungen der Geographie Alexander von Humboldts). Erdkunde 55:105–120

    Article  Google Scholar 

  • Camerini JR (1993) Evolution, biogeography, and maps: An early history of Wallace’s Line. Isis 84:700–727

    Article  Google Scholar 

  • Cannon SF (1978) Science in culture: The early Victorian period. Dawson, New York [Pages 73–110 on Humboldtian Science (see also Nicolson M 1987)]

    Google Scholar 

  • Chen YW, Wu J, Suppe J (2019) Southward propagation of Nazca subduction along the Andes. Nature 565:441–447

    Article  Google Scholar 

  • Christmann T & Oliveras I (2020). Nature of Alpine Ecosystems in Tropical Mountains of South America. Encyclopedia of World Biomes. Elsevier Inc.

    Book  Google Scholar 

  • Cleef AM (1979) The phytogeographical position of the neotropical vascular páramo flora with special reference to the Colombian Cordillera Oriental. In: Larsen K, Holm-Nielsen LB (eds) Tropical Botany, Academic Press, London, pp 175–184

    Google Scholar 

  • Crame JA (2020) Early Cenozoic evolution of the latitudinal diversity gradient. Earth-Sci Rev 202:103090

    Google Scholar 

  • Crick FH, Barnett L, Brenner S, Watts-Tobin RJ (1961) General nature of the genetic code for proteins. Nature 192:1227–1232. https://doi.org/10.1038/1921227a0. PMID 13882203

    Article  Google Scholar 

  • Crisci JV, Cigliano MM, Morrone JJ, Roig-Juñent S (1991) Historical biogeography of southern South America. Syst Zool 40:152–171

    Article  Google Scholar 

  • Cuatrecasas J (1958) Aspectos de la vegetación natural de Colombia. Colombia: Editorial Voluntad

    Google Scholar 

  • Cutler AH (2009) Nicolaus Steno and the problem of deep time. In: Rosenberg GD (ed) The Revolution in Geology from the Renaissance to the Enlightenment, GSA Memoirs 203, 143–148. https://doi.org/10.1130/978-0-8137-1203-1-203.0.143

  • Darlington PJ (1957) Zoogeography: the Geographical Distribution of Animals. Wiley, New York

    Google Scholar 

  • Darwin C (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London

    Book  Google Scholar 

  • Darwin C, Wallace AR (1858) On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. Zool J Linn Soc 3:46–62. https://doi.org/10.1111/j.1096-3642.1858.tb02500.x

    Article  Google Scholar 

  • Daum AW (2019) Alexander von Humboldt. C. H. Beck, München, p 17–19

    Google Scholar 

  • de Candolle AP (1820) Essai élémentaire de géographie botanique. Extrait du 18 volume du Dictionnaire des Sciences Naturelles. FG Levrault, Strasbourg 18:359–422

    Google Scholar 

  • Dettelbach M (1996) 17 Humboldtian Science. In: Jardine N, Secord JA (eds) Cultures of Natural History. Cambridge University Press, Spary

    Google Scholar 

  • Diazgranados M, Barber JC (2017) Geography shapes the phylogeny of frailejones (Espeletiinae Cuatrec. Asteraceae): a remarkable example of recent rapid radiation in sky islands. PeerJ 5:e2968

    Google Scholar 

  • Ding W-N, Ree, RH, Spicer RA, Xing Y-W (2020) Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science 369:578–581. https://doi.org/10.1126/science.abb4484

    Article  Google Scholar 

  • Dupont-Nivet G, Hoorn C, Konert M (2008) Tibetan uplift prior to the Eocene-Oligocene climate transition: evidence from pollen analysis of the Xining Basin. Geology 36:987–990

    Article  Google Scholar 

  • Eakin CM, Lithgow-Bertelloni C (2018) An overview of dynamic topography: The influence of mantle circulation on surface topography and landscape. In: Hoorn C, Perrigio A, Antonelli, A (eds) Mountains, Climate, and Biodiversity, Wiley-Blackwell, Chichester, pp 37–49

    Google Scholar 

  • Ebach MC (2015) Origins of Biogeography. Springer, New York, New York, USA

    Book  Google Scholar 

  • Ebersbach J, Schnitzler J, Favre A, Muellner-Riehl AN (2017) Evolutionary radiations in the species-rich mountain genus Saxifraga L. BMC Evol Biol 17:1–13. https://doi.org/10.1186/s12862-017-0967-2

    Article  Google Scholar 

  • Ebersbach J, Muellner-Riehl AN, Favre A, Paule J, Winterfeld G, Schnitzler J (2018) Driving forces behind evolutionary radiations: Saxifraga section Ciliatae (Saxifragaceae) in the region of the Qinghai–Tibet Plateau. Bot J Linn Soc 186:304–320

    Article  Google Scholar 

  • Egerton FN (2009) A history of the ecological sciences, Part 32: Humboldt, nature’s geographer. Bulletin Ecol Soc Am 90:253–282

    Article  Google Scholar 

  • England PC, Molnar P, Richer FM (2007) Kelvin, Perry and the Age of the Earth. Amer Sci 95:342. https://doi.org/10.1511/2007.66.342

    Article  Google Scholar 

  • Engler H, Irmscher E (1916) Saxifragaceae – Saxifraga. In: Engler H (ed) Das Pflanzenreich. Regni vegetabilis conspectus, vol. 1919. Engelmann, Leipzig, p 449–709

    Google Scholar 

  • Escapa IH, Catalanot SA (2013) Phylogenetic analysis of Araucariaceae: integrating molecules, morphology, and fossils. Int J Plant Sci 174:1153–1170

    Google Scholar 

  • Farnsworth A, Lunt, DJ, Robinson, SA, Valdes PJ, Roberts WHG, Clift, PD, Markwick P, Su, T, Wrobel, N, Bragg F, Kelland S-J, Pancost RD (2019) Past East Asian monsoon evolution controlled by paleogeography, not CO2. Sci Adv 5:eaax1697. https://doi.org/10.1126/sciadv.aax1697

  • Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, Michalak I, Muellner-Riehl AN (2015) The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol Rev 90:236–253

    Article  Google Scholar 

  • Favre A, Michalak I, Chen CH, Wang, J-C, Pringle JS, Matuszak S, Sun H, Yuan Y-M, Struwe L, Muellner-Riehl A (2016) Out-of-Tibet: the spatio-temporal evolution of Gentiana (Gentianaceae). J Biogeogr 43:1967–1978

    Article  Google Scholar 

  • Fjeldså J (2018) Mountains and the diversity of birds. In: Hoorn C, Perrigio A, Antonelli, A (eds) Mountains, Climate, and Biodiversity, Wiley-Blackwell, Chichester, pp 245–256

    Google Scholar 

  • Flantua SG, Hooghiemstra H (2018) Historical connectivity and mountain biodiversity. In: Hoorn C, Perrigio A, Antonelli A (eds) Mountains, Climate, and Biodiversity, Wiley-Blackwell, Chichester, pp 171–185

    Google Scholar 

  • Flantua SGA, Hooghiemstra H, Van Boxel JH, Cabrera M, González-Carranza Z, González-Arango C, (2014) Connectivity dynamics since the Last Glacial Maximum in the northern Andes: a pollen-driven framework to assess potential migration. Monographs Systematic Botany Missouri Botanical Garden 128:98–123

    Google Scholar 

  • Flantua SG, O’dea A, Onstein RE, Giraldo C, Hooghiemstra H (2019) The flickering connectivity system of the north Andean páramos. J Biogeogr 46:1808–1825

    Google Scholar 

  • Forster JR (1778) Observations Made During a Voyage Round the World [in H.M.S. Resolution] on Physical Geography, Natural History, and Ethic Philosophy. G. Robinson, London

    Google Scholar 

  • Forster G (1791–1794) Ansichten vom Niederrhein, von Brabant, Flandern, Holland, England und Frankreich, im April, Mai und Junius 1790. Voss; Unger, Berlin

    Google Scholar 

  • Galli L (2020) Alfred Russel Wallace or Alexander von Humboldt: Who “invented” biogeography? BELS 2:37–39. https://doi.org/10.15167/2612-2960/BELS2020.2.1.1211

  • Gébelin A, Mulch A, Teyssier C, Jessup MJ, Law RD, Brunel M (2013) The Miocene elevation of Mount Everest. Geology 41:799–802

    Article  Google Scholar 

  • Gentry AH (1982) Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann Mo Bot Gard 69:557–593

    Article  Google Scholar 

  • Glaubrecht M (2019) Wer erklärt uns die Natur? Humboldt oder Darwin. GEO Magazin [in German] 11:30–51

    Google Scholar 

  • Goethe JW v (1795) Letter to Alexander von Humboldt

    Google Scholar 

  • Goethe JW v (1797) Letter to Duke Carl August

    Google Scholar 

  • Gooley T (2012) The Natural Explorer. Hodder & Stoughton, London

    Google Scholar 

  • Grimmer F, Dupont L, Lamy F, Jung G, González C, Wefer G (2018) Early Pliocene vegetation and hydrology changes in western equatorial South America. Clim Past 14:1739–1754

    Article  Google Scholar 

  • Guntau M (2009) The rise of geology as a science in Germany around 1800. Geolog Soc Lon Spec Pub 317:163. https://doi.org/10.1144/SP317.9

    Article  Google Scholar 

  • Güttler N (2014) Das Kosmokop. Karten und ihre Benutzer in der Pflanzengeographie des 19. Jahrhunderts. Wallstein Verlag, Göttingen

    Google Scholar 

  • Hazzi NA, Moreno JS, Ortiz-Movliav C, Palacio RD (2018) Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proc Natl Acad Sci USA 115:7985–7990

    Article  Google Scholar 

  • Hennig W (1966) Phylogenetic Systematics. University of Illinois Press, Chicago. Translated by D. Dwight Davis and Rainer Zangerl

    Google Scholar 

  • Hess HH (1960) Evolution of ocean basins. Report to Office of Naval Research, contract no. 1858, 081–067:38

    Google Scholar 

  • Hess HH (1962). History of ocean basins. Petrologic studies, 4, 599–620

    Google Scholar 

  • Hesse V (2005) Goethe, die Gebrüder Humboldt und die Medizin – Festvortrag

    Google Scholar 

  • Hesse V (2012) Alexander von Humboldt und der Botaniker Carl Ludwig Willdenow: Wissenschaft und Freundschaft. Publication of a lecture that was held in the context of the festivities for the 200th anniversary of the Berlin “Gesellschaft für Natur-und Heilkunde” on June 10, 2010 in the Blossom Hall of the Botanical Museum in Berlin-Dahlem, and on October 28, 2010 in the Berlin-Brandenburg Academy of Sciences and Humanities. https://www.avhumboldt.de/?p=8313

  • Higgins MA, Ruokolainen K, Tuomisto H, Llerena N, Cardenas G, Phillips OL, Vasquez R, Räsänen M (2011) Geological control of floristic composition in Amazonian forests. J Biogeogr 38:2136–2149

    Article  Google Scholar 

  • Holmes A (1913) The Age of the Earth. Harper, London and New York

    Google Scholar 

  • Holmes, A (1946) An estimate of the age of the Earth. Nature 157: 680–684

    Article  Google Scholar 

  • Hooghiemstra H, Van der Hammen T (2004) Quaternary ice-age dynamics in the Colombian Andes: developing an understanding of our legacy. Philos Trans R Soc 359:173–181

    Article  Google Scholar 

  • Hooghiemstra H, Wijninga VM, Cleef AM (2006) The Paleobotanical record of Colombia: Implications for Biogeography and Biodiversity. Ann Mo Bot Gard 93:297–325

    Article  Google Scholar 

  • Hoorn C, Bogotá-A GR, Romero-Baez M, Lammertsma EI, Flantua SG, Dantas EL, Dino R, Dermeval A do Carmo, Chemale Jr F (2017) The Amazon at sea: Onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin. Glob Planet Change 153:51–65

    Google Scholar 

  • Hoorn C, Perrigo A, Antonelli A (eds.) (2018) Mountains, Climate and Biodiversity. John Wiley & Sons

    Google Scholar 

  • Hoorn C, van der Ham R, de la Parra F, Salamanca S, ter Steege H, Banks H, Star W, Heuven BJv, Langelaan R, Carvalho FA, Rodriguez-Forero G, Lagomarsino L (2019) Going north and south: The biogeographic history of two Malvaceae in the wake of Neogene Andean uplift and connectivity between the Americas. Rev Palaeobot Palynol 264:90–109

    Google Scholar 

  • Hughes C, Eastwood R (2006) Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci USA 103:10334–10339

    Article  Google Scholar 

  • Humboldt Av (1793) Florae Fribergensis Specimen, Plantas Cryptogamicas Praesertim Subterraneas Exhibens. Berolini

    Google Scholar 

  • Humboldt Av (1806) Letter to Karoline von Wolzogen

    Google Scholar 

  • Humboldt Av (1845–1850). Kosmos. Entwurf einer physischen Weltbeschreibung. Cotta, Stuttgart und Tübingen

    Google Scholar 

  • Humboldt Av, Bonpland A (1807) Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer, auf Beobachtungen und Messungen gegründet, welche vom 10ten Grade nördlicher bis zum 10ten Grade südlicher Breite, in den Jahren 1799, 1800, 1801, 1802 und 1803 angestellt worden sind. Bearbeitet und herausgegeben von dem ersten. Cotta, Tübingen

    Google Scholar 

  • Humphries CJ, Parenti L (1986) Cladistic Biogeography. Clarendon, Oxford

    Google Scholar 

  • Humphries CJ, Parenti L (1999) Cladistic biogeography. 2nd ed. Oxford University Press, New York

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp 22:415–427

    Article  Google Scholar 

  • Hutton J (1788) Theory of Earth; or an investigation of the laws observable in the composition, dissolution, and restoration of land upon the globe. Trans Royal Soc Edinburgh 1:209–304

    Google Scholar 

  • Jackson ST (2009a) Humboldt, Ecology, and the Cosmos. Introduction to Essay on the Geography of Plants 1–52. University of Chicago Press, Chicago and London

    Google Scholar 

  • Jackson ST (2009b) Alexander von Humboldt and the general physics of the Earth. Science 324:596–597

    Google Scholar 

  • Jackson ST (2019) Humboldt for the Anthropocene. Science 365:1074–1076

    Article  Google Scholar 

  • Johnston AK (1848/1850) The Physical Atlas, A Series of Maps & Illustrations of the Geographical Distribution of Natural Phenomena Embracing I Geology. II Hydrography. III Meteorology. IV Natural History. The Geographical Society, Berlin. William Blackwood & Sons, Edinburgh, London

    Google Scholar 

  • Jovanović L (2020) The Cosmopolitan Circumnavigator of the South Seas: A Biography of Georg Forster. In: Encyclopédie Internationale des Histoires de l’Anthropologie. Berose, Paris

    Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626. https://doi.org/10.1038/217624a0

    Article  Google Scholar 

  • Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press

    Book  Google Scholar 

  • Kirschner JA, Hoorn C (2019) The onset of grasses in the Amazon drainage basin, evidence from the fossil record. Front Biogeogr 12:e44827. https://doi.org/10.21425/F5FBG44827

  • Klein U (2015) Humboldts Preußen. Wissenschaft und Technik im Aufbruch. Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

  • Lagomarsino LP, Condamine, FL, Antonelli A, Mulch A, Davis CC (2016) The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol 210:1430–1442. https://doi.org/10.1111/nph.13920

    Article  Google Scholar 

  • Larson JL (1968) The Species Concept of Linnaeus. Isis 59: 291–299

    Article  Google Scholar 

  • Lieberman BS (2000) Paleobiogeography. Plenum/Kluwer Academic, New York

    Book  Google Scholar 

  • Linder HP, Aspinall R, Bonaccorso E, Guayasamin JM, Hoorn C, Ortega-Andrade HM, (2019) Editorial. Humboldt Special Issue: The legacy of Alexander von Humboldt: Exploring the links between geo- and biodiversity. J Biogeogr 46:1625–1626

    Google Scholar 

  • Linnaeus C (1741) Oratio de telleuris habitabilis incremento. Cornelius Haak, Leiden

    Google Scholar 

  • Lomolino MV, Riddle BR, Whittaker RJ (2017) Biogeography: Biological Diversity Across Space and Time. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Luebert F, Weigend M (2014) Phylogenetic insights into Andean plant diversification. Front Ecol Evol 2:27

    Article  Google Scholar 

  • Lyell C (1830) Principles of Geology, being an attempt to explain the former changes of the Earth’s surface, by reference to causes now in operation. John Murray, London

    Book  Google Scholar 

  • MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution 17:373–387

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The Theory of Island Biogeography. Princeton Univ. Press, Princeton, N.J.

    Google Scholar 

  • Madriñán S, Cortés AJ, Richardson JE (2013) Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Front Genet 4:192

    Article  Google Scholar 

  • Mariss A (2015) A world of new things. Praktiken der Naturgeschichte bei Johann Reinhold Forster. Campus Historische Studien 72. Campus Verlag, Frankfurt am Main

    Google Scholar 

  • Martínez C, Madrinan S, Zavada M, Alberto Jaramillo C (2013) Tracing the fossil pollen record of Hedyosmum (Chloranthaceae), an old lineage with recent Neotropical diversification. Grana 52(3):161–180

    Google Scholar 

  • Martínez C, Jaramillo C, Correa-Metrío A, Crepet W, Moreno JE, Aliaga A, Moreno F, Ibañez-Mejia M, Bush MB (2020) Neogene precipitation, vegetation, and elevation history of the Central Andean Plateau. Sci Adv 6:eaaz4724

    Google Scholar 

  • Matthew WD (1915) Climate and evolution. Ann Acad Sci NY 24:171–318

    Article  Google Scholar 

  • Matuszak S, Favre A, Schnitzler J, Muellner-Riehl AN (2016) Key innovations and climatic niche divergence as drivers of diversification in subtropical Gentianinae in southeastern and eastern Asia. Am J Bot 103:1–13

    Article  Google Scholar 

  • Matzke NJ (2018) BioGeoBEARS: BioGeography with Bayesian (and likelihood) Evolutionary Analysis with R Scripts. version 1.1.1, published on GitHub on November 6, 2018. https://doi.org/10.5281/zenodo.1478250

  • Mayr G (2022) Paleogene fossil birds. Springer, Cham

    Google Scholar 

  • Meseguer AS, Lobo, JM, Ree R, Beerling DJ, Sanmartín I (2015) Integrating fossils, phylogenies, and niche models into biogeography to reveal ancient evolutionary history: the case of Hypericum (Hypericaceae). Syst Biol 64:215–232

    Article  Google Scholar 

  • Mittermeier RA, Seligmann PA, Ford H (eds) (2004) Hotspots revisited. CEMEX, Mexico City

    Google Scholar 

  • Molnar P, Boos WR, Battisti DS (2010) Orographic controls on climate and paleoclimate of Asia. Thermal and mechanical roles for the Tibetan Plateau. Annu Rev Earth Planet Sci 38:77–102

    Article  Google Scholar 

  • Moret P, Muriel P, Jaramillo R, Dangles O (2019a) Humboldt’s Tableau Physique revisited. Proc Natl Acad Sci USA 116:12889–12894

    Article  Google Scholar 

  • Moret P, Muriel P, Jaramillo R, Dangles O (2019b) Humboldt’s historical data are not messy, they just need expert examination. Proc Nat Acad Sci 116:21348–21349

    Google Scholar 

  • Morrone JJ, Crisci JV (1995) Historical biogeography: introduction to methods. Annu Rev Ecol Syst 26:373–401. https://doi.org/10.1146/annurev.es.26.110195.002105

    Article  Google Scholar 

  • Morueta-Holme N, Engemann K, Sandoval-Acuña P, Jonas JD, Segnitz RM, Svenning JC (2015) Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc Natl Acad Sci USA 112:12741–12745

    Article  Google Scholar 

  • Mosbrugger V, Favre A, Muellner-Riehl AN, Päckert M, Mulch A. (2018) Cenozoic evolution of geo-biodiversity in the Tibeto-Himalayan region. In: Hoorn C, Perrigio A, Antonelli A (eds) Mountains, Climate, and Biodiversity, Wiley-Blackwell, Chichester, pp 429–448

    Google Scholar 

  • Muellner-Riehl A (2019) Mountains as Evolutionary Arenas: Patterns, Emerging Approaches, Paradigm Shifts, and Their Implications for Plant Phylogeographic Research in the Tibeto-Himalayan Region. Front Plant Sci 10:195. https://doi.org/10.3389/fpls.2019.00195

    Article  Google Scholar 

  • Muellner-Riehl AN, Schnitzler J, Kissling WD, Mosbrugger V, Rijsdijk KF, Seijmonsbergen AC, Versteegh H, Favre A (2019) Origins of global mountain plant biodiversity: testing the ‘mountain-geobiodiversity hypothesis’. J Biogeo 46:2826–2838. https://doi.org/10.1111/jbi.13715

  • Mulch A, Chamberlain CP (2006) The rise and growth of Tibet. Nature 439:670–671

    Article  Google Scholar 

  • Müller-Wille S (1999) Botanik und weltweiter Handel. Zur Begründung eines natürlichen Systems der Pflanzen durch Carl von Linné (1707–1778) (= Studien zur Theorie der Biologie. Band 3). Verlag für Wissenschaft und Bildung, Berlin

    Google Scholar 

  • Müller-Wille S, Böhme K (2020) „Jederzeit zu Diensten“. Karl Ludwig Willdenows und Carl Sigismund Kunths Beiträge zur Pflanzengeographie Alexander von Humboldts. In: Päßler U, Ette O (eds): Geographie der Pflanzen. edition humboldt print, vol 1. J.B. Metzler, Stuttgart. https://doi.org/10.1007/978-3-476-04965-0_4

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  Google Scholar 

  • Nelson G, Platnick NI (1981) Systematics and Biogeography: Cladistics and Vicariance. Columbia University Press, New York

    Google Scholar 

  • Newton I (1675) Letter to Robert Hooke. https://digitallibrary.hsp.org/index.php/Detail/objects/9792

  • Nicolson M (1987) Alexander von Humboldt, Humboldtian science and the origins of the study of vegetation. Hist Sci 25:167–194

    Article  Google Scholar 

  • Nicolson M (1996) Humboldtian plant geography after Humboldt: The link to ecology. Br J H Sci 29:289–310

    Article  Google Scholar 

  • Nirenberg MW, Matthaei HJ (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad of Sci USA 47:1588–1602

    Article  Google Scholar 

  • Nirenberg MW, Caskey T, Marshall R, Brimacombe R, Kellogg D, Doctor B, Hatfield D, Levin J, Rottman F, Pestka S, Wilcox M, Anderson F (1966) The RNA code and protein synthesis. Cold Spring Harb Symp Quant Biol 31:11–24

    Article  Google Scholar 

  • Nürk NM, Michling F, Linder HP (2018) Are the radiations of temperate lineages in tropical alpine ecosystems pre-adapted? Global Ecol and Biogeogr 27:334–345

    Article  Google Scholar 

  • Ochoa D, Hoorn C, Jaramillo C, Bayona G, Parra M, De la Parra F (2012) The final phase of tropical lowland conditions in the axial zone of the Eastern Cordillera of Colombia: Evidence from three palynological records. J S Am Earth Sci 39:157–169

    Article  Google Scholar 

  • Oreskes N (1999) The Rejection of Continental Drift : Theory and Method in American Earth Science. Oxford University Press, New York

    Book  Google Scholar 

  • Ospovat D (1977) Lyell’s theory of climate. J Hist Biol 10:317–339

    Article  Google Scholar 

  • Ott RF (2020) How lithology impacts global topography, vegetation, and animal biodiversity: A global-scale analysis of mountainous regions. Geophys Res Let e2020GL088649

    Google Scholar 

  • Parenti L (2007) Common Cause and Historical Biogeography. In: Ebach MC, Tangney RS, (eds) Biogeography in a Changing World. CRC Press-Taylor and Francis Group, Boca Raton, California, pp 61–71

    Google Scholar 

  • Patterson C (1956) Age of meteorites and the Earth. Geochim Cosmochim Acta 10:230–237

    Article  Google Scholar 

  • Pérez-Escobar OA, Chomicki G, Condamine FL, Karremans AP, Bogarín D, Matzke NJ, Silvestro D, Antonelli A (2017) Recent origin and rapid speciation of Neotropical orchids in the world’s richest plant biodiversity hotspot. New Phytol 215:891–905

    Article  Google Scholar 

  • Perrigo A, Hoorn C, Antonelli A (2020) Why mountains matter for biodiversity. J Biogeogr 47:315–325. https://doi.org/10.1111/jbi.13731

    Article  Google Scholar 

  • Platnick NI, Nelson G (1978) A method of analysis for historical biogeography. Syst Zool 27:1–16

    Article  Google Scholar 

  • Rahbek C, Borregaard MK, Antonelli A, Colwell RK, Holt BG, Nogues-Bravo D, Rasmussen CMØ, Richardson K, Rosing MT, Whittaker RJ, Fjeldså J, (2019) Building mountain biodiversity: Geological and evolutionary processes. Science 365:1114–1119

    Article  Google Scholar 

  • Raven PH, Axelrod DI (1974) Angiosperm biogeography and past continental movements. Ann Mo Bot Garden 61:539–673

    Article  Google Scholar 

  • Renner SS (2005) Relaxed molecular clocks for dating historical plant dispersal events. Trends Plant Sci 10:550–558. https://doi.org/10.1016/j.tplants.2005.09.010

    Article  Google Scholar 

  • Renner SS (2016) Available data point to a 4-km-high Tibetan Plateau by 40 Ma, but 100 molecular-clock papers have linked supposed recent uplift to young node ages. J Biogeogr 43:1479–1487

    Article  Google Scholar 

  • Restrepo-Moreno SA, Foster DA, Bernet M, Min K, Noriega S (2019) Morphotectonic and orogenic development of the Northern Andes of Colombia: A low-temperature thermochronology perspective. In: Cediel F, Shaw RP (eds) Geology and Tectonics of Northwestern South America, Springer, Cham, pp 749–832

    Chapter  Google Scholar 

  • Ronquist F, Sanmartín I (2011) Phylogenetic methods in biogeography. Annu Rev Ecol Evol Syst. 42:441–464. https://doi.org/10.1146/annurev-ecolsys-102209-144710

    Article  Google Scholar 

  • Rosen DE (1978) Vicariant patterns and historical explanation in biogeography. Syst Zool 27:159–188

    Article  Google Scholar 

  • Rosenberg GD (2006) Nicholas Steno’s Chaos and the shaping of evolutionary thought in the Scientific Revolution. Geology 34:793–796

    Article  Google Scholar 

  • Rosenberg GD (2009a) Introduction: The Revolution in Geology from the Renaissance to the Enlightenment. In: Rosenberg GD (ed) The Revolution in Geology from the Renaissance to the Enlightenment. GSA Memoir 203, USA. https://doi.org/10.1130/978-0-8137-1203-1-203.0.1

  • Rosenberg GD (2009b) The measure of man and landscape in the Renaissance and Scientific Revolution. In: Rosenberg GD (ed) The Revolution in Geology from the Renaissance to the Enlightenment. GSA Memoir 203, USA. https://doi.org/10.1130/978-0-8137-1203-1-203.0.1

  • Rudwick MJ (2005). Bursting the limits of time: the reconstruction of geohistory in the age of revolution. University of Chicago Press

    Book  Google Scholar 

  • Rupke NA (2008) Alexander von Humboldt: A Metabiography. University of Chicago Press, Chicago/London

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467. https://doi.org/10.1073/pnas.74.12.5463

    Article  Google Scholar 

  • Sanmartín I (2012) Historical biogeography: Evolution in time and space. Evo Edu Outreach 5:555–568. https://doi.org/10.1007/s12052-012-0421-2

    Article  Google Scholar 

  • Sanmartín I, Ronquist F (2004) Southern Hemisphere biogeography inferred by event-based models: plant versus animal patterns. Syst Biol 53:216–243

    Article  Google Scholar 

  • Schouw JF (1823) Grundzüge einer allgemeinen Pflanzengeographie. Berlin: Reimer

    Book  Google Scholar 

  • Sclater PL (1858) On the general geographical distribution of the members of the class Aves. J Proc Linn Soc 2:130–145

    Article  Google Scholar 

  • Secord JA (1991) Darwin and Geology. BJHS 24:133–157

    Article  Google Scholar 

  • Simpson GC (1953) Evolution And Geography An Essay On Historical Biogeography With Special Reference To Mammals. Oregon State University of Higher Education, Eugene, OR

    Google Scholar 

  • Stigall AL, Lieberman BS (2005) Using environmental niche modeling to study the Late Devonian biodiversity crisis. In: Over DJ, Morrow JR, Wignall PB (eds) Understanding the Late Devonian and Permian-Triassic biotic and climatic events: towards an integrated approach. Developments in paleontology and stratigraphy. Elsevier, Amsterdam, pp 93–180

    Google Scholar 

  • Stockey RA (1982) The Araucariaceae: an evolutionary perspective. Rev Palaeobot Palynol 37(1–2):133–154

    Google Scholar 

  • Su T, Spicer RA, Li S-H, Xu H, Huang J, Sherlock S, Huang Y-J, Li S-F, Wang L, Jia L-B, Deng W-Y-D, Liu J, Deng C-L, Zhang S-T, Valdes PJ, Zhou Z-K (2019) Uplift, climate and biotic changes at the Eocene–Oligocene transition in south-eastern Tibet. Natl Sci Rev 6:495–504. https://doi.org/10.1093/nsr/nwy062

    Article  Google Scholar 

  • Su T, Spicer RA, Wu F-X, Farnsworth A, Huang J, Del Rio C, Deng T, Ding L, Deng W-Y-D, Huang Y-J, Hughes A, Jia L-B, Jin J-H, Li S-F, Liang S-Q, Liu J, Liu X-Y, Sherlock S, Spicer T, Srivastava G, Tang H, Valdes P, Wang T-X, Widdowson M, Wu M-X, Xing Y-W, Xu C-L, Yang J, Zhang C, Zhang S-T, Zhang X-W, Zhao F, Zhou Z-K (2020) A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet. Proc Natl Acad Sci USA 117:32989–32995

    Article  Google Scholar 

  • Sun B-N, Wu J-Y, Liu Y-S, Ding S-T, Li X-C, Xie S-P, Yan D-F, Lin Z-C (2011) Reconstructing Neogene vegetation and climates to infer tectonic uplift in western Yunnan, China. Palaeogeogr Palaeoclimatol Palaeoecol 304:328–336

    Article  Google Scholar 

  • Sundell KE, Saylor JE, Lapen, TJ, Horton, BK (2019) Implications of variable late Cenozoic surface uplift across the Peruvian central Andes. Sci Rep 9:4877. https://doi.org/10.1038/s41598-019-41257-3

    Article  Google Scholar 

  • Taponnier P, Zhiqin X, Roger F, Meyer B, Arnaud N, Wittlinger G, Jingsui Y (2001) Oblique stepwise rise and growth of the Tibet Plateau. Science 294:1671–1677

    Article  Google Scholar 

  • Testo WL, Sessa E, Barrington DS (2019) The rise of the Andes promoted rapid diversification in Neotropical Phlegmariurus (Lycopodiaceae). New Phytol 222:604–613

    Article  Google Scholar 

  • Théodoridès J (1966) Humboldt and England. Brit J Hist Sci 3:39–55

    Article  Google Scholar 

  • Torres V, Hooghiemstra H, Lourens L, Tzedakis PC (2013) Astronomical tuning of long pollen records reveals the dynamic history of montane biomes and lake levels in the tropical high Andes during the Quaternary. Quat Sci Rev 63:59–72

    Article  Google Scholar 

  • Trewick S (2016) Plate Tectonics in Biogeography. In: Richardson D, Castree N, Goodchild MF, Kobayashi A, Liu W, Marston RA (eds) International Encyclopedia of Geography: People, the Earth, Environment and Technology. Wiley-Blackwell

    Google Scholar 

  • Troll C (1968) The cordilleras of the tropical Americas. Colloquium Gerographicum 9, 5–56, Dummler Verlag, Bonn, Proceedings of the UNESCO Mexico Symposium August 1–6, 1966

    Google Scholar 

  • Unger F (1852) Versuch einer Geschichte der Pflanzenwelt. Wilhelm Braumüller, Vienna

    Book  Google Scholar 

  • van der Hammen T (1974) The Pleistocene changes of vegetation and climate in tropical South America. J Biogeogr 1:3–26

    Article  Google Scholar 

  • van der Hammen T, Cleef AM (1986) Development of the high Andean páramo flora and vegetation. In: Vuillemier F, Monasterio M (eds) High Altitude Tropical Biogeography. Oxford University Press

    Google Scholar 

  • van der Hammen T, Werner JH, Van Dommelen H (1973) Palynological record of the upheaval of the Northern Andes: a study of the Pliocene and Lower Quaternary of the Colombian Eastern Cordillera and the early evolution of its High-Andean biota. Rev Palaeobot Palynol 16:1–122

    Article  Google Scholar 

  • Wallace AR (1863) On the physical geography of the Malay archipelago. J Roy Geogr Soc 33:217–234

    Google Scholar 

  • Wang C, Zhao X, Liu Z, Lippert PC, Graham SA, Coe RS, Y H, Zhu L, Liu S, Li Y (2008) Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA 105:4987–4992

    Google Scholar 

  • Wang Y-J, Susanna A, Raab-Straube E von, Milne R, Liu J-Q (2009) Islandlike radiation of Saussurea (Asteraceae: Cardueae) triggered by uplifts of the Qinghai–Tibetan Plateau. Bot J Linn Soc 97:893–903

    Article  Google Scholar 

  • Wang P, Scherler D, Liu-Zeng J, Mey J, Avouac JP, Zhang Y, Shi D (2014) Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet. Science 346:978–981

    Article  Google Scholar 

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 171:737–738. https://doi.org/10.1038/171737a0

    Article  Google Scholar 

  • Wegener A (1912) Die Entstehung der Kontinente. Geolog Rundschau [in German] 3:276–292

    Article  Google Scholar 

  • Westerhold T, Marwan N, Drury AJ, Liebrand D, Agnini C, Anagnostou E, Barnet JSK, Bohaty SM, De Vleeschouwer D, Florindo F, Frederichs T, Hodell DA, Holbourn AE, Kroon, D, Lauretano V, Littler K, Lourens LJ, Lyle M, Pälike H, Röhl U, Tian J, Wilkens RH, Wilson PA, Zachos JC (2020): An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369:1383–1387

    Article  Google Scholar 

  • Whittaker RJ, Riddle BR, Hawkins BA, Ladle RJ (2013) The geographical distribution of life and the problem of regionalization: 100 years after Alfred Russel Wallace. J Biogeogr 40:2209–2214

    Article  Google Scholar 

  • Wiley EO (1988) Phylogenetic systematics and vicariance biogeography. Syst Zool 37:271–290

    Article  Google Scholar 

  • Willdenow KL (1787) Florae Berolinensis Prodromus. – secundum systema Linneanum. Wilhelm Vieweg, Berlin

    Google Scholar 

  • Willdenow KL (1798) Grundriss der Kräuterkunde zu Vorlesungen. Haude und Spener, Berlin. http://mdz-nbn-resolving.de/urn:nbn:de:bvb:12-bsb10707168-7

  • Wulf A (2016) Alexander von Humboldt und die Erfindung der Natur. C. Bertelsmann Verlag, München

    Google Scholar 

  • Xie H, Ash JE, Linde CC, Cunningham S, Nicotra A (2014) Himalayan-Tibetan plateau uplift drives divergence of polyploid poppies: Meconopsis Viguier (Papaveraceae). PloS one 9:e99177

    Google Scholar 

  • Xing Y, Ree RH (2017) Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc Natl Acad Sci USA 114:E3444–E3451

    Google Scholar 

  • Ziggelaar A (translator) (1997) Chaos: Niels Stensen’s chaos-manuscript, Copenhagen 1659, complete edition: Copenhagen, Danish National Library of Science and Medicine

    Google Scholar 

  • Ziggelaar A (2009) The age of Earth in Niels Stensen’s geology. In: Rosenberg GD (ed) The Revolution in Geology from the Renaissance to the Enlightenment. GSA Memoirs 203. https://doi.org/10.1130/978-0-8137-1203-1-203.0.135

  • Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8:357–366

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to Gabriele Rada (iDiv, Halle-Jena-Leipzig) for her work on the figures. We also are deeply grateful to Gregor Falk, Simon Schneider, and Manfred Strecker for inviting us to contribute to this special volume dedicated to the memory of Alexander von Humboldt. We also acknowledge constructive comments from Kärin Nickelsen (LMU, Munich), Susanne Renner (WU, St. Louis), Henry Hooghiemstra (UvA, Amsterdam), Salomon Kroonenberg (TU, Delft), and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carina Hoorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoorn, C., Ebersbach, J., Muellner-Riehl, A. (2022). Humboldt, Biogeography, and the Dimension of Time. In: Falk, G.C., Strecker, M.R., Schneider, S. (eds) Alexander von Humboldt. Springer, Cham. https://doi.org/10.1007/978-3-030-94008-9_3

Download citation

Publish with us

Policies and ethics